Autonomic Load-Testing Framework

Cornel Barna
Department of Computer
Science and Engineering

York University

Toronto, Canada

Marin Litoiu
Department of Computer
Science and Engineering

York University

Toronto, Canada

Hamoun Ghanbari
Department of Computer
Science and Engineering

York University
Toronto, Canada

cornel@cse.yorku.ca

ABSTRACT

In this paper, we present a method for performance testing
of transactional systems. The methods models the system
under test, finds the software and hardware bottlenecks and
generate the workloads that saturate them. The framework
is autonomic, the model and workloads are determined dur-
ing the performance test execution by measuring the system
performance, fitting a performance model and by analyti-
cally computing the number and mix of users that will sat-
urate the bottlenecks.

We model the software system using a two-layer queuing
model and use analytical techniques to find the workload
mixes that change the bottlenecks in the system. Those
workload mixes become stress vectors and initial starting
points for the stress test cases. The rest of test cases are
generated based on a feedback loop that drives the software
system towards the worst case behaviour.

Categories and Subject Descriptors

D.4.8 [Software Engineering]: Performance—modeling and
prediction, queueing theory

General Terms

Performance

Keywords

performance testing, autonomic system, performance mod-
els, stress testing

1. INTRODUCTION

Performance testing is fundamental in assessing the per-
formance of software components as well as of an entire
software system. A major goal of performance testing is
to uncover functional and performance problems under load
and the root cause of those problems. Functional problems
are often bugs, deadlocks and memory management bugs,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ICAC’11, June 14-18, 2011, Karlsruhe, Germany.

Copyright 2011 ACM 978-1-4503-0607-2/11/06 ...$10.00.

mlitoiu@yorku.ca

91

hamoun@cse.yorku.ca

buffer overflows. Performance problems often refer to high
response time or low throughput under load.

In practice, the testing is done under operational condi-
tions, that is, the testing is typically based on the expected
usage of the system once is deployed and on the expected
workload. The workload consists of the types of usage sce-
narios and the rate of these scenarios. A performance test
usually lasts for several hours or even a few days and only
tests a limited number of workloads. The major drawback
of this approach is that expected usage and scenario rates
are hard to predict. As a result, many workloads that the
system will face remain uncovered by the stress test.

In this paper we propose an autonomic framework that
explores the workload space and searches for points in this
space that cause the worst case behaviour for software and
hardware components of the system. It is generally known
that the performance of a software system is influenced by
the hardware and software bottlenecks. Bottlenecks are those
resources where the requests are queued and delayed because
the processing capacity limits of that resource. When those
limits are reached, we say that the bottlenecks are saturated.
Consider for example a web based application in which a web
server has 100 threads available. When there are more than
100 pending requests, the server is a saturated bottleneck
because it has reached its capacity. If the requests keep
coming, they will be buffered in a waiting queue that will
eventually reach its limits as well. In a software system,
there are many bottlenecks and, more importantly, those
bottlenecks change as the workload changes.

Finding the workloads that cause the bottlenecks to change
is a challenging but rewarding problem. We propose an au-
tonomic load stress testing framework that drives the work-
loads towards the points that create the bottlenecks and
eventually saturate them. We also show that the software
performance metrics reach their maximum or minimum for
those workloads that cause some bottlenecks to reach their
capacity or policy limits. The method uses an analytical
representation of the software system, a two-layer queuing
model that captures the hardware and software contention
for resources. The model is automatically tuned, using on-
line estimators that find the model parameters. The overall
testing method is autonomic, based on a feedback loop that
generates workloads according to the outputs of the model,
monitors the software system under test, extract metrics,
analyzes the effects of each workload and plans the new
workloads based on the results of the analysis.

The type of software systems that would benefit the most
from the proposed method are web based transactional sys-

NCS
Software Queuing Network
ic R3 o
s — software
¢ — class of service
Hardware Queuing Network
Dl,C D2,C

Figure 1: Software and hardware layers in a two tier web system

tems. To model the interaction of users with such systems,
we define classes of services, or classes in short. A class is
a service or a group of services that have similar statisti-
cal behavior and have similar requirements. When a user
begins interacting with a service, a user session is created.
The session will be maintained active until the user logs out
or when he is inactive for a specified period of time. If we
define N as the number of active users at some moment ¢,
these users can use different classes of services. If we have
C classes and N. is the number of users in class C, then
N = N1+ Na+---4+ N¢. N is also called workload intensity
or population while combinations of N, are called workload
mizes or population mizxes.

The remainder of the paper is organized as follows. Sec-
tion 2 presents the theoretical foundations of the testing
method. Section 3 describes the general testing framework
and introduces the testing algorithm. A case study is pre-
sented in Section 4 and related work is described in Section
5. Conclusions and further work are presented in Section 6.

2. PERFORMANCE STRESS SPACE

This section introduces the stress space, defined as the
multidimensional domain that can be covered by the soft-
ware performance metrics. To start with, a software-hard-
ware system can be described by two layers of queuing net-
works [30, 23]. The first layer models the software resource
contention, and the second layer models the hardware con-
tention.

To illustrate the idea, consider a web based system with
two tiers, an application software server (AS) and database
software (DB) server (see Figure 1). Each server runs on its
dedicated hardware, C'PU; and C'PUs computers respec-
tively. Consider also that we have two classes of service.
The hardware layer can be seen as a queuing network with
two queues (for simplicity of presentation, we only consider
the CPUs of the servers in this example) and with the de-
mands (or service times) for class C being Di,c and Ds ¢
respectively, C' € {1,2}. The software layer has two queuing
centres, the processes AS and DB, which queue requests
whenever there are no threads available. (Besides queu-
ing for threads, the requests can queue for critical sections,
semaphores, etc. Those can be represented as queuing cen-
tres as well.)

The software layer also has non-critical sections (NCS)
where there are no queuing delays and a Think Time centre
that models the user think time between requests. The ser-
vice times (demands) at the software layer are the response
times of the hardware layers. In our case they are Rj . and

92

R5 ., and they include the demand and the waiting time
at the hardware layer (we use the upper script s to denote
software metrics that belong to the software layer).

2.1 Utilization Constraints

In multiuser, transactional systems, a hardware bottle-
neck is a device (CPU, disk, network) that has the potential
to saturate if enough users access the system. In general,
the device with the highest demand is the bottleneck. How-
ever, when there are many classes of requests with different
demands at each device, then the situation becomes more
complex. When the workload mix changes, the bottleneck
in the system can change as well and there may be many
simultaneous bottlenecks in the system at a given time.

To find all the hardware bottlenecks in the system, let’s
assume that the workload intensity is high enough to make
the potential bottlenecks saturate. Workload mixes yield
per class utilization at each resource; the sum of per class
utilizations equals the total utilization of that resource. To-
tal utilization of resource K; is a linear function of per class
utilizations and has to be less that physical capacity or pol-
icy constraints [19]:

Uk =Y.

vCecC

Drk.c

Uk, c <bx, VKeK

(1)

K,C

or exact the physical capacity or policy constraints:

D
U =Y =2%Uk.c=bk, VKeK
K,,C
vCec

(2)

where 0 < Uk, .c < bg, VC € C; C and K are the sets
of classes and resources; K, € K is a reference resource
shared by all classes of request’; Uk is the total utilization
of resource K; Uk, ¢ is the utilization of resource K, by
requests of class C, and Dk ¢ is the demand of the resource
K in class C. bk is the utilization limit for resource K; for
example, the maximum utilization of a single CPU device is
1, the utilization of a dual core CPU is 2, etc.

For the example described in Figure 1, if device 1 (CPUy)
is the shared device (K;) and if we represent the inequation
(1) in the reference device utilization space, we obtain the
diagram of Figure 2a, where each segment represents one of
the equations (2). The stress space is within the area AFDC.
The coordinates (Ui,1,U1,2) of the points F, D, C can be

!The existence of a resource shared by all classes simplifies
the analysis; the results presented in the paper are valid
without this assumption.

found by solving the system of equalities (2). The coordi-
nates are those values for which one or more equations reach
the limits bx. On segment FD, device 1 is the bottleneck
and on segment DC device 2 is the bottleneck. Note that
we cannot drive the system out of the performance stress
area because we either would exceed the capacity limits or
violate policy constraints.

(b) Hardware and software.

(a) Hardware.

Figure 2: Constraints on the stress space.

2.2 Software Constraints

We can extend the above discussion for the software layer.
Consider 1... L software queues at the software layer.

Since the software layer is a normal queuing network (sep-
arable queuing network, a subset of general networks of
queues, where assumptions like Flow Ballance Assumption
hold [16]), we can apply the general queuing laws. Thus,
using the utilization law [16], the utilization of a software
resource L in class C' is:

Uioc=X&xRio, LeL,CeC (3)

where £ denotes the set of all software resources in the dis-
tributed system and C the set of all classes of services. The
total utilization of a software resource L is:
Up=)Y_ X&xRic
cec

(4)

Assuming that there exists a hardware resource K, shared
by all classes (for example a shared web server’s CPU), we
can express the utilization of resource K, in class C' € C:

()

The throughput at the both hardware layers must be the
same, at steady state both layers process the same number
of requests/seconds, therefore X = X¢. By replacing X¢&
in (3) with the one from (5) and performing some simple
algebraic operations, we can express the utilization of any
software resource L in class C as a function of utilization of
hardware resource K, in the same class C':

Ric
© Dk, ¢’

Uk,.c = Xc X Dk, .c

Ui,c = Uk, VLeL,VCeC (6)
Thus, using resource K, as reference, we can rewrite (4)
as:
RS
Uz = Z UKT’CD L.c .
cec Kr,©

(7)

The utilization of each software contention centre L is
limited by the capacity or policy constraints bz, and that
can be expressed as:

s
Ri.c

Up=> Uk..cp
cec Kr,©

VLeL

<bp,

(®)

93

and equation (2) can be rewritten as:

Z Uk,.c

where 0 < Uj o < b, VC €C.

These equations are non-linear because the terms R} o
depend non-linearly on Uk, c [29], i.e R} o = h(Uxk,,c),
where h is a non-linear function. The function h is the queu-
ing network at the hardware layer. R} o can be computed
by solving the hardware queuing network model.

For the example described in Figure 1, if device 1 (CPU;)
is the shared device K, and if we represent the equation (9)
in the reference device utilization space, then we obtain the
diagram of Figure 2b. The stress space is within the area
AHIDC and is certainly different than when we consider
only hardware resources. The coordinates (Ui,1,U,2) of the
points H, I, G, J and the corresponding segments can be
found by solving the equation 3. The coordinates are those
values for which one or more equations reach the limits br..
Note that some of the points are outside of the stress area,
they cannot be reached. By taking into account the soft-
ware constraints, the bottlenecks will evolve as follows: on
segment HI, software entity AS is the bottleneck, on segment
ID the hardware device 1 is the bottleneck and on segment
DC device 2 is the bottleneck. Note that we cannot drive
the system out of the stress area because either we would
exceed the capacity limits or we violate policy constraints.
Therefore, software entity DB is never saturated, although
it comes very close.

In mathematical programming terms ([3]), the points B,
C,D,E, F, H, I, G, J in Figures 2a and 2b are called extreme
points. Fxtreme points are those points in the solution space
where Ux = bx or Uj = by, for some hardware or software
resource K or L. The domain delimited by the most interior
constrains (like AHIDC in Figure 2a) is our feasible stress
space. In mathematical programming terms, a linear func-
tion will reach the maximum or minimum in the extreme
points of its feasible space. A non-linear function will reach
its extreme values on the boundary of the feasible space.
Therefore, the maximum (or minimum) of any performance
stress metric (response time, throughput, buffer length, uti-
lization, number of threads, etc.) is achieved on the bound-
ary of the feasible stress space. It turns out that if we can
explore the boundary, then we can find the maximum or the
minimum of those metrics.

2.3 Workload Stress Vectors

Since we know how to analytically compute the feasible
stress space boundary, including the extreme points, we need
a mechanism to reach those boundaries on the real system.
Unfortunately, we cannot drive utilization directly. On the
real system we stress the system by generating the work-
loads, i.e. by accessing the URLs and by synthetically gen-
erating a number of users for each request type.

Note that neither N nor N¢ are directly visible in (1) and
(8), but they are directly involved in producing per class uti-
lizations Uk, .. Our hypothesis is that it is possible to find
N¢, when N is known, by using the solutions of equations
(2) and (9). We rely on an early result, established for the
asymptotic case for one layer hardware queuing networks
in [2]. Our conjecture is that, if a solution of equation (2)
and/or (9) is Uk, ¢, then the workload mix that yields that

S

L,C
- bL7

VLeL
Dk, .c

9)

solution can be approximated as:

*_NC’
g =

The vectors 8° = (B, . .., Bjc|) are workload stress vectors
and are found by solving the equations (2) and (9) and com-
puting all per class utilizations using (6). Figure 3 shows
the stress vectors in the space of N1 and N» (dashed lines),
the number of users in class 1 and 2 respectively. On the
dashed lines the ratio of users remains constant. When the
software and hardware entities do not saturate, there is one
bottleneck on each sector (a). When the entities saturate,
then we can have multiple saturation devices for a range
of population mixes. For example, both WS server process
and the CPU of Application Server are bottlenecks on the
segment EE’ in Figure 3.

=Uxk, c- (10)

N, N,

WS process

N,
(b) Saturated bottlenecks.

N,
(a) Non-saturated bottlenecks.

Figure 3: Bottlenecks in population mix space, N =
Ni 4+ N2. As population mix changes, the bottleneck
shifts.

3. THE AUTONOMIC TESTING FRAME-
WORK

Figure 4 shows the proposed framework for autonomic
performance testing. The framework will drive the system
along the workload stress vectors until a performance stress
goal is reached. A stress goal is target performance metric
threshold, such as a software or hardware utilization value,
a target response time or throughput for a class of request,
etc.

\
I |
'] Autonomic I
Stress ||] Test Component/System |
g st | | Cases under test I
goals | | Controller i !
1 | i |
[
i ; :
i |)
11| Performance| Kalman |_, Monitor and |
: : Model Filter I Estimator I
I |
1
i | |
I Model loop) |
IN o o . Work Generator loop ,

Figure 4: Autonomic performance stress testing.

An autonomic test controller runs the performance stress
algorithm that will be presented later. In a nutshell, at
each iteration it simulates a number of users that simulta-
neously access the system/component that is tested. Based
on current state of the system and on the stress goals, a new
workload will be computed and generated. Basically, the
algorithm drives the system along the feasible stress test
boundary or along the stress vectors.

94

During the test, the system is continuously monitored by
a performance monitor and performance data is extracted.
Data includes CPU utilization, CPU time, disk utilization,
disk time, waiting time (which includes time waiting in crit-
ical sections, thread pools, connection pools), throughput,
etc. Also, the monitor component will extract information
about the workload that generated the data and information
about the system. The monitored data is filtered through
an estimator for error correction and noise removal. Estima-
tors, like Kalman filters [14], have been proven to be very
effective in estimating the demands [7] and we have used
those in our implementation.

The performance data is passed to the performance model
made of two queuing network layers. The model has 3 main
functions: (a) it computes the Rk ¢ (see Figure 1); (b) pro-
vides the equations and solutions for the load stress vectors
(10) and (c) is used by the workload generator in lieu of real
system to navigate along the stress vectors.

3.1 The Autonomic Test Controller

This section presents in detail the algorithm run by the
autonomic test controller. After the classes of service are
defined, the framework will use a model to make estimations
about the number of users required and the classes they
should execute in order to reach the stress goal (for example,
utilization or response time above a specified threshold).

By solving equations (2) and (9) and then using (10) we
can compute the workload stress vector 3. Now the goal
becomes finding the total number of users N that will drive
the system on the feasible space boundary along the stress
vectors.

We have developed the Stress Algorithm that will find the
number of users and their mix that will first reach the stress
goal. That will guarantee that beyond that number, we
either go beyond the policy constraints (when they limit the
feasible space) or we are guaranteed we stay on the boundary
of feasible space.

After solving equations (2) and (9) and getting the system
bottlenecks, the algorithm has two loops:

e in the first loop (Model loop in Figure 4) the number
of users to reach the boundary of the feasible space on
each stress vector and saturate a bottleneck is com-
puted on the model;

e in the second loop (Work Generator loop in Figure 4)
the algorithm works with the real system, submitting
requests and measuring the performance. This loop
is initialized with the values from the first loop and
corrects the eventual errors inherent in working with
a model instead of the real system.

Both loops follow similar feedback ideas: having an ez-
treme point p and the total number of users N, the work-
load stress vector is computed by using relations (10); then
the performance metric corresponding to the stress goal for
this workload mix is determined, either by solving the model
(Model loop), or by generating workload and measuring the
performance metric on the real system (Work Genmerator
loop). This performance metric is compared with the target
value. If the stopping condition is not met, the framework
will use a hill-climbing strategy to find a new value for N
and a new iteration will start. In our algorithm we stop
each loop when the predicted /measured performance metric
is within err% from the target value. However, other con-

Algorithm 1: Stress Algorithm — algorithm to find the
number of users that will bring the performance metric
of a resource K € KU L at a target value PMk.
input: N — the initial number of users
input: PMy — the targeted performance metric for resource
KeKkKUucL
input: err — accepted error

1 Tune the model by measuring and adjusting the service
demands for each class;

2 Find all extreme points by solving the equations (2) and (9);

s Compute the workload stress vectors, by using (10);

2 foreach stress vector p € P do

5 pme i < —1; // estimated performance metric
6 PMuy g < —1; // measured performance metric
7 Tune the model for stress vector p and N users;
// Stop when the estimated performance metric is
within err% from the target performance metric
PMe, K
8 whlle}l— Py ‘>err do
9 Compute <N1,N2,...,N|c‘) for N and p;
10 Solve model for (N1, N2, ..., Ni¢|);
11 Update pme ¢ with the estimated value;
PMe, K
12 if ‘1 ~ Py > err then
13 L Update N using a hill climbing strategy;
14 Generate workload and measure the metrics;
15 Update pm,,, x with the value measured;
16 if |1 — m‘ > err then
P
17 | go to line 7;
18 while)1 — pm’” X ‘ > err do
19 Compute (Nl,Ng, ..., Nj¢)) for N and p;
20 Generate workload and measure the metrics;
21 Update pm,, k with the value measured;
22 if ‘1 - an S ‘ > err then
23 L Update N using a hill climbing strategy;

ditions can be used, such as the performance metric is with
at most err% above the target or a combination of multiple
resources’ metrics.

In the first step (line 1) the algorithm tunes the two-layer
model. In essence it estimates the demands Dg ¢ for hard-
ware resources. The demands are important for the system
of equations (2) and (9). For most infrastructures, per class
service times or demands are hard or costly to measure. We
estimate those values by using Kalman filter as illustrated
by the Model Tuning Algorithm.

In order to get the demands for a class, we generate work-
load by considering that all users will be in that class and
no user will access other classes (line 2). Then, for each
resource we execute a loop to find the correct value for de-
mand: we solve the model to extract the estimated value
and also measure the performance metric—if the two values
are close enough (again, our criterion is that the estimated
value is within err% from the measured value, but other
criteria can be used) then we accept the demand found by
the Kalman filter, else we move to the next iteration.

4. EXPERIMENTS

We tested our framework on a a web application deployed
over cluster with three Windows XP machines: one Database
Server (MySQL) and two Web Servers (Tomcat). Also we

95

Algorithm 2: Model Tuning Algorithm — estimate the
demands for each resources in each class.

input : N — the number of users
input : err — the accepted error
output: D — demands matrix, of size |C| X | U L|

for i + 1 to |C| do

1
2 N« (0,0,...,0);
3 N; < N;
4 Generate workload;
5 foreach K € KU L do
6 while ‘17M‘>errdo
pm
7 Solve model;
8 Update pm, x with the model estimated value;
9 Update pm,, x with the measured value;
10 if‘l—m‘>errthen
PMym
11 Estimate service demands using Kalman
filters;
12 Update model with the estimated service
demands;
13 Update D¢, x with the last value estimated by
Kalman filters;

had on a machine a Workload Balancer (Apache) to dis-
tribute the incoming web requests to the two web servers.
Figure 5 shows our deployed testing framework that is a
materialization of the logical structure presented earlier in
Figure 4.

On each machine we had installed monitoring tools to
be able to measure the performance metrics: Windows XP
SNMP agents, JMX and Windows Performance Counters.
The workload generator and the analysis of the performance
data was on a separate machine.

2 B

i Do |

';« % ~ J |
Workload balancer

Database

Workload Server
generator |

Monitor
Figure 5: The cluster used for experiments.

On the cluster we have installed a typical 3-tier application—
an online store-with 3 main scenarios:

e browse — the user is browsing through the available
items in the store. Also the user will be able to specify
how many items he wants to have in a single page
(which is a parameter for the scenario);

e buy — the user decides to buy some items and add them
in the shopping cart;

e pay — the user goes to checkout and pays for the con-
tent of the shopping cart;

The two-layer model of the application is the one repre-
sented in Figure 1, earlier in the paper. At the software
layer, we have the two software queuing centres, the Web

Servers and the Database. The load balancer is not repre-
sented in this particular example as a queuing centre be-
cause it is performant enough not to queue requests (how-
ever, in a general case it should be represented). Therefore,
L = (Web, Data).

The hardware layer is made of two queuing centres K =
<CPUweb7 CPUdata,>'

The application was modeled with Apera tool [1], devel-
oped by one of the authors.

Initially, we have 3 classes of requests, represented by the
3 scenarios, C = {browse, buy, pay}.

4.1 Classes of Service

In general, the number of classes is equal with the number
of scenario because, most of the times, the performance met-
rics are not significantly influenced by the arguments values
and we can consider that a scenario is a single class of ser-
vice. Alternatively, we can consider each scenario with the
maximum argument for stress testing or average argument
for performance testing. However, there are situations when
we need to split a scenario in more classes. In our testing
framework, we probe each scenario with randomly generated
arguments and we measure the resulting stress goal metric,
for example CPU utilization? is measured. The scenarios
that have a high variance in the performance metrics (uti-
lization in our example) are most likely to provide significant
improvements if they are split. The other scenarios will gen-
erate a single class.

When enough samples have been gathered, we can split
the utilization interval in subintervals and for each such
subinterval we will determine the corresponding range for
scenario parameters. Each such range will generate a class
of service.

A user executing the scenario browse will send a request
to a web server, that will generate a request to a database
server to select a number of items from database. The result
will be sent back to the web server that will create a web page
containing all the selected items. The number of items to be
displayed will be specified as a parameter to the scenario.

Web Server

Utilization (%)
«
a

Database Server

3

e

0 10000 30000 40000 50000 70000 80000 90000 100000

20000

60000

Number of Items to Display

Figure 6: The CPU utilization on the web server
and database server when the browse scenario is ex-
ecuted.

Figure 6 shows the measured CPU utilization on the web
server and database server when the parameter goes from
0 to 100,000. We see that the CPU utilization at the web
server increases fast at first (for values lower than 20,000)
and then slows down.

2Any other performance metric can be used: throughput,
disk utilization, etc.

96

The CPU utilization at the database server follows a simi-
lar pattern, although the maximum value is lower than 15%.

Because the web server CPU utilization grows faster and
get closer to 100% we will use it to split the scenario into four
classes (first class for utilization between 0 and 25%, second
class for utilization between 25% and 50%, etc.). For that,
considering that the utilization follows a logarithmic shape,
we can do regression. Table 1 summarizes the ranges for the
parameter corresponding to the four classes of service.

Scenario | Range

browse 0 0 - 2,855
browse 1 2,856 - 11,752
browse 2 | 11,753 - 48,370
browse 3 | 48,371 - 100,000

Table 1: The ranges of the parameter when the sce-
nario is split in four classes.

Finding the right number of classes to split a scenario is
a hard problem on it’s own. If we have too many classes,
the accuracy of the algorithm will increase, but so does the
complexity. Too few classes, and the model will be solved
very fast at the expense of precision.

4.2 Results

Once we decided the number of classes of services, we
run the testing algorithm. At the first step it estimates the
demands for each class of service using the Model Tuning
Algorithm (Table 2 shows the values found when the model
is calibrated for CPU utilization).

| CPUweb CPUdata
buy 5.38 5.60
pay 5.17 5.60
browse 0 41.32 11.78
browse 1 192.84 39.91
browse 2 769.29 153.20
browse 3 | 1,961.82 372.30

Table 2: The values for demands for each scenario
found using Kalman filters (milliseconds).

We run the framework for 3 stress goals: (a) hardware uti-
lization, (b) web container number threads and (c) response
time for each scenario.

The hardware utilization stress goal. This goal aims at
performance of the system when a hardware resource runs
at a threshold utilization. This can be maximum utilization
100%, if reachable, or less than that (to resemble the op-
erational conditions). When the system reaches the target
conditions, performance metrics are collected and analyzed.
For illustration purposes, we set the target utilization at 50%
and want to find the number of users for each stress vector
that will yield that utilization.

The stress algorithm found 22 bottlenecks in the system
(the workload stress vectors are shown in Table 3). Each one
is a vector of six values, each value representing the propor-
tion of the users that have to access that scenario in order
to saturate the bottleneck. The order of the scenarios con-
sidered is (buy, pay, browse 0, browse 1, browse 2, browse
3).

| Workload stress vectors
1 (1, 0, 0, 0, 0, 0)
2 < 0’ 17 07 07 07 0 >
3 (0, 0, 1, 0, 0, 0)
4 (0, 0, 0, 1, 0, 0)
5 (0, 0, 0, 0, 1, 0)
6 (0, 0, 0, 0, 0, 1)
7| (0.947, 0, 0.053, 0, 0, 0)
8 | (0.985, 0, 0.015, 0, 0, 0)
9 | (0.952, 0, 0, 0.048, 0, 0)
10 | (0.990, 0, 0, 0.010, 0, 0)
11 | (0.952, 0, 0, 0, 0.048, 0)
12 | (0.991, 0, 0, 0, 0.009, 0)
13 | (0.953, 0, 0, 0, 0, 0.047)
14 | (0.991, 0, 0, 0, 0, 0.009)
15 (0, 0.896, 0.104, 0, 0, 0)
16 (0, 0.970, 0.030, 0, 0, 0)
17 (0, 0.905, 0, 0.095, 0, 0)
18 (0, 0.980, , 0.020, 0, 0)
19 (0, 0.906, 0, 0, 0.094, 0)
20 (0, 0.981, 0, 0, 0.019, 0)
21 (0, 0.907, 0, 0, , 0.093)
22 (0, 0.982, 0, 0, , 0.018)

Str. | Mx. Usr Usr Str. | Mx. Usr Usr
vec. (e) (m) vec. (e) (m)
1 3 281 282 1 6 258 261
2 10 265 275 2 4 249 248
3 4 70 72 3 7 62 70
4 2 16 16 4 2 16 17
5 4 5 5 5 2 6 6
6 6 3] 3 6 3 3 3
7 9 236 252 7 4 237 239
8 10 270 279 8 4 254 256
9 4 211 213 9 3 204 204
10 5 264 266 10 5 245 247
11 7 98 96 11 2 88 88
12 4 244 245 12 5 239 239
13 9 59 54 13 2 54 54
14 3 190 190 14 4 180 179
15 3 248 249 15 3 232 233
16 3 257 258 16 4 242 244
17 6 138 142 17 8 136 131
18 6 236 238 18 9 227 234
19 6 53 53 19 5 42 42
20 12 196 180 20 4 188 187
21 6 29 27 21 6 30 31
22 8 136 142 22 8 147 142

Table 3: The workload stress vectors found.

For each stress vector, the first loop of the stress algorithm
uses the model to find the number of users N that will bring
the utilization at the specified threshold (50% in our experi-
ments). Then the workload generator will simulate N users
and measure the metrics. If the measured and the estimated
metric values are not close (in our experiments, within 10%
from each other) a new calibration of the model is performed
and then the first loop is executed again. If the two values
are close, N is finely tuned by the second loop which sends
requests to the real system.

From Table 4, we can see that the number of users com-
puted by the first loop (column Usr (e)) using only the
model was very close to the actual number found by the
second loop (column Usr (m)). Therefore very few work-
loads were used against the real system (column Mx.). For
this particular example the hill climbing method of the sec-
ond loop tried less than 10 workloads for each stress vector,
with the exception of the 20" vector.

When we limit the number of threads on the web server
to 5 (thus creating software queues), we see that most of
the times the number of users required to bring the CPU
utilization above the 50% threshold is less, as shown in Table
4b.

What we can infer from Table 4 is that the 50% utilization
can be reached for a variety of workloads. For example, in
Table 4a, if we go along the stress vector 1, the utilization
is reached for 282 users. Along the vector 6, the same uti-
lization is reached for 3 users. This certainly shows a very
big limitation of the system when the workloads are shifted
toward the class 6. Similar conclusions can be drawn for the
case illustrated in Table 4b.

Software utilization goal. We run the algorithm again, tar-
geting the software utilization of the web server. We set the
maximum number of threads to handle requests on the web
server to 5. The stress goal for the algorithm is 50% utiliza-
tion of the container, meaning the use of at most 2.5 threads
on average. When calibrated for this goal, the model found

97

(a) Only hardware
queues.

(b) Hardware and soft-
ware queues.

Table 4: The users number that will bring the CPU
utilization (on web server or database server) above
50%.

only 6 stress vectors, each one having all users executing a
single scenario. The results are summarized in Table 5a.

We notice that the numbers predicted by the model (first
loop of the algorithm) was not as accurate as in the hardware
utilization case. Nevertheless, the second loop was were able
to find the correct number (column Usr (m)). Because the
model had to be re-calibrated several times, the number of
generated workloads (column Mx.) is higher for some stress
vectors. However, the total number of workloads generated
was 43, which is significantly lower than trying all possible
workloads.

Similar to hardware utilization, there is a large range of
workloads that use 50% of the threads. This shows the pit-
falls of not exploring the whole space, the web container can
saturate with very few users, if they come in class 6.

The response time goal. In the last experiment, we wanted
to see the maximum number of users that will ensure that
the response time for requests on each scenario does not
exceed a certain value. Because the demands for classes
vary greatly, we chose a different target value for each class.
Our threshold vector is (50, 50, 100, 500, 1500, 5000) for the
classes (buy, pay, browse 0, browse 1, browse 2, browse 3)
(the times are expressed in milliseconds). Tuning the model
for this goal gave us 16 workload stress vectors. The results
are shown in Table 5b.

Although the model was not as accurate as for hardware
utilization, being necessary several re-tunnes, each stress
vector required at most 15 workloads to be investigated (col-
umn Mx.) before the number of users is found (column Usr
(m)). Usually the more accurate is the model, fewer work-
loads need to be generated.

We also noticed that for the stress vector 10 (which is (0,

Str. | Mx. Usr Usr

vec. (e) (m)

1 9 185 171

2 13 233 170

Str. | Mx. Usr Usr 3 9 98 93
vec. (e) (m) 4 4 28 27
5 2 9 9

1 12 316 144 6 2 8 8

2 13 196 144 7 15 149 119

3 11 52 69 8 15 111 87

4 3 20 22 9 15 20 107

5 2 10 10 10 2 & 3

6 2 7 8 11 3 36 36
12 B 45 45

(a) Web container ﬁ Z Zl’g 11))31
utilization. - 1T 5 s
16 5 30 30

(b) Response times.

Table 5: The number of users found when the per-
formance metric is web container utilization and re-
sponse time for each class.

0.224, 0.776, 0, 0, 0)—22.4% of the users execute scenario
pay and 77.6% execute browse 0) there are necessary only 3
users to get a the response time greater than our threshold.
If all users execute pay (stress vector 2) there are necessary
170 users, and it all of them execute browse 0 (stress vector
3), then 93 users are required. The stress vector 10 shows
the dramatic effect that the combination of the scenarios
have.

Again, we notice that the total number of tested work-
loads, 119, is much lower than the size of the search space.

4.3 Complexity of the algorithm

The workload mix space is combinatorial in size. The
number of total workload mixes when there are N users and
C classes is given by the formula [18]:

(11)

N -1
Mizesn,c = (+C)

Cc-1

The number of classes is known from the begining, but the
number of users is not, so we would have to consider that
N goes from 0 t0 Niyaz, where Ny,qp is the maximum value
we allow for N. Thus the total number of mixes is:
N

. e [N+ C -1
M = 12
izes Z (c_1) (12)

N=1

Table 6 shows this combinatorial explossion:

Niaze C | Mixesn,,q,.,C Total Mixes
200 1 1 200
200 2 201 20 300
200 3 20 301 1373 700
200 4 1373 701 70 058 750
200 5 70 058 751 2 872 408 790
200 6 | 2872408 791 98 619 368 490

Table 6: The size of the workload mix space.

98

Exploring exhaustively the workload mix space is unfea-
sible. Our algorithm explores just a small fraction, with-
out needing Npqz, and finds the minimum number of users
that will bring the targeted metric value above the specified
treshold.

To better understand how the algorithm explores the work-
load mix space, lets consider only two classes: buy and
browse 0. Figure 7 shows how the CPU Utilization (for
web and database server), Web Container Utilization and
Response Time (for each class) change with the workload
mix. The utilizations are shown as percentages, and the re-
sponse time is expressed in miliseconds. On each plot the
threshold is shown as a plane parallel with the X0Y plane,
that intersects the Z-axis at 50 in Figures 7a, 7b, 7c and
7d and 100 in Figure 7e (the target was 50% utilization for
CPU and web container, 50 ms response time for scenario
buy and 100 ms response time for scenario browse 0).

The model found 4 bottlenecks and the stress vectors are
shown with blue lines on the plots. The algorithm inves-
tigates only mixes on these lines. In the picture it can be
seen that one of these lines will intersect the treshold plane
in a point with minimum users among all other intersection
points (it is always the vector that follows the Y-axis).

In our experiments, the framework was able to find the
intersection point for one stress vector after less than 20
workload mixes were tried. That means our framework can
find the overall minimum number of users with less than 80
workload mixes, which is a very low value compared with
the size of the search space (20,300 for 2 clases and 200
maximum users).

S. RELATED WORK

Transactional systems in the context of autonomic com-
puting have been modeled by several authors as regression
models or Queuing Network Models (QNM). Dynamic re-
gression models have been described in [10, 21]. Queuing
Network Models were described in [26] as predictive models.

Early work in finding bounds on response time and through-
put for one dimension of the workloads (one class) was done
in [35, 5, 16, 29]. In [2] the authors showed that in multi-
ple workload mixes, multiple resources systems, changes in
workload mixes can change the system bottleneck; the points
in the workload mix space where the bottlenecks change are
called crossover points, and the sub-spaces for which the
set of bottlenecks does not change are called saturation sec-
tors. The same authors, in the same paper, showed analyti-
cal relations between the workload mixes and utilization at
the saturated bottlenecks as well as analytical expressions
for asymptotic (with saturated resources) response times,
throughput, and utilization within the saturation sectors.
The results were presented for one queuing network layer
consisting of hardware resources. In this paper, we con-
sidered two layers with the emphasis on the software layer.
Moreover, our approach is defined in the context or perfor-
mance testing.

The paper [19] extended the results from [2] to non-asymp-
totic conditions (non-saturated resources), and used linear
and non-linear programming methods for finding maximum
object utilization across all workload mixes. That technique
involved only the hardware bottlenecks. In our current ap-
proach, we consider the software bottlenecks and we combine
the model search for worst case behaviour with a search on
the real system.

CPU Utilization (web server)
CPU Utilization (database)

(d) Response time for buy.

(e) Response time for browse 0.

Figure 7: On Z-axis is the CPU utilization on the servers (a and b), web container utilization (c) and the
response time of the two classes of service (d and e) when there are N, users in the class buy (X-axis) and N»

users in the class browse 0 (Y-axis).

There is no fully automatic method for building the struc-
ture of a performance model, however, there are available
tools that can help in building a structure of the performance
model [1]. Recent papers, like [20, 34, 36], have shown how
to build a tracking filter and a predictive QNM such that
the model’s outputs always match those of the real system.
Performance parameters like the service time, think times,
and the number of users can be accurately tracked and fed
into a QNM. In our approach, we estimate the demands on
the hardware layer using a method similar to [36]

To the best of our knowledge, there is no performance
model driven testing approach similar the one presented in
this paper. Although there are many model driven perfor-
mance activities, they do not refer to testing. Many re-
searchers have targeted capacity planning of distributed and
client-server software systems and specially the web based
ones [24, 4, 25]. Amongst those, many approaches have
used the widely recognized queuing models to model web
applications at operational equilibrium [24, 25, 9] which has
resulted in automated building of measurement based per-
formance models [33, 8] or capacity calculators [32]. Others
have tried to model the effect of application and server tun-
ing parameters on performance using statistical inference,
hypothesis testing and ranking (e.g. [11, 31]). In a rather
different approach some have tried to automate the detec-
tion of potential performance regressions, by applying statis-
tics on regression testing repositories [6, 12, 13]. This had
enabled developers to identify subsystems that show perfor-
mance deviations in load tests [22].

All these approaches have contributed to designing scal-
able systems, building on-demand performance management
systems [17, 27, 15] and performance aware software systems
[28].

In this paper our focus was on model driven testing and
on finding a method that drives the system towards a tar-
get state where performance metrics of interests can be col-

99

lected. The model is fundamental in analysing the feasible
stress space and in driving the system towards the saturation
points.

6. CONCLUSIONS

This paper presented an autonomic performance testing
method for stress testing web software systems. The systems
are modeled with a two-layer Queuing Network Model. The
model is used to find the software and hardware bottlenecks
in the system and to give a hint about workloads that will
saturate them. These hints are used as initial workloads on
the real system and then in a feedback loop that guides the
system towards a stress goal.

The workloads are characterized by workload intensity,
which is the total number of users, and by the workload miz,
which is ratio of users in each class of service. By extracting
the switching points from the model, we are able to compute
the stress vectors that yield a bottleneck change. Applying a
hill-climbing strategy for workload intensity along the stress
vectors, we are able to reach the stress goal.

We applied the method to find the workload intensity and
workload mix that yields target software and hardware uti-
lization limits or a target response time. The results show
that the algorithm is capable to reach the target goal with
a small number of iterations and therefore testcases.

Future work includes extending the framework to include
more target goals, validate it on large scale software systems
and address functional problems uncovered by stress testing.

7. REFERENCES
(1] Application Performance Evaluation and Resource
Allocator (APERA), 2009.
http://www.alphaworks.ibm.com/tech/apera.
[2] Gianfranco Balbo and Giuseppe Serazzi. Asymptotic
analysis of multiclass closed queueing networks: multiple
bottlenecks. Performance Evaluation, 30(3):115-152, 1997.

(3]

(4]

(5]

[6]

[7]

8

(9]

(10]

(11]

(12]

(13]

[14]

(15]

[16]

(17]

(18]

(19]

20]

(21]

Mokhtar S. Bazaraa, Hanif D. Sherali, and C. M. Shetty.
Nonlinear Programming: Theory and Algorithms.
Wiley-Interscience, second edition, 1993.

Agnes Bogardi-Mészoly, Tihamér Levendovszky, and Agnes
Szeghegyi. Improved performance models of web-based
software systems. In INES’09: Proceedings of the IEEE
13t" international conference on Intelligent Engineering
Systems, pages 23—28, Piscataway, NJ, USA, 2009. IEEE
Press.

Derek L. Eager and Kenneth C. Sevcik. Performance bound
hierarchies for queueing networks. ACM Trans. Comput.
Syst., 1(2):99-115, 1983.

K. C. Foo, Z. M. Jiang, B. Adams, A. E. Hassan, Y. Zou,
P. Flora, and P. Engineering. Mining performance
regression testing repositories for automated performance
analysis.

Hamoun Ghanbari, Cornel Barna, Marin Litoiu, Murray
Woodside, Tao Zheng, Johnny Wong, and Gabriel Iszlai.
Tracking adaptive performance models using dynamic
clustering of user classes. In 2% ACM International
Conference on Performance Engineering (ICPE 2011),
New York, NY, USA, 2011. ACM.

Hassan Gomaa and Daniel A. Menascé. Performance
engineering of component-based distributed software
systems. In Performance Engineering, State of the Art and
Current Trends, pages 40-55, London, UK, 2001.
Springer-Verlag.

Neil J. Gunther. Guerrilla Capacity Planning: A Tactical
Approach to Planning for Highly Scalable Applications and
Services. Springer-Verlag New York, Inc., Secaucus, NJ,
USA, 2006.

Joseph L. Hellerstein, Yixin Diao, Sujay Parekh, and
Dawn M. Tilbury. Feedback Control of Computing Systems.
John Wiley & Sons, 2004.

Gabor Imre, Tihamér Levendovszky, and Hassan Charaf.
Modeling the effect of application server settings on the
performance of j2ee web applications. In TEAA’06:
Proceedings of the 2nd international conference on Trends
in enterprise application architecture, pages 202—216,
Berlin, Heidelberg, 2007. Springer-Verlag.

Z. M. Jiang, A. E. Hassan, G. Hamann, and P. Flora.
Automated performance analysis of load tests. 2009.

Zhen Ming Jiang, A.E. Hassan, G. Hamann, and P. Flora.
Automatic identification of load testing problems. In
Software Maintenance, 2008. ICSM 2008. IEEE
International Conference on, pages 307-316, 2008.
Rudolph Emil Kalman. A new approach to linear filtering
and prediction problems. Transactions of the
ASME-Journal of Basic Engineering, 82(Series D):35-45,
1960.

A. Kraiss, F. Schoen, G. Weikum, and U. Deppisch.
Towards response time guarantees for e-service middleware.
Bulletin of the Technical Committee on, page 58, 2001.
Edward D. Lazowska, John Zahorjan, G. Scott Graham,
and Kenneth C. Sevcik. Quantitative system performance:
computer system analysis using queueing network models.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1984.
R. Levy, J. Nagarajarao, G. Pacifici, A. Spreitzer,

A. Tantawi, and A. Youssef. Performance management for
cluster based web services. pages 247-261, March 2003.
Marin Litoiu. A performance analysis method for
autonomic computing systems. ACM Transactions on
Autonomous and Adaptive Systems, 2(1):3, 2007.

Marin Litoiu, Jerome Rolia, and Giuseppe Serazzi.
Designing process replication and activation: A
quantitative approach. IEEE Trans. Softw. Eng.,
26(12):1168-1178, 2000.

Marin Litoiu, Murray Woodside, and Tao Zheng.
Hierarchical model-based autonomic control of software
systems. SIGSOFT Softw. Eng. Notes, 30(4):1-7, 2005.
Ying Lu, Tarek Abdelzaher, Chenyang Lu, Lui Sha, and

100

(22]

23]

24]

[25]

[26]

27]

28]

29]

(30]

(31]

(32]

33]

(34]

(35]

(36]

Xue Liu. Feedback control with queueing-theoretic
prediction for relative delay guarantees in web servers. In
RTAS ’03: Proceedings of the The 9t" IEEE Real-Time
and Embedded Technology and Applications Symposium,
page 208, Washington, DC, USA, 2003. IEEE Computer
Society.

H. Malik, B. Adams, A. E. Hassan, P. Flora, and

G. Hamann. Using load tests to automatically compare the
subsystems of a large enterprise system.

Daniel A. Menascé. Simple analytic modeling of software
contention. SIGMETRICS Performance Evaluation
Review, 29(4):24-30, 2002.

Daniel A. Menascé and Virgilio A. F. Almeida. Capacity
planning for Web performance: metrics, models, and
methods. Prentice-Hall, Inc., Upper Saddle River, NJ, USA,
1998.

Daniel A. Menascé and Virgilio A. F. Almeida. Scaling for
E Business: Technologies, Models, Performance, and
Capacity Planning. Prentice Hall PTR, Upper Saddle
River, NJ, USA, 2000.

Daniel A. Menascé and Mohamed N. Bennani. On the use
of performance models to design self-managing computer
systems. In Proceedings of the Computer Measurement
Group Conference, pages 7—12, 2003.

Daniel A. Menascé, Honglei Ruan, and Hassan Gomaa. Qos
management in service-oriented architectures. Perform.
Ewval., 64(7-8):646-663, 2007.

Diego Perez-Palacin, José Merseguer, and Simona Bernardi.
Performance aware open-world software in a 3-layer
architecture. In WOSP/SIPEW ’10: Proceedings of the
first joint WOSP/SIPEW international conference on
Performance engineering, pages 49-56, New York, NY,
USA, 2010. ACM.

M. Reiser and S. S. Lavenberg. Mean-value analysis of
closed multichain queuing networks. J. ACM,
27(2):313-322, 1980.

J. A. Rolia and K. C. Sevcik. The method of layers. IEEE
Transactions on Software Engineering, 21(8):689-700,
1995.

Monchai Sopitkamol and Daniel A. Menascé. A method for
evaluating the impact of software configuration parameters
on e-commerce sites. In WOSP ’05: Proceedings of the 5t
international workshop on Software and performance,
pages 53-64, New York, NY, USA, 2005. ACM.

Dharmesh Thakkar. Automated capacity planning and
support for enterprise applications. Master’s thesis, Queens
University, 2009.

Dharmesh Thakkar, Ahmed E. Hassan, Gilbert Hamann,
and Parminder Flora. A framework for measurement based
performance modeling. In WOSP ’08: Proceedings of the
Tth international workshop on Software and performance,
pages 55-66, New York, NY, USA, 2008. ACM.

Murray Woodside, Tao Zheng, and Marin Litoiu. The use
of optimal filters to track parameters of performance
models. In QEST °05: Proceedings of the Second
International Conference on the Quantitative Evaluation of
Systems, page 74, Washington, DC, USA, 2005. IEEE
Computer Society.

J. Zahorjan, K. C. Sevcik, D. L. Eager, and B. I. Galler.
Balanced job bound analysis of queueing networks. In
SIGMETRICS ’81: Proceedings of the 1981 ACM
SIGMETRICS conference on Measurement and modeling
of computer systems, page 58, New York, NY, USA, 1981.
ACM.

Tao Zheng, Jinmei Yang, Murray Woodside, Marin Litoiu,
and Gabriel Iszlai. Tracking time-varying parameters in
software systems with extended kalman filters. In CASCON
’05: Proceedings of the 2005 conference of the Centre for
Advanced Studies on Collaborative research, pages 334—345.
IBM Press, 2005.

