
 1

 
 
 
 

A TABU SEARCH APPROACH FOR SOLVING A DIFFICULT 
FOREST HARVESTING MACHINE LOCATION PROBLEM 

 
 

Andres Diaz Legües, Department of Industrial Engineering, University of Chile, Casilla 
2777, Av. Republica 701, Santiago, Chile. (adlegues@rdc.cl) 
 
Jacques A. Ferland1, Département Informatique et Recherche Opérationnelle, Université de 
Montréal, C.P. 6128, Succursale Centre-Ville, Montréal (Québec), Canada H3C 3J7. 
(ferland@iro.umontreal.ca) 
 
Celso C. Ribeiro2, Department of Computer Science, Universidade Federal Fluminense, 
Rua Passo da Pátria 156, Niterói, RJ 24210-240, Brazil. (celso@inf.puc-rio.br) 
 
Jorge R. Vera, Department of Industrial and Systems Engineering, Catholic University of 
Chile, Santiago, Vicuna Mackenna 4860, Santiago, Chile. (jvera@ing.puc.cl) 
  
Andres Weintraub3, Department of Industrial Engineering, University of Chile, Casilla 
2777, Av. Republica 701, Santiago, Chile. (aweintra@dii.uchile.cl) 
 

 
 

April, 2004 
 
Abstract: This paper deals with two main problems in forest harvesting. The first is that of 
selecting the locations for the machinery to haul logs from the points where they are felled 
to the roadside. The second consists in designing the access road network connecting the 
existing road network with the points where machinery is installed. Their combination 
induces a very important and difficult problem to solve in forest harvesting. It can be 
formulated as a combination of two difficult optimization problems: a plant location 
problem and a fixed charge network flow problem. In this paper, we propose a solution 
approach based on tabu search. The proposed heuristic includes several enhancements of 
the basic tabu search framework. The main difficulty lies in evaluating neighboring 
solutions, which involves decisions related to location of machinery and to road network 
arcs. Hence, the neighborhood is more complex than in typical applications of 
metaheuristics. Minimum spanning tree algorithms and Steiner tree heuristics are used to 
deal with this problem. Numerical results indicate that the heuristic approach is very 
                                                 
1 This author’s research was supported by NSERC grant (OGP 0008312) from Canada. 
2 Research of this author was supported by FAPERJ and CNPq, Brazil. 
3 This author’s research was supported by FONDECYT # 1040520 
3 Corresponding author (phone: 56-2-6784046, fax: 56-2-6897895) 

mailto:adlegues@rdc.cl
mailto:ferland@iro.umontreal.ca
mailto:celso@inf.puc-rio.br
mailto:jvera@ing.puc.cl
mailto:aweintra@dii.uchile.cl


 2

attractive and leads to better solutions than those provided by state-of-the-art integer 
programming codes in limited computation times, with solution times significantly smaller. 
The numerical results do not vary too much when typical parameters such as the tabu 
tenure are modified, except for the dimension of neighborhood.  
 
 
Keywords: Tabu search, GRASP, path relinking, simulated annealing, Steiner tree, forest 
harvesting, machinery location, network design. 
 
 
 
1. Introduction 
 
The problem of how to use machinery when harvesting an area is an important one in forest 
industries. Machines are needed to haul logs from the point where they are felled to the 
roadside, where they are loaded into trucks for further transportation. The use of machinery 
depends on the slope of the ground. High slopes require the use of cable logging (towers), 
while flat grounds are handled using skidders (tractors). Access roads (usually quite short) 
are needed to connect the existing road network with the points where machinery is 
installed. 
 
A computational system, PLANEX [4], has been used during the last decade by Chilean 
forest enterprises as a decision support system for locating the harvesting machineries and 
the access roads to build. The system is based on a graphic interactive interface linked to a 
geographical information system (GIS) storing information on topography, timber 
availability and geographical barriers like rivers and ravines. The GIS information is 
available for each 10 by 10 meters cell. The decision process of PLANEX is based on a 
greedy heuristic. The system has been used very successfully, leading to important cost 
savings as well as better preservation of the environment [4].  
 
Exact formulations have been proposed to improve the solution process. In [16], a model 
representing this problem was formulated. It is a difficult combinatorial problem and 
commercial mixed integer programming software is able to solve only small or medium 
size instances. A moderately better approach was proposed in [16] using Lagrangean 
relaxation to decompose the problem into its two basic components. The first sub-problem 
is a plant location problem: the machinery locations act as plants and timber cells represent 
customers. The second sub-problem is a fixed charge network flow problem. Both sub-
problems are difficult to solve, in particular the fixed charge network flow problem. 
Strengthening the formulation of each sub-problem and using other enhancements made it 
possible to obtain better solutions, but still only for moderate size problems of up to 40 
hectares, 4000 cells, and 60 potential machine locations.  
 
In this paper, we propose an alternate solution approach based on tabu search. The basic 
principles of this heuristic are the following. Evaluating neighbor solutions is difficult. 
Indeed, when we consider just the location problem, a typical neighbor solution is obtained 
either by modifying the status of one location (opening or closing it) or by exchanging the 
status of two locations (opening the one currently closed and closing the one currently 



 3

opened). These modifications are easy to execute but, in our case, given any modification 
of locations, the corresponding access road network must be modified accordingly. This 
operation is very time consuming if done exactly. Thus, we approximate the cost of the new 
access road network by referring to a spanning tree of all relevant nodes, defined a priori. 
Hence, we obtain rapidly a suboptimal value of the neighbor solution. Once a set of 
locations is identified with this approach, we use a Steiner tree heuristic to determine the 
associated access road network. Other typical enhancements of the basic tabu search 
approach are also implemented and tested: (a) reduction of the neighborhood size [2], 
carried out by evaluating sequentially only a fraction of the neighboring solutions at each 
iteration, (b) variable tabu tenure [14], (c) intensification and diversification strategies, (d) 
GRASP [6,12] and other randomized selection processes to select the modifications 
generating the neighbor solutions, and (e) path relinking [8,11]. 
 
The numerical results indicate that reducing the neighborhood size has an important impact 
on CPU time, without significantly deteriorating the quality of the solutions. The impact of 
the other enhancements is less significant. The approach is tested using real life size 
problems with up to 500 hectares, 50000 cells, and 520 potential machine locations.  As 
noted above, the approach proves to be very stable. When compared with CPLEX 8.1, the 
results indicate that the tabu search approach leads to better solutions, with solution times 
of two orders of magnitude smaller. In addition, the tabu search heuristic generates 
solutions reasonably close to the optimum when compared with the bounds provided by 
those obtained with CPLEX. 
 
Section 2 provides a description of the problem and the mathematical formulation of the 
model. The solution approach and the tabu search heuristic for the machinery location sub-
problem are introduced in Sections 3 and 4, respectively. Section 5 describes different 
enhancements of the basic tabu search approach. Section 6 is devoted to the access road 
network design sub-problem. In Section 7, we present the numerical results. Concluding 
remarks are made in Section 8. 
 
 
2. Problem formulation and mathematical model 
 
Timber harvesting is typically carried out as follows. Trees are felled with saw equipment, 
and then must be hauled to trucks to be transported for further processing to destinations 
such as saw mills. Two different types of machinery are used in forest harvesting: towers 
and skidders. The towers are used in the steeper part of the forest. They are sort of cranes 
carried by heavy trucks and placed on the top of hills. Cables are drawn from the cranes and 
anchored at the bottom of the hill, in order to take the timber from the hillside to the top, 
where it is loaded on trucks and transported to the processing plant. Towers have engines 
providing traction power to the cables. Skidders are used in the more flat regions of the 
forest.  They are nimble tractors moving on uneven ground as long as it is not too steep to 
carry the timber to storage areas along the roads. Skidders are less expensive to operate 
than towers. Since skidders are not fast, the road network has to be designed so as that they 
need not carry logs over distances longer than 300 meters. Access roads are required to 
transport the timber harvested using both types of machinery. 
 



 4

The area to be harvested is partitioned into cells where timber is available, or where 
machinery can be installed, or representing road intersections. With each potential 
machinery location is associated a reach zone consisting of a set of cells which can be 
harvested from that location. Furthermore, for any given cell, the use of a tower or a 
skidder is predetermined by the configuration of the ground. Finally, some cells are 
associated with the exits of the forest. The original topographic curves are illustrated in 
Figure 1, and they lead to a network configuration where nodes represent cells, road 
intersections, or exits, and arcs represent road segments as shown in Figure 2. 
 
 

 
 

Figure 1. Harvested area partitioned into cells. 
 

 
Figure 2. Network of a harvested area, with A being a machinery  
               location. The circle corresponds to its reach zone. 
               B is an intersection of roads, while S is the exit of the forest.  

 
In addition to locating optimally the different machineries over the area, a road network has 
to be designed to minimize the cost to exit the timber. Some road sections may already 
exist, but other have to be constructed. 
 



 5

The mathematical model refers to the following notation. We assume that a set of K 
different types of machinery is available (although only two types of machinery are used in 
our application). The area to be harvested is partitioned into a set C = {1,2, …, n} of n cells. 
This set includes four subsets of different kinds of cells:  

M: set of cells to be harvested. 
N: set of cells representing intersections of (potential and existing) road portions of the 

network.  
Tk: set of cells where machinery of type k can be located, with k = 1, 2, …, K (we 

assume there is no harvestable timber in these cells). 
S: set of exit cells (note that ). NS ⊂

We also denote T = ∪k=1,2,…,K Tk. The following notation is used to specify the reach zone 
of each potential location of machinery in T: 
 
                1, if cell j∈ M can be harvested from location i∈ Tk using machinery of type k 
Pk

ij =           
                0, otherwise. 
 
Furthermore, let O  be the timber volume available in cell j Mj ∈ . 
 
A graph G = (N, A) where NNA ×⊂

A∈( K

 is used to described the road network. Some road 
sections (edges) already exist, while others are potential road sections to be constructed.  
For each road section , let  be the capacity of the road section bounding the 
flow of the timber allowed on road section 

rq ), qr

Arq ∈),( .  
 
Finally, to specify the objective function, we use the following costs and revenues: 

c1k
i: installation (fixed) cost for machinery of type k in cell  i∈ Tk 

c2k
ij: unit harvesting cost of using a machinery of type k in cell i∈ Tk to harvest cell j  

c3
qr: construction cost of road section Arq ∈),(  (note that if road section Arq ∈),(   

already exists, then c3
qr = 0) 

c4
qr: unit transportation cost of timber on road section Arq ∈),(  

δ: unit revenue for timber harvested 
 
The following variables are used in the model: 
 
• Installation decision variables: 



 ∈

=
otherwise      0,

T  i cellin  located isk   typeofmachinery  if       ,1 k
k
ix  

 
• Road construction decision variables: 







 ∈
=

otherwise   0,

exist)already not  doesit  if dconstructe be  tohas r)(q,(i.e.,built  isA   r)(q,section  road if   ,1

qrz

 



 6

 
• Variables associated with the timber volume harvested: 

:k
ijw  timber volume harvested in cell Mj ∈   using machinery type k in cell i ∈ Tk 

yi: timber volume harvested in cell i T∈  
qrf : timber volume flowing through road section Arq ∈),(  

sg :  timber volume flowing through exit  Ss ∈  
 
The mathematical model is formulated in [16] as follows: 
 
Max   δ ∑i ∈ T  yi  − ∑i ∈ T ∑k  c1k

i xk
i  −  ∑i ∈ T ∑j ∈ M ∑k  c2k

ij wk
ij  − 

           ∑(q,r) ∈ A  c3
qr zqr  −  ∑(q,r) ∈ A c4

qr fqr                                                 (2.1)   
 
subject to: 
 

1≤∑ k
i

k
x     i T∈                           (2.2) 

 

j
k
i

k
ij Oxw ≤                              (2.3) KkTiMj k ∈∈∈ ,,

 

j
k
ij

k
ij

ki
OwP ≤∑∑    Mj ∈                                       (2.4) 

 
k
ij

k
ij

kj
i wPy ∑∑=              Ti ∈                            (2.5) 

 
qrqrrqqr zKff ≤+                              Arq ∈),(     (2.6) 

 









∈
∈
∈−

=− ∑∑
∈∈ Sg

SN
Ty

ff
r

r

Atr
rtqr

Arq r         

)(T-r           0

r      

U
),(),(

                            (2.7) 

 
   1or    0  =k

ix                                                 (2.8) Ti ∈
 

1or     0=qrz    Arq ∈),(                             (2.9) 
 

0≥iy                                  (2.10) Ti ∈
 

0≥k
ijw                               (2.11) KkTiMj k ∈∈∈ ,,

 
0≥qrf    Arq ∈),(                             (2.12) 



 7

 
The objective function (2.1) includes 5 terms. The first term is related to harvesting 
revenue. The next two terms are related to machinery location: the installation cost of 
machinery at the different locations and the variable harvesting cost at these locations.  The 
last two terms are related to the transportation of the harvested timber: the road sections 
construction cost and the variable flow cost of timber on these road sections. Constraints 
(2.2) indicate that at most one type of machinery can be located in each potential cell i T∈ . 
In constraints (2.3), the timber volume harvested in cell Mj ∈ through location Ti ∈ is 
bounded by the total volume Oj available in cell j if machinery of type k is located at i, 
otherwise it is equal to zero. Constraints (2.4) limit the total volume of timber harvested in 
cell . The total volume harvested through each location iMj ∈ T∈  is specified in 
constraints (2.5). Constraints (2.6) indicate that if road section (q,r) ∈ A is used, then the 
flow through it is limited by , otherwise it is equal to 0. Note that flow in arc (q,r) can 
go in both directions. Constraints (2.7) are the flow conservation constraints through the 
road network. In cells r ∈ T

qrK

k, representing machine locations, flows of timber yr are 
produced and sent into the road network. In cells r ∈ N, representing road intersections, 
timber flow conservation constraints are imposed. Finally, in cells r ∈ S, representing exit 
nodes, gr denotes the timber flowing through that exit. Finally, constraints (2.8) may 
indicate lower and upper bounds on timber flows through exit nodes.  If multiple exit nodes 
exist, we introduce a dummy node Nd, and we link each exit node to Nd with an arc of cost 
zero. 
 
 
3. Solution approaches 
 
The difficulty to deal with the model introduced in the preceding section follows from the 
fact that it includes two difficult sub-problems to solve: a machinery location problem and a 
road network design problem. These sub-problems are interrelated through the flow 
conservation constraints (2.6). In [16], the authors use a Lagrangean relaxation approach to 
solve this problem. They combine a strengthening strategy using additional constraints with 
the Lagrangean relaxation technique to deal with the dual of the problem and to improve 
the solutions. Then they obtain a feasible solution for the (primal) problem using a 
Lagrangean heuristic. This approach can only solve small to medium size problems [16]. 
Computational tests showed this approach to be only moderately computationally superior 
to CPLEX 3.0. 
 
In this paper, we propose a heuristic solution approach that can take advantage of the 
structure of the problem using a tabu search heuristic. A modified version of the typical 
location problem is developed to consider that whenever the machine location 
configuration is modified, then the corresponding access road network also changes. Since 
determining an optimal solution for the corresponding road network is very time 
consuming, we developed instead an approximate solution strategy. A simple approach 
based on spanning trees is used in most of the iterations. To improve the network 
specification at the end of the solution process, we use a Steiner tree heuristic.  
 
 



 8

4.  Tabu search heuristic for the machinery location sub-problem 
 
In this section we introduce a tabu search heuristic to solve the machinery location problem 
where only two types of machinery (towers and skidders) are used; i.e., K = 2. Furthermore, 
in real life applications, in general only one type of machinery can be used in any potential 
location according to the type of ground (hillside or flat ground). Hence the notation to 
introduce the method can be simplified accordingly, since for each potential location i ∈ T 
we know a priory the type k(i) of machinery that can be used. Consequently, we may 
eliminate the index k from any further consideration, and we denote a feasible selection of 
locations by x = [x1, x2, …, x|T|]. However, note that the current specific method introduced 
in this section can be easily generalized to deal with the more general model introduced in 
Section 2. 
 
The main principles of tabu search were independently proposed by Glover [7] and Hansen 
[9]. This metaheuristic is based on a neighborhood or local search technique. The latter is 
an iterative procedure, where at each iteration we move from a current solution x to a new 
solution x' in a neighborhood N(x) of x. Hence the notion of neighborhood is a basic 
component of such a procedure. 
 
In general, the neighbor solutions x' are generated by applying slight modifications m ∈ M 
to solution x. The set of modifications or moves M is specific to each problem. Referring to 
[17], we denote by 

x' = x ⊕ m              m ∈ M, 
 

the neighbor solution x' generated by applying the modification m ∈ M to solution x. Then, 
the neighborhood N(x) of x is specified as follows: 
 

N(x) = {x': x' = x ⊕ m  for some m ∈ M}. 
 
For our location problems, we use two different types of modifications: 

• 1-OPT: set of modifications where some location i T∈  is opened (a new machinery 
is located in i  or closed (the machinery is removed from i . Hence, if x' = 
x ⊕ m for some m ∈ 1-OPT, then for some i

)T∈ )T∈
T∈ , either                                xi = 0  

and  x'i = 1, or xi = 1  and  x'i = 0, while the rest of  the variables remain unchanged. 
• 2-OPT: set of modifications involving a pair of locations, in which one is opened 

and the other is closed (i.e., switching the status of two locations). Hence, if x' = x ⊕ 
m for some m ∈ 2-OPT, then for some pair of locations i1, i2 ,T∈ xi1 = 1, x'i1 = 0,  xi2 
= 0, and x'i2 = 1, while rest of the variables remain unchanged. 
 

Hence, the set of modification M is the union of the two sets 1-OPT and 2-OPT: 
 

M = 1-OPT ∪ 2-OPT. 
 

This type of modifications has been used frequently in metaheuristic approaches in forest 
planning, mostly related to forest harvesting with spatial constraints which preclude 



 9

harvesting adjacent land units in the same period. For example, in [2] a 1-OPT move 
involves exchanging the timing of a timber harvest for a single land unit, while a 2-OPT 
move involves swapping the harvesting times between two land units A similar approach 
was used later in [2] and other publications on this problem. 
 
At each iteration, the best solutions x' in a subset V(x) ⊆ N(x) is selected. The subset V(x) is 
problem-dependent and will be specified shortly for our location problem. As long as x’ is 
better than x (i.e., as long as the objective function increases), the behavior of the tabu 
search heuristic is the same as that of the standard ascent method. Otherwise, moving from 
x to x’ induces no improvement or even a deterioration of the objective function, but allows 
to move out of a local minimum, and thus to search more extensively the feasible domain. 
 
Since the value of the objective function is not necessarily strictly increasing, a safeguard 
against cycling is required. This is provided by including some kind of short term memory 
into the process to prevent returning to a solution already visited. Hence, a short term tabu 
list TL is used to keep track of some attributes or characteristics of the moves  that 
were recently used. 

Mm ∈

 
In our case, the tabu list TL includes the locations modified. Hence, 

• If x' = x ⊕ m for some m ∈ 1-OPT and Ti ∈  is the modified location, then i is 
inserted into TL. 

• If x' = x ⊕ m for some m ∈ 2-OPT and i1, i2 is the pair of modified locations, then 
the pair  i1,i2 is inserted into TL.  

  
Whenever a location is modified, it should keep the same status for several iterations. The 
tabu list TL can be represented as a a circular list, in the sense that if it already includes the 
maximum number ρ of elements, then the oldest element of the list is removed before 
including a new element. Thus an element remains in TL for at most ρ iterations. 
 
The size ρ of the tabu list is also called the tabu tenure. It is an important parameter 
regarding the efficiency of the heuristic, but its best value is not easy to be determined. 
Furthermore, it is often more efficient to use a variable size tabu list [12]. In this variant, 
the list size effectively used at each iteration varies to included the ρ' most recent elements, 
where ρ' is a random integer such that 0.8 ρ ≤ ρ' ≤ ρ (a denotes the largest integer 
smaller than or equal to a). 
 
Referring to the tabu list TL, a solution mxx ⊕='  is declared tabu if 

• m ∈ 1-OPT and the location modified is in TL, or  
• m ∈ 2-OPT and either one of the modified locations i1, i2  is in TL. 

 
The subset V (referred to as the effective neighborhood) is generated by 
eliminating the tabu solutions in TL from N(x). 

)()( xNx ⊆

 
The stopping criterion used in our implementation is specified in terms of a maximum 
number of iterations. 
 



 10

To improve the efficiency of the basic tabu search heuristic, additional features are 
introduced. They are described in the next section. 
 
 
 
5. Additional tabu search features 
 
To develop a more effective tabu search heuristic, we have to fully take advantage of the 
problem structure and appropriate data structures have to be used in the implementation. 
Furthermore, we should use improving strategies like intensification to search more deeply 
in the neighborhood of promising solutions, and diversification to search more extensively 
over the whole feasible domain. 
 
5.1 Initial solution 

 
To determine an initial solution, we first evaluate the profit of harvesting the reach zone of 
each potential location i ∈ T. This profit accounts for the revenue from the harvested 
timber, for the fixed installation cost of the machinery, and for the variable harvesting cost.  
Next, the locations are ranked in decreasing order of their profit. 
 
We use the following procedure to specify an initial solution. At each iteration, we select 
the top ranking among the remaining locations. We eliminate the locations with reach zones 
intersecting that of the selected location. The procedure terminates when no location 
remains or if all cells have been reached. The reach zones of the selected locations in the 
initial solution do not intersect. 
 
5.2 Reducing neighborhood size 

 
Two different strategies are used to reduce the neighborhood size. The first one is related to 
the modifications in 2-OPT. We consider only the subset 2-OPT' of modifications 
involving two locations that have intersecting reach zones.  These modifications are the 
most relevant modifications in 2-OPT, since the other switching moves involving 
independent locations correspond to two different moves in 1-OPT. 
 
The number of neighbors for both 1-OPT and 2-OPT moves is very large. To reduce this 
number, we use the strategy introduced in [2], where the set T of potential locations is 
partitioned into subsets or equivalence classes. Hence we generate p equivalence classes [ ]l  
= {i ∈ T: i mod p = l}, l = 0, 1, …, p − 1.Then, at iteration iter, we consider only locations i 
in the equivalent class [iter mod p] to generate moves in 1-OPT and pairs of locations i1, i2 
such that i1 or i2 belonging to class [iter mod p] to generate those in 2-OPT'. 
 
Note that, even if at each iteration we consider only a subset of moves involving locations 
in an equivalence class, each location is still used periodically. 
 
 
 



 11

 
5.3 Evaluating neighboring solutions 

 
As mentioned earlier, evaluating a neighboring solution is complicated by the fact that if a 
machine location is opened or closed, or if there is an exchange of machine locations, then 
the corresponding road access network changes. To solve this complex problem exactly is 
very time consuming. Hence we develop a heuristic procedure to generate approximate 
solutions based on the computation of a spanning tree. For this purpose, a minimum 
spanning tree covering all potential locations is generated before the beginning of the tabu 
search procedure. This spanning tree is used to evaluate the neighbor solutions. 
 
More specifically, for any neighbor solution, we consider the unique access road network 
including only arcs of the spanning tree linking the active machine locations to the exit 
(there is indeed a unique path in the spanning tree between any pair of nodes). This is very 
easy and fast to obtain. To improve even more the efficiency of this evaluation, we define 
an MxN matrix, where M is the number of potential locations and N the number of arcs in 
the spanning tree. An entry (i,j) of the matrix is equal to 1 if the timber harvested by a 
machine located in i goes through arc j of the spanning tree to reach the exit. Hence, by 
going through each column of the matrix, it is simple to determine which arcs have to be 
built in order to transport the harvested timber using the machines located at the current 
locations. Indeed, in any column j, if there is at least one entry equal to 1 in any row 
associated with a current location, then arc j needs to be built. To keep track of the arcs to 
be built for the current solution, we associate a vector of length N with the preceding 
matrix, where the value of the entry j associated with arc j is the sum of the entries in 
column j of the matrix associated with the current locations. Thus, the value of entry j in 
this vector corresponds to the number of current locations using this arc. This matrix is 
defined at the beginning of the process and the vector is easily updated each time a 
neighbor solution has to be evaluated. Indeed, in any neighbor solution, only one or two 
locations are modified. Whenever a current location i is closed in the neighbor solution, 
then the new vector is equal to the difference between the current vector and row i of the 
matrix. Similarly, whenever a new location i is opened, then the new vector is equal to the 
sum of the current vector to row i of the matrix. 
 
This access road network is not optimal in general. Indeed, an optimal road network 
associated with the current locations usually includes other nodes as intermediate ones. A 
better road network solution can be determined, but at a higher computational cost. This is 
done for a small set of configurations that we consider as the best. For these configurations 
a Steiner tree heuristic is used to determine the associated access road network (see Section 
6). 
 
5.4 Intensification strategy 
 
This strategy is often used in the implementation of tabu search heuristics. The basic idea is 
to periodically intensify the search in a seemingly promising region of the feasible domain. 
Hence, after executing the basic tabu search heuristic for a specified number max-iter of 
iterations, we use the current best feasible solution to reinitialize the same basic tabu search 



 12

heuristic, where the size of the neighborhood is increased. This can be done by reducing the 
number of equivalence classes (thus enlarging each of them). 
 
In our implementation we reduce this number to p/4 + 1.  After a specified number of 
iterations, if the current best solution is better than the initial solution, then we move back 
to the basic tabu search heuristic with this initial solution. Otherwise, the current best 
solution is inserted into the set BESTSOL and we apply the diversification strategy. 
 
5.5 Diversification strategy 
 
Recall that this strategy is applied whenever the intensification strategy fails to improve the 
best current solution available at the end of the basic tabu search heuristic. Since the 
purpose of a diversification strategy is to search more extensively the whole feasible 
domain, one way of doing this is to open some locations that have been closed for a while. 
For this purpose, with each potential location i ∈ T we associate the following information 
rci corresponding to the iteration number when location i has been closed for the last time 
(this value is equal to the current iteration number if the location is opened).  
 
Let REC = {τ ∈ T: rcτ = min i ∈ T  (rci)} denote the set of locations that have been closed for 
the longest period of time. Then, to reinitialize the basic tabu search heuristic we use the 
current solution at the end of the intensification phase where we also open the additional 
locations in REC. 
 
5.6 Additional procedures to select the current solution for the next iteration 

 
At each iteration of the basic tabu search heuristic and of the intensification phase, we 
select the best solution in V(x) to be the current solution for the next iteration. We now 
introduce two different groups of selection procedures using either a subset of the best 
neighbor solutions or all of them. Some of these procedures are deterministic and other 
probabilistic. 

 
5.6.1 Using a subset of the best neighbor solutions 

 
To implement these procedures, we first specify some value PERCENT ∈ (0, 100], and the 
set B(x) including the PERCENT % best solutions in V(x). 
 

a) GRASP [5,11] selection: 
Select randomly a solution in B(x) to be the current solution of the next iteration. 
 

b) Proportional (roulette wheel) selection:  
Associate with each solution in B(x) a probability of being selected proportional to 
its value f(x). Then select a solution randomly according to these probabilities. 
 

c) Threshold selection [2]: 
Rank the solutions in B(x) in decreasing order of their objective function value f(x). 
Specify also a THRESHOLD value in (0,1). At each iteration of the process, select 



 13

the neighbor solution in the top of the list and a random number r ∈ (0,1). If 
 then the selected solution becomes the current solution for the 

next iteration. Otherwise, the selected solution is discarded and the process is 
repeated. In case all elements of V(x) are discarded, then select the top ranking 
solution to become the current solution for the next iteration. 

,THRESHOLDr ≤

 
5.6.2 Using all solutions in N(x) 
 
In order to implement these procedures, at each iteration of the basic tabu search heuristic 
or of the intensification phase, we first generate some permutation PERM of the potential 
locations belonging to the current equivalence class. Then, we consider each location 
according to its position in the permutation PERM in order to generate neighbor solutions 
using moves m in 1-OPT and 2-OPT. Each time a new solution x' is generated, we have to 
decide if it replaces the current solution x (and then move to the next iteration) or not, 
according to one of the following criteria: 

 
a) Greedy selection 

If x' is not tabu and f(x') > f(x), then x' replaces the current solution x. 
 
b) Simulated Annealing type selection [9] 

If ∆f = f(x') - f(x) > 0, then x' replaces the current solution x. If ∆f = f(x') - f(x) ≤ 0, 
then x' replaces the current solution x if e ∆f /TP > r, where r is a random number in 
(0,1) and TP is a temperature factor decreasing with the number of iterations (note 
that the tabu list is not used in this selection procedure). 

 
In case none of the solutions in V(x) (resp. in N(x)) is selected by the Greedy procedure 
(resp. by the Simulated Annealing procedure), then select the best solution in V(x) (resp. in 
N(x)). 

 
 

5.7 Path relinking 
 
Consider two feasible solutions x1 and x2. Path relinking [8,11] can be used to generate a 
sequence of other feasible solutions along a path linking the two solutions x1 and x2. First, 
we introduce a notion of distance d(x1,x2) between x1 and x2. A commonly used distance for 
this operator is the Hamming distance, defined as the number of components of x1 and x2 

that are different. 
 
We also introduce the notion of a sub-neighborhood N(x1, x2) of N(x1) “closer” to x2: 

N(x1, x2) = {z ∈ N(x1) : d (z, x2) < d(x1, x2)}. 
Hence a solution z ∈ N(x1, x2) has at least one more component in common with x2. 
 
For our problem, 

• if z = x1 ⊕  m ∈ N(x1, x2) and m ∈ 1-OPT, then for some location τ ∈ T, x1
τ ≠ x2

τ and 
zτ = x2

τ while the rest of the components of z are equal to those of x1; 



 14

• if z = x1 ⊕  m ∈ N(x1, x2) and m ∈ 2-OPT, then for some pair of locations µ, ν ∈ T, 
x1

µ ≠  x2
µ, x1

ν ≠ x2
ν, and zµ = x2

µ, zν = x2
ν while the rest of the components of z are 

equal to those of x1. 
 

The path relinking procedure can be summarized as follows. At the first iteration, let ps1 = 
x1 and ps2= x2. Select an element z ∈ N(ps1, ps2) according to the usual selection operator. If 
f(z) > f(x1) and f(z) > f(x2), then the path relinking procedure stops with z. Otherwise, ps1 is 
replaced by ps2, ps2 by z, and the procedure moves to the next iteration. The procedure 
stops whenever f(z) > f(x1) and f(z) > f(x2), or ps1 = ps2 = z. Note that we move from x1 and 
x2 alternately. 
 
The path relinking procedure is applied to pairs of solutions included in BESTSOL once the 
tabu search heuristic to solve the machinery location sub-problem is completed. For each 
solution in BESTSOL, the procedure is applied using the current best solution in BESTSOL 
as the second solution of the pair. If a better solution z is generated, then it is inserted into 
BESTSOL as the current best solution. 
 
 
6. The road network design sub-problem 
 
At the end of the tabu search method, a set BESTSOL of solutions is available for the 
machinery location sub-problem. Recall that during the resolution of this sub-problem, we 
use the road sections of the minimum spanning tree covering the potential locations and the 
exits of the forest to estimate the road network construction cost and the transportation cost. 
Now, to evaluate more exactly the cost of each solution in the set BESTSOL, we determine 
the best Steiner tree covering the opened locations using the procedure in [13] that can be 
summarized as follows. 
 
The original problem can be viewed as a Steiner problem, where the terminal nodes are the 
cells with timber and the exits, while the Steiner points are the locations of machinery and 
road intersections. There are two types of arcs: those connecting timber cells with the cell 
where the corresponding harvesting machine is located and the roads. In the particular case 
of the algorithm presented in this section, the Steiner problem takes a different, simpler 
form. The terminal nodes are those where it has been decided a harvesting machine will be 
installed and the exit, while the Steiner points are road intersections and the non-chosen 
machine locations. The arcs are the roads. 
 
An initial Steiner tree is built using the greedy construction algorithm of Takahashi and 
Matsuyama [14]. Its Steiner nodes characterize each Steiner tree. Neighbors of the current 
solution are defined by all sets of Steiner nodes that can be obtained either by adding a new 
Steiner node (insertion moves) or by eliminating one of the current Steiner nodes 
(elimination moves). The tabu search procedure in [13] first investigates all insertion 
moves, since they can be evaluated faster than the elimination moves. To speedup the 
neighborhood search, the value of each possibly improving insertion move is first estimated 
by a very fast procedure running in linear time. Only a few insertion moves are exactly 
evaluated. In case the best insertion move improves the current solution, then it is selected 



 15

and made effective by the local search procedure. Elimination moves are evaluated only in 
case no improving insertion move is found. Again, to speedup the search for improving 
elimination moves, the tabu search heuristic makes use of a quick procedure for the 
computation of lower bounds implementing a neighborhood reduction strategy. The move 
selected at each tabu search iteration is inserted into the tabu list. The classical aspiration 
criterion is used to override the forbidden status of a move. The heuristic stops after a 
certain number of iterations are performed without improvement in the best solution found. 
 
7. Numerical results 
 
Four different problems are used to analyze the different variants of the solution method 
introduced in this paper. The four problems are specified in Table 1. The two larger 
problems 3 and 4 are real life size problems. The first three were used in [16].  

 

Problem 1  2 3 4 

Area (hectares) 10 40 210 500 

Number of cells 1000 4071 21000 50000 

Number of potential tower locations 4 17 90 216 

Number of potential skidder locations 6 41 150 398 

Number of exit cells 1 1 5 11 

Number of potential road sections 16 109 330 978 

Number of existing road sections 0 45 36 102 
 

Table 1: Problem data. 
 

All the variants introduced in this paper were implemented in C. The numerical tests were 
completed on a 2000 MHz Pentium IV machine with 2048 Mbytes of RAM running under 
Linux. For each variant, preliminary numerical tests were used to set the values of the 
parameters. The different variants are compared numerically using these settings. 
 
Each problem is solved using two different values δ of the unit revenue for the timber 
harvested: δ = 18 and 50 US$/m3. Furthermore, in this study we analyze the impact of the 
tabu tenure and that of the neighborhood size. Three different tabu tenure values TL4, TL5, 
and TL6 were compared for problems 2, 3, and 4, where TLj = (total number of potential 
locations) / j. Also, to verify the impact of reducing the neighborhood size, the following 
numbers of equivalent classes are considered for the different problems: 

• problem 1: 1 
• problem 2: 1, 4, 8, 12 
• problem 3: 1, 5, 10, 15, 20, 25, 30, 35, 40 
• problem 4: 1, 20, 40, 60, 80, 100, 120. 

 



 16

The other parameters of the different procedures are fixed according to preliminary tests or 
by referring to the literature. On the one hand, since our tabu search includes several 
successive major cycles, each of which is composed by a basic search followed by an 
intensification phase and a diversification phase, the stopping criterion is specified in terms 
of a maximum overall number of iterations. This number increases with the problem size:  
1000 iterations for problem 1, 2000 iterations for problem 2, 3000 iterations for problem 3, 
and 5000 iterations for problem 4. 

 
On the other hand, within each major cycle, every time in which the basic tabu search or 
the intensification phase is completed, the stopping criterion is specified in terms of max-
iter = 20 successive iterations without improvement in the objective function. The value of 
max-iter is small in order to increase the number of major cycles. 
 
The rest of the parameters are related to the procedures to select the current solution for the 
next iteration. In our tests, we selected this solution among a small percentage (PERCENT 
= 5) of the best solutions in order to increase the chance of selecting better solutions. For 
the same reason, we use a large value THRESHOLD = 0.8 for this parameter. Note that 
similar values are used for this parameter in [2]. Furthermore, preliminary tests indicate that 
the solution time and the probability of selecting worst solutions increase with the value of 
PERCENT. Finally, for the simulated annealing type selection, the temperature is initialized 
with TP = 7 and is multiplied by 0.997 at each iteration.  
 
The following notation is used to denote the different variants of the heuristic: 

• Tabu: tabu search heuristic using best solution selection 
• Tabu G1: tabu search heuristic using GRASP selection 
• Tabu G2: tabu search heuristic using Proportional selection  
• Tabu G3: tabu search heuristic using Threshold selection 
• Tabu Greedy: tabu search heuristic using Greedy selection 
• Tabu LV: tabu search heuristic using best solution selection and variable tabu 

tenure 
• Tabu SA: tabu search heuristic using Simulated Annealing selection. 

 
For each variant, we also consider the corresponding variant where the path relinking 
procedure is applied to the set of solutions BESTSOL. This variant is denoted by appending 
+PR to the name of the corresponding original one (Tabu+PR, for instance). 
 
In order to complete our numerical evaluation of the different options and variants, each 
problem is solved by each variant for each combination of values for δ, for TLj, and for the 
number of equivalence classes. Hence we have the following number of runs: 6 for problem 
1, 304 for problem 2, 684 for problem 3, and 532 for problem 4. 

 
Note that there are only 6 results for problem 1 because it is solved only with the variant 
Tabu. Furthermore, recall that variants Tabu SA and Tabu SA+PR do not use a tabu list. 
 
Modifying the number of equivalence classes does not have a significant impact on the 
value of the objective function, but the solution times decrease significantly when the 



 17

number of classes increases from one to larger values. On the other hand, the marginal gain 
in solution time decreases as the number of classes increases. Since this behavior is quite 
similar for all variants with different tabu tenures, we illustrate in Table 2 the typical 
behavior for the variant Tabu to solve problem 4 with δ = 50 and the tabu tenure TL4. 
These results indicate that the relative difference between the largest and smallest values of 
the objective function is smaller than 0.05%, while the relative difference between the 
largest and the smallest values of the solution times is larger than 88.3%. 
 
 

Number of classes Objective function Time 
  (US$) (seconds) 
1 6,259,137.23 1 478.22 

20 6,260,059.00 335.11 
40 6,259,999.31 288.81 
60 6,259,090.23 228.61 
80 6,260,358.12 210.70 
100 6,260,390.13 178.82 
120 6,257,406.24 172.67 

 
Table 2: Impact of decreasing the neighborhood size for problem 4 using variant Tabu, with 
δ = 50 and the tabu tenure TL4. 

 
The impact of using different sizes (TL4, TL5, TL6) for the tabu tenure is not significant for 
any of the variants. The results in Table 3 when the variant Tabu is used to solve problem 4 
with δ = 50 and 60 equivalence classes illustrate the typical behavior observed for all 
variants. They indicate that the relative difference between the largest and the smallest 
values of the objective function and of the solution times are at most 0.093% and 10.9%, 
respectively. 
 
 

 δ = 18 δ = 50 
Tabu Objective function Time Objective function Time 

tenure (US$) (seconds) (US$) (seconds) 
TL4 1,515,081.53 223.24 6,259,090.23 228.61 
TL5 1,516,496.63 238.43 6,259,932.31 240.89 
TL6 1,516,001.93 244.11 6,258,389.58 256.55 

 
Table 3: Impact of the different sizes (TL4, TL5, TL6) for the tabu tenure for problem 4 
using variant Tabu, with δ = 50 and 60 equivalence classes. 

 
When comparing the different variants, their efficiency is quite similar as far as solution 
quality and solution times are concerned. It seems difficult to identify some variants clearly 
dominating others. This is firstly illustrated in Table 4, where all variants are compared 
when solving problem 4 for δ = 18 and δ = 50, where the tabu tenure and the number of 
equivalence classes are TL4 and 60, respectively. As expected, on the one hand, the variants 
generating the best solution values (Tabu Greedy+PR, Tabu LV+PR, and Tabu SA+PR) 



 18

require twice more time than the fastest variant. On the other hand, the fastest variants 
(Tabu G2 and Tabu G1) obtain solutions that are roughly 0.2% worse than the best 
solutions. 
 
 

 δ = 18 δ = 50 
Variant Objective function Time Objective function Time 
 (US$) (seconds) (US$) (seconds) 
Tabu 1,515,081.53 223.24 6,259,090.23 228.61 
Tabu PR 1,515,207.84 272.98 6,260,129.21 296.58 
Tabu G1 1,513,035.69 159.19 6,256,638.49 154.38 
Tabu G1+PR 1,516,412.68 190.90 6,258,888.25 204.25 
Tabu G2 1,514,180.13 157.17 6,256,888.84 156.59 
Tabu G2+PR 1,515,122.15 190.01 6,256,646.91 192.23 
Tabu G3 1,516,574.40 238.11 6,260,032.68 231.59 
Tabu G3+PR 1,515,962.70 272.33 6,259,562.67 253.05 
Tabu Greedy 1,517,256.30 289.96 6,259,044.81 270.86 
Tabu Greedy+PR 1,518,095.28 374.10 6,260,428.37 314.14 
Tabu LV 1,515,322.35 248.30 6,259,687.69 247.49 
Tabu LV+PR 1,517,628.52 291.41 6,259,116.47 307.98 
Tabu SA 1,517,694.42 309.65 6,260,342.61 335.44 
Tabu SA+PR 1,516,613.50 361.06 6,259,373.80 375.15 

              
Table 4: Comparing the efficiency of the variants when solving problem 4 for δ=18 and 
δ=50, where the tabu tenure and the number of equivalence classes are TL4 and 60, 
respectively. 

 
The same overall behavior is observed in Tables 5, 6 and 7, that report numerical results 
associated with the solution of problem 4 with δ = 18 and δ = 50 for tabu tenures TL4, TL5, 
and TL6, respectively.  In these tables, for each tabu tenure value and each variant, we give 
the average value (mean) and the standard deviation (stand. dev.) of the objective function 
values and of the CPU times using the results for the six different numbers of equivalence 
classes (20, 40, 60, 80, 100, and 120). Note that since there is no tabu list in variants Tabu 
SA and Tabu SA+PR, then we have only one set of results for these variants in Tables 5. 
 
In Tables 8 and 9, we evaluate the effectiveness of the variant Tabu with respect to the 
solution of the integer programming model by a software package such as CPLEX 8.1. For 
each problem we use TL4 as the tabu tenure. The number of equivalence classes for 
problems 1, 2, 3, and 4 is set at 1, 8, 20, and 60, respectively. For each problem, we indicate 
the value of the objective function and the computation time for both approaches. The 
upper bound obtained with CPLEX 8.1 and the relative difference between the solution 
values obtained with each approach are also given. The solution time with CPLEX 8.1 is 
limited to 600 minutes for each problem. The solution of problem 4 with δ = 50 using 
CPLEX 8.1 stopped with an error message indicating that all the memory has been used 
after 520.07 minutes. Results in these tables indicate that the variant Tabu can improve 
solution quality for all problems (except for problem 1, where both approaches found an 



 19

optimal solution) with respect to CPLEX 8.1 within 10 hours of computations, with 
solution times significantly smaller. 
 
 

 TL4  and δ = 18 TL4   and δ = 50 
 Objective function Time Objective function Time 
 mean std. dev. mean std. dev. mean std. dev. mean std. dev. 
Tabu 1,516,143.17 1,016.42 223.53 73.13 6,259,550.51 1,151.26 235.79 64.16
Tabu PR 1,516,296.74 1,001.34 298.62 91.47 6,259,835.31 1,132.27 287.48 68.17
Tabu G1 1,514,276.08 2,372,79 160.92 79.40 6,253,113.34 7,171.47 169.07 83.87
Tabu G1+PR 1,514,374.12 2,312.36 189.98 85.11 6,258,181.44 1,251.12 198.14 104.99
Tabu G2 1,514,661.10 2,011.79 168.93 74.64 6,255,524.91 3,256.77 161.44 88.70
Tabu G2+PR 1,515,991.57 1,151.66 197.88 100.66 6,254,168.29 5,901.34 210.16 121.19
Tabu G3 1,515,642.16 1,093.15 218.08 63.81 6,259,085.58 1,247.64 221.17 61.93
Tabu G3+PR 1,516,026.65 652.47 290.74 74.17 6,259,554.49 872.82 277.09 74.60
Tabu Greedy 1,516,389.04 1,131.11 294.78 76.10 6,258,908.98 739.01 272.57 63.72
Tabu Greedy+PR 1,516,624.33 1,272.80 354.92 53.10 6,259,726.49 620.34 337.25 76.07
Tabu LV 1,516,178.44 866.85 240.28 64.08 6,259,273.48 1,136.34 243.44 72.63
Tabu LV+PR 1,516,343.64 1,042.74 287.96 54.41 6,259,605.09 902.34 292.70 53.29
 Tabu SA 1,516,313.13 719.72 304.83 109.42 6,259,227.46 918.74 317.06 125.62
Tabu SA+PR 1,516,351.34 695.19 361.00 90.99 6,259,817.19 708.45 397.08 105.71

 
Table 5: Average behavior of the tabu search variants for solving problem 4 using TL4 
 
 
 

 TL5   and δ = 18 TL5   and δ = 50 
 Objective function Time Objective function Time 
 mean std. dev. mean std. dev. mean std. dev. mean std. dev. 
Tabu 1,515,875.31 996.74 239.95 75.60 6,259,238.23 1,066.26 240.60 76.67
Tabu PR 1,515,921.93 921.70 303.63 76.56 6,259,590.49 721.31 306.07 83.86
Tabu G1 1,511,476.76 7,177.26 170.77 77.84 6,254,525.11 3,584.61 165.38 92.49
Tabu G1+PR 1,516,067.45 2,529.60 203.43 101.18 6,257,180.00 3,815.80 202.28 125.19
Tabu G2 1,514,707.90 1,855.83 165.10 80.26 6,255,027.18 6,359.03 158.81 86.34
Tabu G2+PR 1,514,628.89 1,624.67 193.21 96.88 6,257,692.09 2,337.12 210.00 101.33
Tabu G3 1,515,425.16 1,239.68 231.99 78.48 6,259,424.70 970.02 232.90 75.00
Tabu G3+PR 1,516,771.88 1,190.41 291.43 73.05 6,259,504.36 917.80 294.50 78.77
Tabu Greedy 1,515,771.19 1,185.17 292.65 87.14 6,259,738.06 888.72 283.14 74.17
Tabu Greedy+PR 1,517,150.20 1,141.07 354.26 71.76 6,259,678.63 918.44 352.82 78.38
Tabu LV 1,515,587.11 1,226.39 261.92 64.38 6,259,589.52 962.16 253.86 86.93
Tabu LV+PR 1,516,035.77 842.06 298.66 52.64 6,259,491.93 719.19 324.72 77.91

 
Table 6: Average behavior of the tabu search variants for solving problem 4 using TL5 



 20

 
 TL6   and δ = 18 TL6   and δ = 50 
 Objective function Time Objective function Time 
 mean std. dev. mean std. dev. mean std. dev. mean std. dev.
Tabu 1,515,990.71 599.44 238.00 61.21 6,259,292.94 918.22 245.06 87.71
Tabu PR 1,515,890.64 473.52 273.39 51.57 6,259,869.73 504.74 295.44 76.84
Tabu G1 1,513,362.68 2,728.46 169.39 82.11 6,255,519.96 3,459.85 167.85 92.71
Tabu G1+PR 1,515,535.90 1,344.69 194.60 98.69 6,257,378.01 2,944.09 209.86 100.66
Tabu G2 1,514,898.16 1,378.30 162.02 80.69 6,256,087.58 1,891.97 172.52 96.02
Tabu G2+PR 1,515,293.01 2,350.79 206.75 95.26 6,255,881.80 4,545.92 209.37 124.34
Tabu G3 1,515,643.61 523.03 243.08 70.06 6,259,044.93 845.16 248.64 88.64
Tabu G3+PR 1,516,643.47 839.96 278.99 84.84 6,259,384.67 581.91 299.22 65.28
Tabu Greedy 1,516,087.65 951.79 273.25 79.97 6,259,232.82 1,070.48 284.10 77.37
Tabu Greedy+PR 1,516,010.76 713.65 334.74 70.30 6,259,486.90 835.49 346.88 93.64
Tabu LV 1,516,113.34 645.47 250.92 70.55 6,259,584.62 1,404.83 246.16 80.14
Tabu LV+PR 1,515,713.15 969.20 309.29 42.94 6,259,605.86 971.68 300.50 60.59

 
Table 7: Average behavior of Tabu variants for solving problem 4 using TL6 
 
 

δ = 18 US$/m3 
      CPLEX 8.1 Tabu 

Objective function (US$) 10,704.40 10,704.40 

Upper bound US$ 10,704.40 

Gap 0 % 

Problem 
1 

Time (minutes) 0.020 0.001 
Objective function (US$) 90,881.38 91,938.66 
Upper bound (US$) 100,725.58 

Gap 10.83 % 
Problem 

2 

Time (minutes) 600.00 0.12 
Objective function (US$) 497,522.31 501,321.38 
Upper bound (US$) 559,349.56 
Gap 12,43 % 

Problem 
3 

Time (minutes) 600.00 1.09 

Objective function (US$) 1,488,866.70 1,515,081.53 
Upper bound (US$) 1,680,473.60 

Gap 12.87 % 
Problem 

4 

Time (minutes) 600.00 3.72 
 
Table 8: Results obtained with CPLEX 8.1 (processing time limited to 600 minutes) and 
with variant Tabu of the heuristic, with the unit revenue set at δ = 18. 

 



 21

 
 

δ = 50 US$/m3 
  CPLEX 8.1 Tabu 

Objective function (US$) 85,992.56 85,992.56 
Upper bound (US$) 85,992.56 

Gap 0 % 

Problem 
1 

Time (minutes) 0.020 0.001 
Objective function (US$) 414,502.59 416,858.19 
Upper bound (US$) 427,966.33 
Gap  3.25 % 

Problem 
2 

Time (minutes) 600.00 0.12 
Objective function (US$) 2,040,319.79 2,041,777.38 
Upper bound (US$) 2,102,811.93 

Gap  3.06 % 
Problem 

3 

Time (minutes) 600.00 1.04 
Objective function (US$) 6,222,050.04 6,259,090.23 
Upper bound (US$) 6,420,475.28 

Gap 3.19 % 
Problem 

4 

Time (minutes) 520.07 3.81 
   
Table 9: Results obtained with CPLEX 8.1 (processing time limited to 600 minutes) and 
with variant Tabu of the heuristic, with the unit revenue set at δ = 50. 

 
 
 

8.  Conclusions 
 
In this paper, we have proposed a tabu search heuristic to solve a relevant problem in forest 
management, namely the machine location and road access network design problem. 
Approaches to solve this problem using exact formulations have been able to solve only 
moderate size problems. Particular consideration is given to the evaluation of each neighbor 
solution, because an optimal access road network has to be determined for any given 
machine location configuration. In most of the iterations, to obtain rapid evaluations, 
approximate solutions were used, with the access road network being determined based on 
a spanning tree covering all potential machine locations. For the best configurations, a 
Steiner tree heuristic was used to determine the associated access road network. 
 
Computational experiments were carried out to calibrate the parameters of the tabu search 
procedure and to test different variants. These tests showed that the only additional feature 
that significantly influenced solution quality and run times was the reduction of the 
neighborhood size. Other additional features tested did not have a significant impact on 



 22

solution quality or run time. The proposed approach was tested on eight problems similar to 
real forest problems. Numerical results obtained with CPLEX 8.1 showed that the tabu 
search heuristic seems very attractive. Indeed, the heuristic performed considerably better 
than CPLEX 8.1, obtaining better solutions in solution times significantly smaller than the 
ten hours of computation times allowed to CPLEX 8.1. The gaps in solution value, favoring 
the heuristic with respect to CPLEX, ranged between 3% and 4% for δ=50 and between 
10% and 13% for δ=18. The computation times observed for the tabu search heuristic 
increased almost linearly with problem complexity, measured either in terms of the number 
of cells or the number of potential roads to be built. 
 
These promising results using a metaheuristic have practical applications, as this approach 
can be implemented into existing machine location systems used by forest companies, 
improving the quality of solutions over the simpler heuristics presently in use and keeping 
computer times very low. In the near future, it is planned to introduce this new solution 
approach and the basic tabu search variant with reduced neighborhoods into the machine 
location planning system PLANEX [5].  
 
 
References 
 
 
[1] P.K. Bettinger, K. Boston, and J. Sessions, “Intensifying a heuristic forest harvest 
scheduling search procedure with 2-opt decision choices”, Canadian Journal Forestry 
Research 29 (1999), 1784-1792. 
 
[2] F. Caro, M. Constantino, I. Martins, and A. Weintraub, “A 2-opt tabu search procedure 
for the multi-period forest harvesting problem with adjacency, green-up, old growth and 
even flow constraints”, Forest Science 49 (2003), 1-14. 
 
[3] A. Diaz Legües, Desarrollo de un algorithmo heuristico tabu para la localizacion de 
maquinaria de cosecha forestal, Memoria de Ingeniería Industrial, Universidad de Chile, 
Santiago, Chile (2003). 
 
[4] R. Epstein, R. Morales, R. Seron, and A. Weintraub, “OR models in the Chilean forest 
industry”, Interfaces 29 (1999), 7-26. 
 
[5] R. Epstein, A. Weintraub, P. Sapunar, E. Nieto, B. Sessions, J. Sessions, F. Bustamante, 
and H. Musante, “A combinatorial heuristic approach for solving real size machinery 
location and road design problems in forestry planning”, submitted to Operations Research. 
 
[6] T. Feo and M.G.C. Resende, “Greedy randomized adaptive search procedures”, Journal 
of Global Optimization 2 (1995), 1-27. 
 
[7] F. Glover, “Future paths for integer programming and links to artificial intelligence”, 
Computers & Operations Research 13 (1986), 533-549. 

[8] F. Glover and M. Laguna, Tabu Search, Kluwer, Boston, 1997. 



 23

[9] P. Hansen, “The Steepest-Ascent-Mildest-Descent heuristic for combinatorial 
programming”, Congress on Numerical Methods in Combinatorial Optimization, Capri, 
Italy (1986). 

[10] D.E. Jeffcoat and R.L. Balfin, “Simulated annealing for resource-constrained 
scheduling”, European Journal of Operational Research 70 (1993), 43-51. 

[11] M.G.C. Resende and C.C. Ribeiro, “GRASP with path-relinking: Recent advances and 
applications”, in Metaheuristics: Progress as Real Problem Solvers (T. Ibaraki, K. Nonobe 
and M. Yagiura, eds.), Kluwer, to appear (2005). 

[12] M.G.C. Resende and C.C. Ribeiro, “Greedy randomized adaptive search procedures”, 
Handbook of Metaheuristics (F. Glover e G. Kochenberger, eds.), 219-249, Kluwer (2002). 

[13] C.C. Ribeiro and M.C. Souza, “Tabu search for the Steiner problem in graphs”, 
Networks 36 (2000), 138-146. 

[14] E. Taillard, “Robust tabu search for the quadratic assignment problem”, Parallel 
Computing 17 (1991), 443-455. 

[15] H. Takahashi and A. Matsuyama, “An approximate solution for the Steiner problem in 
graphs”, Mathematica Japonica 24 (1980), 573-577. 

[16] J. Vera, A. Weintraub, M. Koenig, G. Bravo, M. Guignard, and F. Barahona, “A 
Lagrangian relaxation approach for a machinery location problem in forest harvesting”, 
Pesquisa Operacional 23 (2003), 111-128. 

[17] D. de Werra and A. Hertz, “Tabu search techniques: A tutorial and an application to 
neural networks”, OR Spektrum 11 (1989), 131-141. 

 


	April, 2004
	Abstract: This paper deals with two main problems in forest harvesting. The first is that of selecting the locations for the machinery to haul logs from the points where they are felled to the roadside. The second consists in designing the access road ne
	
	
	Problem





