
A Distributed and Hierarchical Strategy for Autonomic Grid-enabled
Cooperative Metaheuristics with Applications

Aletéia P.F. Aráujoa, Cristina Boeresb, Vinod E.F. Rebellob, Celso C. Ribeirob

aDepartment of Computer Science, Universidade de Brası́lia, Brası́lia, DF 70910-900, Brazil
bUniversidade Federal Fluminense, Institute of Computing,Rua Passo da Pátria 156, Niterói, RJ 24210-240, Brazil

Abstract

The adoption of the same cluster-based programming strategies for grid applications, although requiring minimal
effort from a programmer’s point of view, does not always take advantage of the available computational resources to
their fullest extent. This paper investigates on the impactof a distributed and hierarchical autonomic strategy on the
performance of parallel metaheuristics to solve hard combinatorial optimization problems on grids. Two problems,
the mirrored traveling tournament problem and the bounded diameter minimum spanning tree problem, for which
high quality sequential heuristics based on the paradigms of the GRASP and ILS metaheuristics already exist, are
employed as case-studies. The computational results obtained on a grid by the novel autonomic strategy show that
outstanding performance improvements over the traditional master-worker parallelization approach can be achieved.

Key words: Grid computing, parallel metaheuristics, GRASP, ILS, autonomic computing.

1. Introduction and Motivation

The growing computational power requirements of large scale applications and the high costs of developing and
maintaining supercomputers has fueled the drive for cheaper high performance computing environments. With the
considerable increase in commodity computing and network performance, cluster computing [13] and, more recently,
grid computing [25] have emerged as effective alternatives to traditional supercomputing environments for the execu-
tion of parallel applications that require significantly more computing power than communication bandwidth.

A computing cluster generally consists of a fixed number of homogeneous resources interconnected on a single ad-
ministrative high speed network and dedicated to the execution of one parallel application at a time. A computational
grid aims to harness sufficient computing power from a diverse set of resources typically geographically distributed
across the internet, in order to execute a number of applications simultaneously. The aggregation of collections (or
sites) of resources frequently means that raw compute powerin larger quantities than that available at an individual
cluster are now accessible to almost any researcher.

Although hard combinatorial optimization problems often require long computation times, they are still among
those applications that have yet to fully embrace and benefitfrom grid computing. Instance sizes that can be solved
by either exact algorithms or metaheuristics in reasonabletime frames are limited by theoretical complexity bounds
and the computing requirements of existing implementations. Harnessing computational grids in order to offer re-
searchers the opportunity to solve realistically sized problem instances and apply these benefits to a variety of real
world applications is of utmost importance.

The fact that grid resources are generally distributed, heterogeneous and non-dedicated, make writing grid-enabled
parallel applications much more challenging [23]. Unlike clusters, not only are the computing power and network
capacities/latencies non-uniform (due to resource heterogeneity), but these also fluctuate over time due to resource
sharing with other applications belonging to either local or other grid users. Furthermore, inherent due to their size and

Email addresses:aleteia@cic.unb.br (Aletéia P.F. Aráujo), boeres@ic.uff.br (Cristina Boeres),vinod@ic.uff.br (Vinod E.F.
Rebello),celso@ic.uff.br (Celso C. Ribeiro)

Preprint submitted to Elsevier July 6, 2011



distribution, grids are more susceptible to resource and network failures. Addressing these issues places an additional
burden on programmers when adapting their cluster-based applications to run on the grid.

The main obstacle to adopting grid computing seems therefore to be the challenge of overcoming the complexity
involved in writing grid-enabled parallel metaheuristics. The most efficient solution does not lie with the approach
of adopting the same cluster-based programming strategiesfor grid applications, due to their inability to address the
dynamic nature of the environment. With resources belonging to different owners, applications must also cope with
different access and usage policies simultaneously.

To hide the intricacies of grid computing from the application writer, this paper describes an alternative, highly
effective, low effort strategy for porting sequential metaheuristics to computational grids. In this context, the sequential
version of the metaheuristic implementation is transformed into a two-layer parallel program. All issues related
to the parallel execution of the metaheuristic in the grid environment are resolved with the EasyGrid Application
Management System (AMS) [11, 52] implemented in an underlyingmiddleware layer. This system is an application-
specific middleware designed to create an autonomic application capable of utilizing the grid in accordance with
resource availability [43]. It not only improves the performance and robustness of an application, but actually frees
the programmer to focus solely on algorithmic aspects of theproblem at hand without having to worry about specific
details of a given target architecture.

The EasyGrid AMS has been enhanced with a newapplication layerthat employs a hierarchy of distributed pools
of elite solutions to support cooperation between parallelexecutions of the sequential heuristic. The hierarchical
organization of the pools leads to smaller running times, while their distribution takes advantage of the grid archi-
tecture to foster diversity and facilitates effective independent local searches. This combination of EasyGrid AMS
(middleware layer) with the parallelization strategy based on the hierarchy of distributed pools (application layer)not
only improves the running times, but also contributes to findbetter quality solutions to several benchmark instances.
Moreover, the complexities of grids and parallelism becometransparent to the metaheuristic programmer.

This parallelization strategy can be applied to any number of metaheuristics and their hybrids. In this paper, it
is validated by the results obtained for two difficult combinatorial optimization problems: the mirrored Traveling
Tournament Problem (mTTP) [19, 55] and the Diameter Constrained Minimum Spanning Tree Problem (DCMSTP)
problem [1, 50]. The choice of these two problems was driven by the existence of high quality algorithms for their
solution that can be used not only in comparative studies, but also as the main components of the parallel imple-
mentations: a sequential heuristic and its parallel implementation using a centralized pool of elite solutions withina
straightforward master-worker strategy for the mTTP, and an efficient sequential hybrid heuristic for the DCMSTP.

The remainder of the paper is organized as follows. Work related to this paper is described next. Section 2.1
reviews other projects and efforts towards the parallelization of metaheuristics on grids. Section 2.2 describes the
formulation of the mirrored traveling tournament problem and summarizes the hybrid GRASP with ILS sequential
heuristic of Ribeiro and Urrutia [49] and preliminary efforts towards its parallel implementation in grids [6, 7]. Sec-
tion 2.3 reports on the formulation of the diameter constrained minimum spanning tree problem and gives a description
of a hybrid heuristic for its solution [39]. The distributedautonomic strategy proposed for executing sequential meta-
heuristics on computational grids is presented in Section 3: the application layer is described in Section 3.1 and the
middleware layer in 3.2. Section 4 evaluates the experimental results obtained with the proposed strategy. Concluding
remarks are made in the last section.

2. Related Work

In this section, we review work related with this paper. First, we present an account of other environments and
projects for the implementation of metaheuristics and exact methods for combinatorial optimization problems in
grids. Next, we review the formulation and the main sequential heuristics available for the two application problems
that will be used as case studies: the mirrored traveling tournament problem and the diameter constrained minimum
spanning tree problem. Surveys about the parallelization of metaheuristics and applications can be found, e.g. in
[4, 17, 40, 41, 54].

2



2.1. Grid Environments for Parallel Metaheuristics

The programming effort required to assemble grid-enabling parallel software may be hard. A variety of tools
and projects under development offer middleware, functionalities, and services that facilitate the implementation of
optimization algorithms in grid environments.

GridSolve [32] is a RPC based client/agent/server system that allows one to remotely access both hardware and
software components. It provides an API to access and schedule grid resources in a seamless way, but is not suited
for writing non-embarrassingly parallel codes, i.e., those in which the processes communicate with each other during
processing [23].

The AppLeS (Application-Level Scheduling) [10] system provides a software environment for adaptively schedul-
ing and deploying applications in grid environments. It focuses on the development of scheduling agents, in which
each agent is written in a case-by-case basis. The agents usethe services offered by the NWS (Network Weather
Service) to monitor the varying performance of available resources, but the AppLeS agents need to know a priori the
number of tasks to be scheduled.

MW [29] is another framework that allows users to parallelize scientific computations using the master-worker
paradigm on a computational grid. MW is formed by a set of C++ abstract classes providing interfaces to programmers
of applications and grid-infrastructure. To build a grid-enable application with MW, the application programmer must
re-implement some virtual functions. Likewise, to port theMW framework to a new grid software toolkit, the grid
infrastructure programmer must re-implement a number of virtual functions. The use of MW requires some knowledge
about the grid platform.

The hierarchical master-worker paradigm [2, 56] was used inthe implementation of grid-oriented parallel branch-
and-bound algorithms for distinct combinatorial optimization problems. Services such as load balance and fault
tolerance are also provided in these implementations.

Projects that provide functionalities (or services) to facilitate the implementation of grid-enabling parallel meta-
heuristics can be divided into two groups: those in which theapplication and management layers are integrated, and
those where these layers are decoupled.

In the first group, GridSAT [16] is a parallel boolean satisfiability solver of non-trivial SAT problems, based on
a special form of the master-worker model for grids, in whichthe individual workers may communicate directly
with each other whenever necessary. The problem to be solvedis split into subproblems, which are independently
investigated for satisfiability. All management tasks are implemented exclusively in the master process: the resource
manager, the worker manager, the scheduler, and the checkpoint service.

Also in the first group we find PSEPMH [35], which is a problem solving environment for combinatorial opti-
mization based on parallel meta-heuristics to help specialists to harness heterogeneous computational resources and
handle dynamic granularity control. It requires the decomposition of the problem into two sub-problems by divide-
and-conquer. The compiler generates mobile agent code thatautomatically forms adaptive multi-granularity parallel
computations at runtime by cloning itself and distributingcopies along the grid environment.

In the second group, with separate application and management layers, the application programmer does not need
any knowledge of the grid infrastructure. In this category,ParadisEO-CMW [15] is a framework for designing and
deploying parallel metaheuristics on computational grids, assembling together the ParadisEO [14] and MW frame-
works. ParadisEO (application layer) is dedicated to the reusable design of parallel hybrid metaheuristics. However,
grid-enabling an application with MW (middleware) involves the reimplementation of a number of virtual functions.

In this paper, we show the benefits offered by a distributed autonomic strategy to efficiently parallelize grid-
enabled metaheuristics. The distributed and hierarchicalstrategy in the application layer provides greater flexibility
to the programmer and greater scalability. It is supported by the EasyGrid AMS running in the middleware layer,
which ensures that the application may run in heterogeneousand non-dedicated platforms. This architecture increases
portability, ensuring that the parallel metaheuristic mayrun on different grids without any changes in the application
layer. Furthermore, while ParadisEO-CMW is limited to running a number of tasks that must be created in the
beginning of the execution of the application, the EasyGridAMS creates the tasks on demand during the execution.

2.2. The Mirrored Traveling Tournament Problem

Professional sport leagues involve millions of fans and significant investments in players, broadcast rights, mer-
chandising, and advertising. Multiple agents, such as the organizers, media, players, fans, security forces and airlines,

3



are involved and play major roles in the organization of leagues and tournaments. Teams and professional sports
leagues do not want to have their return in investments in players and infrastructure wasted as a consequence of a poor
scheduling of games. An annotated bibliography on fundamentals and applications of scheduling algorithms in sports
appears in [36].

We consider a tournament played byn teams, wheren is an even number. In asimple round-robin(SRR) tour-
nament, each team plays every other exactly once inn− 1 rounds. In adouble round-robin(DRR) tournament, each
team plays every other twice, once at home and the other away.It is assumed that each team in the tournament has a
stadium in its home city and that the distances between the home cities are known. Each team is located at its home
city at the beginning of the tournament, to where it returns at the end after playing the last away game.

TheTraveling Tournament Problem(TTP) was first established by Easton et al. [19] and consistsin finding a DRR
tournament schedule such that every team does not play more than three consecutive home games or more than three
consecutive away games, no repeaters (i.e., two consecutive games between the same two teams) occur, and the sum
of the distances traveled by the teams is minimized. Whenevera team plays two consecutive away games, it goes
directly from the city of the first opponent to the other, without returning to its own home city. Benchmark challenge
instances have been proposed and are available in [55]. To date, even small benchmark instances of the TTP with
n = 10 teams cannot be solved exactly.

TheMirrored Traveling Tournament Problem(mTTP) has an additional constraint: the games played in round k
are exactly the same played in roundk + (n − 1) for k = 1, . . . ,n − 1, although with reversed venues. Once again,
the objective consists in minimizing the total distance traveled by the teams, subject to the constraint that no team can
play more than three consecutive games at home or away.

GRASP (Greedy Randomized Adaptive Search Procedure) metaheuristic [47] is a multi-start heuristic, in which
each iteration consists of two phases: construction and local search. The construction phase builds a feasible solution,
whose neighborhood is investigated during the local searchphase until a local minimum is found. The best overall
solution is kept as the result. The construction and local search phases are problem-dependent and should be cus-
tomized for each problem. GRASP has experienced continued development and has been applied in a wide range of
areas [21, 22].

The ILS (Iterated Local Search) metaheuristic [38] starts from a locally optimal feasible solution. A random
perturbation is applied to the current solution, which is then followed by local search. If the local optimum obtained
after these steps satisfies some acceptance criterion, thenit is accepted as the new current solution, otherwise the latter
does not change. The best solution is, if necessary, updatedand the above steps are repeated until some stopping
criterion is met.

Ribeiro and Urrutia [49] proposed theGRILS-mTTP heuristic for the approximate solution of the mTTP. It is not
only the most effective heuristic for the mTTP, but was also able to find the best known solutions for some benchmark
non-mirrored instances of the TTP. This heuristic is based on the hybridization of GRASP with ILS. Basically, the
local search phase of GRASP is replaced by an ILS procedure. The pseudo-code in Figure 1 summarizes the main
steps of theGRILS-mTTP heuristic.

Each iteration of the outer while loop in lines 1 to 11 of Figure 1 starts by a GRASPconstruction phasethat
builds an initial solutionS in line 2. This is followed by an ILSlocal search phasethat starts in line 3 by attempting
to improve the current solutionS. Three different types of moves are considered: team swaps, home-away swaps,
and partial round swaps. Once a local optimum with respect tothe team swaps is found, a quick local search using
home-away swaps is performed. Next, partial round swaps areinvestigated, followed again by a local search using
home-away swaps. This scheme is repeated until a local optimum with respect to these three neighborhoods is found
and saved inS andS.

The ILS phase of the iteration proceeds to the inner repeat loop in lines 4 to 10, which starts in line 5 by applying
a perturbation move in the game rotation neighborhood to thecurrent solutionS, obtaining a new solutionS′. A game
rotation perturbation move consists in enforcing some specific game to be played at a given tournament round. The
same local search strategy is then applied toS′. The solutionS′ resulting from local search is accepted or not as the
new current solution, depending on an acceptance criterion. The best overall solutionS∗ and the best solution found
in the current iteration of the outer loop are updated, if necessary, and a new cycle starts with the perturbation of the
current solution, until a re-initialization criterion is met.

Re-initialization occurs if too many perturbations followed by local search are performed without improving the
best solution in the current GRASP iteration. A new iteration of the outer loop starts if 50 consecutive deteriorating

4



Procedure GRILS-mTTP();
1. while .NOT. stopping criteriondo
2. S← BuildGreedyRandomizedSolution();
3. S,S← LocalSearch(S);
4. repeat
5. S′ ← Perturbation(S);
6. S′ ← LocalSearch(S′);
7. S← AcceptanceCriterion(S,S′);
8. S∗ ← UpdateGlobalBestSolution(S,S∗);
9. S← UpdateIterationBestSolution(S,S);
10. until ReinitializationCriterion;
11. end;
12. return S∗;

Figure 1: Pseudo-code of the GRASP with ILS heuristic for themTTP.

solutions have been accepted since the last timeS (the best solution found in the current iteration of the outer loop)
was updated. The outer loop is interrupted when some stopping criterion is met.

As an attempt to speedup the sequential heuristic, a straightforward parallelization of theGRILS-mTTP heuristic
was developed in [6, 7], using MPI and the conventional master-worker paradigm to exploit the benefits of cluster
or grid environments. It basically consists of a single master process which coordinates multiple workers, each of
them executing a slightly modified version of the sequentialheuristic. The algorithm fosters cooperation between
the workers by means of a centralized pool of elite solutionshandled by the master, which collects and distributes
elite solutions (found by the workers along their search trajectories) upon request. Whenever a worker completes an
iteration, it can either request an elite solution from the pool or construct a new initial solution, with probabilitiesQ
and 1− Q, respectively.

By exchanging meaningful information in a timely manner so as that the search in parallel achieves a better
performance than the simple concatenation of the results ofthe individual methods, this parallel implementation
obtained good performance and achieved reasonable speedups in clusters [7].

However, a number of issues remain to be resolved efficiently in order to harness the true potential of the grid
environment and this cannot be achieved following the master-worker paradigm. The centralized master is a potential
bottleneck, and worker resources remain idle due to communication latencies and synchronization costs with the
master. Other management issues such as resource discoveryand selection, process allocation and scheduling, and
fault tolerance, add complexity to the master process and need to be addressed to optimize the execution in grid
platforms.

2.3. Diameter Constrained Minimum Spanning Tree Problem

Let G = (V,E) be a connected undirected graph with a setV of vertices, a setE of edges, and a costci j associated
with every edge [i, j] ∈ E. The diameter of a spanning tree ofG is defined as the number of edges in the longest
path linking any two nodesi, j ∈ V in this spanning tree, withi , j. Given an integer parameter 2≤ D ≤ |V| − 1,
theDiameter Constrained Minimum Spanning Tree Problem(DCMSTP) seeks a least cost spanning tree ofG whose
diameter does not exceedD. This problem was proved to beNP-hard whenD ≥ 4 [26] and has been used as a
model for applications in telecommunications [8], data compression [12], and distributed mutual exclusion in parallel
computing [18, 45].

Exact algorithms for solving DCMSTP mostly rely on mixed integer linear programming formulations based
on multi-commodity flows [27, 28]. Santos et al. [50] presented a model based on the lifted Miller-Tucker-Zemlin
inequalities. A branch-and-cut algorithm was suggested in[30]. However, the applicability of exact methods is
restricted, in practice, to instances with less than 100 nodes in complete graphs. Heuristics based on different meta-

5



heuristics have been proposed in [31, 39, 44]. The hybrid heuristic proposed by Santos et al. [39] is also built upon
the hybridization of the GRASP and ILS metaheuristics and follow the same scheme presented in Figure 1.

The GRASP construction phase builds initial solutions using a randomized version of the greedy construction
heuristic OTT-M2 [39]. This heuristic starts with a tree consisting of an arbitrarily chosen node that is progressively
extended by nodes randomly selected from arestricted candidate list(RCL), until all nodes are connected. To add
more diversity to the search, the heuristic alternates between two perturbations applied during the ILS local search:
DCN (dislocation of the center towards a neighbor) and RSR (random substitution of the root). In a DCN perturbation,
a child node of the central node of the tree is considered the new center of the tree in the even case. In the case odd,
a child node of one of the extremities of the central edge becomes an extremity of the central edge. In a RSR
perturbation, a node is chosen at random to be the new center of the tree in the even case, or to replace one of the
extremities of the central edge, in the odd case. All children of the last central node in the odd case (respectively, from
one end of the former central edge in the odd case) are inherited by the new node.

Metaheuristics may require significant computation time tofind good solutions to hard optimization problems.
To speedup their performance, developers are turning, though somewhat tentatively, to parallelization in clusters and
grids. Easing this transition by hiding the intricacies of grid computing, the next section presents an alternative strategy
to develop parallel metaheuristics.

3. Distributed Autonomic Parallelization

Although the master-worker strategy may be efficient in cluster environments, using a single master may be a
potential bottleneck in the presence of a large number of processors. In a grid, the application performance will be
clearly affected as the number of workers increases and by the fact that resources are geographically distributed. Also,
good performance depends of an efficient mechanism to monitor and react to changes in the environment.

We propose a distributed and hierarchical strategy for the implementation of parallel metaheuristics running under
the EasyGrid AMS middleware in computational grids. Management and application related functions are separated
in a middleware layer and an application layer, respectively. The EasyGrid AMS middleware is able to transform ex-
isting parallel applications into autonomic and system-aware implementations, which are adaptive, fault tolerant, and
capable of reacting to changes of load and resource availability of the platform. The application layer is composed of
independent processes that find solutions and keep the best of them in a hierarchy of distributed pools. The integration
of these two layers effectively creates a framework to transform a sequential metaheuristic into an autonomic parallel
version capable of automatically adapting to run time changes within a computational grid.

3.1. Application Layer: Distributed and Hierarchical Strategy

With the middleware layer taking responsibility for managing the grid execution of the application processes, this
layer focuses solely on solving the problem and is subdivided hierarchically in three levels, as seen in Figure 2. At
the top level, a singlecooperation pool(CP) management process is responsible for maintaining a global pool of elite
solutions. The second level employs anintensification pool(IP) process at each site of the grid to maintain local pools
of elite solutions for each site. At a third level,solution provider(SP) processes apply identical or different heuristics
to build solutions for the problem at hand. The following sections describe the main functions performed at each level
of the application layer.

3.1.1. Solution Providers
These user application processes contain the problem specific code (e.g. the sequential heuristic chosen to solve

the given optimization problem) and are executed in parallel at the lower level of the application layer. By following
a standardized communication protocol, the internal functionality of each process is independent of the strategy.
Thus, the programmer can choose to employ the same or different metaheuristics in each processes. Even a mix
of heuristics and exact methods can be used simultaneously.The solution providers processes are independent and
asynchronous, but interact by exchanging information through the distributed and hierarchical structure of the pools
created to facilitate cooperation between them, without overloading the system.

In the parallel implementation of the heuristics developedfor the problems presented in Sections 2.2 and 2.3, the
SP processes execute slightly modified versions of the sequential algorithms in order to use pool of elite solutions.

6



Figure 2: Application layer of the proposed strategy.

Each SP process randomly chooses if it should initiate its execution from the GRASP construction phase or from the
ILS local search phase. In the first case, an SP process constructs an initial solution during the GRASP phase and
then proceeds to the ILS local search phase. Otherwise, it requests an elite solution from the local intensification pool
by sending a message to the respective IP manager process. Ifthis pool is empty, the SP is obliged to initiate from
the GRASP phase, otherwise it receives a solution and initiates from the ILS phase. Before finalizing, the SP process
sends the best solution found to the associated local IP manager.

3.1.2. Intensification Pools
The IP manager processes play two important roles: they maintain local intensification pools of elite solutions

and exchange solutions with the global cooperation pool. Each local pool has a limited number of positions that are
initially empty and supports four essential operations: insertion of a new solution; selection of a pool solution from
which an SP process can initiate an ILS phase; sending the best solutions to the CP manager; and refreshing the pool
after its stabilization.

The first operation (insertion of a new solution) is activated every time an IP manager receives a solution from
an SP process. The new solution is considered for insertion in the intensification pool only if it is different from all
solutions presently stored. If the new solution was obtained by applying the ILS local search phase to an elite solution
obtained from an intensification pool and it improves the original one, then the new solution replaces the original elite
solution in the pool. If the new solution was obtained from a GRASP construction phase and the pool is not full, then
the new solution is inserted into any free position of the pool; otherwise (i.e., if the pool is full), the new solution is
compared with the worst in the pool and replaces it in case of improvement.

The second operation (selection of a pool solution) occurs whenever a SP process requests an elite solution from
the intensification pool. If the pool is empty, then the IP manager indicates to the SP process to build a new solution
by applying the GRASP construction phase. Otherwise, it randomly selects any elite solution from the pool. The
third operation (sending the best solutions) is performed whenever an intensification pool becomes full. At this time,
a number of the best solutions in the intensification pool is sent to the cooperation pool.

The fourth operation (a pool refresh) is executed whenever an intensification pool stabilizes. This situation occurs
whenever a given number of consecutive solutions received from local SP processes have not been accepted for
insertion in the intensification pool. In this case, the IP manager empties its intensification pool and reinitializes it
with a small number of solutions (set at 50% in our implementation) that have been requested from the CP manager
and randomly selected from the cooperation pool. This refresh procedure makes it possible to exchange elite solutions
obtained by SP processes running in different sites of the grid.

3.1.3. Cooperation Pool Manager
Cooperation between SP processes in different sites is crucial to improve the performance of the parallel applica-

tion. It is achieved through the global cooperation pool, atthe top of the hierarchy. For this, the CP manager process
7



supports three operations: insertion of new solutions received from an intensification pool; sending solutions to an in-
tensification pool; and sending a renewal request in case of stabilization. The CP manager process is also responsible
for finalizing the application.

The first operation (insertion of a new solution) follows rules very similar to those for insertion in the intensification
pool. The second operation (sending solutions to an intensification pool) occurs whenever an intensification pool
stabilizes. In this case, the CP manager randomly selects a fraction of its solutions and sends them to the stabilized
IP. Since some of these solutions may have been supplied by different IP managers, this operation allows search
diversification by providing new solutions to refresh the stabilized intensification pool. The third operation (renewal
request) takes place whenever the cooperation pool stabilizes after receiving a large number (set at five times the size
of the cooperation pool in our implementation) of consecutive solutions from the same intensification pool that are all
worse than the solutions currently stored. In this case, theCP manager sends a renewal request to the corresponding IP
manager to empty its intensification pool. The CP manager terminates when the stopping criterion is met. Termination
is detected by the middleware layer, which in turn terminates the execution of the remaining application processes and
IP managers.

We notice that the proposed hierarchical organization of distributed pools handles communications efficiently,
since most information is locally exchanged and there is very little traffic between distinct sites.

3.2. Middleware Layer: EasyGrid AMS

Embedded into the application and permitting the latter to manage its own execution efficiently, the middleware
layer is responsible for the creation of the application layer processes, message routing and delivery, load balancing
and fault tolerance processes, and discovery of available resources. These management functions are carried out
transparently to the application layer, in accordance withenvironmental conditions and application demand. The
EasyGrid middleware [42, 52] is based on standard MPI implementations which support dynamic process creation
(e.g. MPI/LAM) and thus requires no specialized system installation.

For reasons of portability, no modifications have been made to the standard release of MPI/LAM library and this
AMS middleware does not need to be installed on grid resources. The middleware functionality is incorporated at
the application level transforming the algorithm of the user into an autonomic application. Autonomic applications
are adaptive, robust to resource failure, self-schedulingprograms capable of reacting to changes that occur in shared,
dynamic, and unstable distributed environments like computational grids. A key distinguishing characteristic of the
EasyGrid AMS is the adopted execution model. Applications need to be written so that the available parallelism is
maximized, independently of the number of available processors, in order to take advantage of dynamic environments.
Although the traditional “one process per processor” modelis effective for dedicated homogeneous clusters, an im-
plementation using a larger number of shorter running processes can obtain better performance in a grid in spite of
process overheads [51, 52]. Furthermore, for sake of efficiency, the management policies employed by the EasyGrid
AMS can be tuned to the specific needs of each application.

Unlike the standard execution of an MPI program, the EasyGrid AMS does not create all SP processes at once.
Their creation is carried out dynamically and orchestratedaccording to a distributed scheduling policy. Due to the fault
tolerance limitations of MPI, the EasyGrid AMS architecture adopts a distributed three level hierarchy of management
processes to control the execution of the MPI application efficiently and robustly on a computational grid. A single
global manager(GM), at the top level, supervises the sites in the grid wherethe application is running (or could
run). At each of these sites, asite manager(SM) is responsible for the allocation of the application processes to
the machines available at the site. Finally, ahost manager(HM) on each machine is responsible for the scheduling,
creation and execution of the application processes associated with that host.

Initially, the GM process of the middleware layer creates anSM at each site and the CP manager (application
layer). Each SM in turn creates its local IP manager and, on each resource at its site, creates a HM process with an
initial number of SP processes allocated to its work queue. Note that the initial number of SP processes allocated to
each resource is proportional to its processing capacity.

Executing on each grid resource, a HM is responsible for deciding, in accordance with that resource’s access policy
(e.g. execution may only be permitted at certain hours or when the resource is idle), when a SP may be executed. By
monitoring the SP processes and resource utilization, eachHM determines the appropriate number of processes that
may execute concurrently, in order to maximize performance, but without allowing its host to become overloaded.

8



Each SM monitors the state of the site, keeping the load balanced in accordance with the computational power
offered by each resource, which may be heterogeneous or may share computing cycles with other applications. The
SM distributes new tasks to its resources according to theirrequirements. In this way, sites always have sufficient
tasks and never leave resources idle unnecessarily, in accordance with a dynamic scheduler policy. Additionally, if the
workload changes dynamically on the grid resources, the tasks are re-scheduled automatically by the load balancing
mechanism embedded in the application.

By dynamically creating processes, distinct inter-communicators between each pair of processes are used so that
faults can be easily identified and isolated. In the EasyGridAMS, lighter SP processes than the usual one-process-
per-resource in the traditional master-worker model are defined. Therefore, an SP process is reinitiated on the same
processor rather than using checkpointing mechanisms in case of failure. Should the same process continue to fail,
it is flagged for re-execution on an alternative resource. Ifre-execution is still unsuccessful, this is reported to the
SM and the process is permanently removed from the list of processes to be created. The application is consequently
capable of recovering if failures occur, without the need for the entire application be re-executed again.

In the mechanism of fault tolerance of the EasyGrid AMS, the only failure that the application itself cannot recover
from is a failure in the GM process. In this case, the application must be re-executed. If any SM process fails, it is
detected and recreated by the GM process. If a HM process fails, the SM process of its site recreates it and sends its
remaning workload. If recreation is not possible, for example due to hardware failure or to a change in access policy,
the workload of this HM is re-scheduled across other HMs of the same site [53].

By compiling the middleware layer together with the application layer, all features of EasyGrid AMS are auto-
matically embedded in the application. Figure 3 shows an example of an integration between an application with five
SP processes and the EasyGrid AMS managing two sites of the computational grid. This integration results in an
autonomic and portable parallel application since, due to the middleware being embedded in the application, it can ef-
ficiently be executed on any grid environment with LAM/MPI installed (Globus [24] is used to provide authentication
and authorization to access grid resources and to permit thefile transfer of the MPI program to grid resources).

Figure 3: Integration of the application layer with the middleware layer, managing two sites of the grid.

4. Experimental Results

This section summarizes the experiments carried out to evaluate the distributed and hierarchical strategy, used
in the development of parallel implementations of the GRASPwith ILS heuristics for the mTTP and DCMSTP
problems described in Sections 2.2 and 2.3, denoted by audi-mTTp and audi-DCMST, respectively. The audi-mTTp
implementation is compared with the sequential GRASP with ILS heuristic described in Section 2.2 and with its
PAR-MP parallel version developed in [6] and also summarized in Section2.2. audi-DCMST is compared with the
sequential hybrid heuristic described in Section 2.3. The parallel implementations for both problems have been
developed using C++ and version 7.0.6 of MPI/LAM [37].

9



The experiments used up to 60 resources from three sites of a real grid environment, known as Grid Sinergia [46]
(a research oriented production class computational grid in the southeast of Brazil), located in three different cities
within the state of Rio de Janeiro: (a) one cluster in Rio de Janeiro, with 22 Pentium II 400 MHz machines, denoted as
S1; (b) one cluster in Niterói with 28 Pentium IV 2.6 GHz machines and three Pentium IV 3.2GHz machines, denoted
as S2 and 40km away from the first; and (c) another cluster in Petrópolis, with seven Pentium IV 3.2 GHz machines
and 100km away from the first, denoted as S3. Grid Sinergia employs version 2.4 of the Globus Toolkit middleware
across participating sites, which are interconnected by the Brazilian experimental high speed optical research network
Rede Giga.

All the computation times are reported in seconds and correspond to average results over five runs with different
seeds. Since the experiments could not be executed on dedicated resources, all runs took place at night when resources
were typically idle and network traffic was low.

4.1. Tests with audi-mTTp

Three sets of benchmark instances have been proposed for themTTP [19]. The first is made up ofcircle instances
(circn denotes an instance withn teams), artificially generated to represent easier instances. The second set consists of
realistic instances, generated using the distances between the home cities of a subset of teams playing in the National
League of the Major League Baseball in the United States (nln denotes an instance withn teams). The third is made
up of one real-life instance (br24) defined by the home citiesof the 24 teams that played in the top division of the
2003 edition of the Brazilian soccer championship [49]. Allinstances and their best known solutions are available
from [55].

The first experiment involved all circle and National Leagueinstances. Its goal was to evaluate the quality of the
solutions achieved by the sequential, PAR-MP, and audi-mTTp implementations. Each row in Table 1 corresponds to a
specific instance. For each instance, the table presents thebest solution values found by the sequential implementation,
by PAR-MP, and by audi-mTTp. The last column shows the improvement obtained by audi-mTTp with respect to the
best solution value obtained by the sequential algorithm. The solutions values reported for the sequential version are
the best found after five days of processing [49], while thoseobtained by PAR-MP and audi-mTTp were the best after
20 hours on ten machines from site S2.

Table 1: Solution values found by the sequential, PAR-MP, and audi-mTTp implementations.

Instance Sequential PAR-MP audi-mTTp Improvement (%)
circ8 140 140 140 -
circ10 276 272 272 1.45
circ12 456 456 456 -
circ14 714 714 696 2.52
circ16 1004 978 974 2.99
circ18 1364 1306 1306 4.25
circ20 1882 1882 1882 -
nl8 41928 41928 41928 -
nl10 63832 63832 63832 -
nl12 120655 120655 119608 0.87
nl14 208086 208086 199363 4.19
nl16 285614 279618 279077 2.29
br24 506433 503158 502971 0.68

The solution values highlighted in bold in Table 1 correspond to instances for which audi-mTTP improved upon
the solutions obtained by the other implementations. audi-mTTp improved the results obtained by the sequential (resp.
PAR-MP) implementation for eight (resp. six) out of the 13 instances tested, using essentially the same code.

These results illustrate that the proposed parallel implementation outperformed the others in terms of solution
quality.

10



The second experiment was designed to compare the proposed distributed and hierarchical strategy with the
master-worker traditional strategy, used by PAR-MP version. This test was performed on the same ten machines
of site S2 involved in the previous experiment.

Table 2 shows for each of the 13 instances of the first and second groups, the target value used as stopping criterion
for both algorithms and the average time in seconds over five runs of PAR-MP and audi-mTTp.

Table 2: Average times in seconds over five runs of PAR-MP and audi-mTTp running on ten machines.

Instance Target PAR-MP audi-mTTp
circ8 140 0.03 1.28
circ10 276 629.43 297.54
circ12 456 0.18 2.57
circ14 714 0.47 2.53
circ16 982 3,744.72 575.66
circ18 1308 6,703.00 3,570.78
circ20 1882 26.64 27.49
nl8 41928 0.05 1.86
nl10 63832 43.18 43.19
nl12 120655 2.71 3.69
nl14 208086 2.43 4.75
nl16 280116 3,894.20 2,705.62
br24 504000 4,905.63 1,154.02

In principle, this test environment with all machines in thesame cluster should be favorable to the master-worker
strategy, because of its homogeneity and connexity. In fact, for the smaller instances running in less than 200 seconds,
PAR-MP was faster than audi-mTTp. This is due to the fact that, for small instances, the time taken by audi-mTTp
to activate all middleware layer processes and to create thehierarchy of pools is greater than the time needed by
PAR-MP to reach the stopping criterion. However, the audi-mTTp implementation with only one intensification pool
already outperformed PAR-MP for all instances that required execution times longer than 200 seconds, illustrating the
efficiency of the proposed distributed and hierarchical strategy. For instance circ16, for example, the execution time
of PAR-MP was nearly seven times longer than that of audi-mTTp.

The third experiment addressed the behavior of audi-mTTp when more than one intensification pool is used.
The target values used as stopping criterion are the same depicted in Table 2. Table 3 displays, for each instance,
the average times in seconds over five runs of audi-mTTp usingone or two intensification pools. It also shows the
reduction in percent obtained with the use of two intensification pools.

These results show that audi-mTTp benefits from the use of oneadditional intensification pool, since the load of
the IP manager processes is divided by two and the diversity of the solutions in the intensification pools increase. The
average improvement amounts to a reduction of 19% in the running times when two intensification pools are used.

The fourth experiment compares the performance of PAR-MP and audi-mTTp in two different platforms. Results
in a LAN environment refer to experiments performed on a local cluster, formed exclusively by machines of site S2.
Times on a WAN environment were obtained from runs on machines spread over two clusters, one in site S1 and
the other in S2: the PAR-MP master process and the audi-mTTp CP manager process execute in one of the sites,
while the other processes execute in the other site. This situation reflects the extreme case, in which communication
between the two sites achieves its maximum. This experimentinvolved only the five mTTP instances with longer
running times (circ10, circ16, circ18, nl16, and br24). As before, the algorithms stop whenever they find a solution
with cost less than or equal to the target displayed in Table 2. All times in Table 4 are reported in seconds and have
been averaged over five runs on ten machines for each instance. The execution times of PAR-MP and audi-mTTp
(using two intensification pools) on the LAN environment were extracted from Tables 2 and 3, respectively.

The advantage of the proposed distributed and hierarchicalstrategy is clear even for LAN environments which
favor the master-worker approach. The fourth and seventh columns in Table 4 display the deterioration in the execution

11



Table 3: Average times in seconds over five runs of audi-mTTp running on ten machines with one and two intensification pools.

Instance One Pool Two Pools Reduction (%)
circ8 1.28 0.92 28
circ10 297.54 252.26 15
circ12 2.57 1.28 50
circ14 2.53 1.81 28
circ16 575.66 515.86 10
circ18 3,570.78 3,482.06 2
circ20 27.49 24.31 12
nl8 1.86 0.98 47
nl10 43.19 41.80 3
nl12 3.69 3.36 9
nl14 4.75 2.78 41
nl16 2,705.62 2,685.08 1
br24 1,154.02 1,129.62 2

Average 19

Table 4: Average times in seconds over five runs of PAR-MP and audi-mTTp on LAN and WAN environments with ten machines.

PAR-MP (seconds) audi-mTTp (seconds) PAR-MP
audi-mTTp

Instance LAN WAN deg.(%) LAN WAN deg.(%) LAN WAN
circ10 629.43 747.52 18.76 252.26 257.95 2.262.50 2.90
circ16 3,744.72 4,537.74 21.18 515.86 521.49 1.097.26 8.70
circ18 6,703.00 7,532.03 12.373,482.06 3,516.47 0.991.93 2.14
nl16 3,894.20 4,500.76 15.582,685.08 2,723.68 1.441.45 1.65
br24 4,905.63 5,106.51 4.091,129.62 1,190.35 5.384.34 4.29

Averages 14.04 2.01 3.50 3.94

time on the WAN environment with respect to the LAN environment, due to the increase in inter-site communication.
They show that the deterioration in the running times is muchsmaller in the case of audi-mTTp, which is able to
keep most communications locally even if the machines are spread over multiple sites, thanks to the use of the local
intensification pools. The running times of PAR-MP deteriorate on average by 14.40% in the WAN environment,
while audi-mTTp maintains almost the same performance withan average degradation of only 2.01%. The average
speedup of audi-mTTp over PAR-MP is also larger for the WAN environment, showing once more that it is more
appropriate to grids.

To further evaluate and compare the behavior of the two parallel implementations, theirtime-to-target solution
value plots [3, 48] for the measured running times were also used. This approach is based on plots showing the
empirical run time distributions. To plot the running time distribution of an algorithm, we choose a problem instance
and set a target value. Next, this algorithm is executedN times and its running time to find the first solution as least as
good as the target value is recorded. For each algorithm, we associated with thei-th sorted running timeti a probability
pi = (i − 1

2)/N and plot the pointszi = (ti , pi), for i = 1, . . . ,N. Therefore, for each implementation and for each point
zi = (ti , pi), with i = 1, . . . ,N, pi denotes the probability that this implementation will find asolution at least as good
as the target value in time less than or equal toti . In other words, run time distributions or time-to-target plots display
on the ordinate axis the probability that an algorithm will find a solution at least as good as a given target value within
a given running time, shown on the abscissa axis. Time-to-target plots were first used by Feo et al. [20]. Run time
distributions have been advocated also by Hoos and Stützle [33, 34] as a way to characterize the running times of
stochastic algorithms for combinatorial optimization.

12



Figure 4 displays the running time distribution (or the time-to-target plot) for instance circ10, obtained from 100
independent runs of PAR-MP and audi-mTTp implementations on LAN and WAN environments. The target value
used as the stopping criterion was 274.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1  10  100  1000  10000

pr
ob

ab
ili

ty

time to target value (seconds)

PAR-MP in LAN environment
PAR-MP in WAN environment

audi-mTTp in LAN environment
audi-mTTp in WAN environment

Figure 4: Empirical running time distributions of PAR-MP and audi-mTTp on LAN and WAN environments on ten machines.

The curves corresponding to audi-mTTp running in LAN and WANenvironments in Figure 4 almost overlap, once
again showing that there is almost no degradation when the LAN environment is replaced by a WAN environment.

The next experiment investigates the scalability of the audi-mTTp implementation with respect to the number of
intensification pools. The experiment was performed on 60 machines of the same Grid Sinergia. Table 5 shows, for
each instance, the average time in seconds over ten runs of PAR-MP and audi-mTTp implementations. The third
column in this table shows the running times taken by PAR-MP to reach the stopping criterion. The next three
columns show the running times of audi-mTTp when three, five,and seven intensification pools, followed by the
speedups observed for audi-mTTp with respect to PAR-MP.

Table 5: Average times in seconds over ten runs of PAR-MP and audi-mTTp on 60 machines with three, five, and seven intensification pools .

audi-mTTp PAR-MP
audi-mTTp

Instance PAR-MP 3 pools 5 pools 7 pools 3 pools 5 pools 7 pools
circ10 72.11 36.84 31.02 32.57 1.96 2.32 2.21
circ16 980.66 345.03 319.22 321.54 2.84 3.07 3.05
circ18 5,647.42 1,822.45 1,783.69 1,801.76 3.10 3.17 3.13
nl16 2,759.23 1,975.99 1,678.51 1,708.97 1.40 1.64 1.61
br24 1,244.28 493.82 374.01 390.68 2.52 3.33 3.18

Average 2.36 2.71 2.64

The results in this table show that for 60 machines, all execution times of audi-mTTp are shorter than for PAR-
MP. audi-mTTp obtained the best results with five intensification pools, reducing the execution times obtained with
PAR-MP on the average by a factor of 2.71. However, these results also show that the parallel application seems to
become saturated when seven intensification pools are specified. This can also be viewed in the time-to-target plots
displayed in Figure 5 for instance circ10 with the target value set at 274, in which we show the run time distributions

13



of PAR-MP and audi-mTTp with three, five, seven, and nine IP managers.The best running times correspond to the
leftmost curve, which is that of audi-mTTp running with five intensification pools.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1  1  10  100  1000

pr
ob

ab
ili

ty

time to target value (seconds)

PAR-MP
audi-mTTp with 3 intensification pools
audi-mTTp with 5 intensification pools
audi-mTTp with 7 intensification pools
audi-mTTp with 9 intensification pools

Figure 5: Empirical running time distributions of PAR-MP and audi-mTTp on 60 machines with three, five, seven, and nine intensification pools.

The last experiment focus on the overall quality of the solutions obtained by audi-mTTp for the National League
instances. Table 6 shows, for each nln instance, the best known solution value before [5], from which the results
presented in this section have been extracted, followed by the best solution value found by the sequential heuristic
GRILS-mTTP and by the audi-mTTp parallel implementation on ten machines from site S2.

Table 6: Best solutions for National League instances: results for audi-mTTp on ten machines.

Instance Previous best Sequential audi-mTTp
nl16 248818 251289 249806
nl18 299903 299903 299112
nl20 359748 359748 359748
nl22 418086 418086 418022
nl24 467135 467135 465491
nl26 554670 554670 548643
nl28 618801 618801 609788
nl30 740458 740458 739697
nl32 924559 924559 914620

The audi-mTTp parallel implementation improved the best known solutions for seven out of the nine National
League instances (results highlighted in bold), and matched the best known solution in the literature [55] for nl20.
The longest running time over all National League instanceswas 10.2 hours (nfl24), while the shortest was 3.01 hours
for nfl18.

4.2. Tests with audi-DCMST

Three groups of instances with different characteristics were used to evaluate audi-DCMST. Group 1 consists of
43 instances used in [45], of which 15 are sparse graphs with 20 to 60 vertices and 28 are complete graphs with 10

14



to 25 vertices. The diameters of the instances in this group vary from 4 to 10. Optimal solution are known for all
instances in this group [39].

Group 2 is composed of 12 sparse graph instances used in [27].Six of them have random costs, while the other
six were generated in the Euclidean plane. Instances in thisgroup have diameter values equal to 5, 7, and 9. Optimal
solutions are also known for all instances in this group [39].

Group 3 is formed by 30 complete graph instances obtained from the OR-Library [9], originally proposed for the
Euclidean Steiner Tree problem. These instances are formedby points in the unit square, with edge costs equal to the
Euclidean distances between their extremities. We consider only the first five instances of each size (50, 70, 100, 250,
500 and 1,000 vertices), since these are the hardest instances.

The first experiment addresses the comparison of the solutions found by the sequential algorithm with those
obtained by the audi-DCMST implementation running on ten machines of site S2. Both algorithms received exactly
the same execution time, defined for each instance as the average running time of 500 iterations of the sequential
heuristic. Algorithm audi-DCMST achieved the optimal solutions for all instances of Group 1, outperforming the
sequential version that was not able to find the optimal solution for one instance with 60 vertices and 150 edges.
The distributed and hierarchical implementation found theoptimal solution of this instance in only 35.96 seconds.
Figures 6 and 7 illustrate the solutions found by the sequential and parallel implementations, respectively.

 0.0 

 10.0 

 20.0 

 30.0 

 40.0 

 50.0 

 60.0 

 70.0 

 80.0 

 90.0 

 100.0 

 0.0  10.0  20.0  30.0  40.0  50.0  60.0  70.0  80.0  90.0  100.0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

 

 

 

 

 

 

  

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Figure 6: Solution found by the sequential heuristic, with cost
equal to 983 (Group 1 instance with 60 vertices and 150 edges).

 0.0 

 10.0 

 20.0 

 30.0 

 40.0 

 50.0 

 60.0 

 70.0 

 80.0 

 90.0 

 100.0 

 0.0  10.0  20.0  30.0  40.0  50.0  60.0  70.0  80.0  90.0  100.0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

 

 

 

 

 

 

  

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

 

 

 

 

Figure 7: Optimal solution found by the audi-DCMST parallel
implementation, with cost equal to 968 (same Group 1 instance
with 60 vertices and 150 edges).

Results for Group 2 instances are shown in Table 7, where|V| and |E| denote the number of vertices and edges,
respectively, while|D| represents the maximum diameter. Optimal values are given in the fourth column. The time
limit given to both algorithms is given in the fifth column. For each instance, the next pair of columns show the
cost of the best solution and the average time in seconds to find it over five runs of the sequential heuristic. The last
two columns give the cost of the best solution and the averagetime to find it over five runs of audi-DCMST. Each
execution of the distributed heuristic runs for the same time limit as the sequential one.

The sequential heuristic did not reach the optimal solutionfor four out of the 12 instances in Group 2. Algorithm
audi-DCMST performed better than the sequential heuristic, finding two additional optimal solutions. For the two
instances that audi-DCMST was not able to find their optimal solutions, the best solutions values have not been worse
by more than 0.5% of the optimal. The distributed and hierarchical implementation audi-DCMST was always faster
than the sequential heuristic to find the best solution.

15



Table 7: Solutions found by the sequential and audi-DCMST (on ten machines) algorithms for Group 2 instances.

Sequential audi-DCMST
|V| |E| |D| Optimal Time limit (s) Best Avg. time to best (s) Best Avg. time to best (s)

5 612 10 612 8.34 612 3.58
7 527 10 527 8.68 527 4.02
9 495 10 495 9.04 495 4.39

40 400 5 253 10 253 8.59 253 3.88
7 171 10 171 9.73 171 6.04
9 154 10 154 9.17 154 5.67
5 965 50 965 39.33 965 4.80
7 789 50 796 43.18 793 17.22
9 738 50 741 41.77 738 18.07

60 600 5 256 50 257 36.54 257 5.13
7 150 50 152 48.07 150 4.60
9 124 50 124 42.57 124 8.94

Table 8 displays the results obtained for the 30 instances inGroup 3, where|V| and|E| denote the number of ver-
tices and edges, respectively, while|D| represents the maximum diameter. Since the optimal values of these instances
are unknown, the fourth column in this table shows the currently best known solution values in the literature at the
time of writing [39]. The time limit given to both algorithmsis given in the fifth column. For each instance, the
next pair of columns show the cost of the best solution and theaverage time in seconds to find it over five runs of
the sequential heuristic. The last two columns give the costof the best solution and the average time to find it over
five runs of audi-DCMST. As before, each execution of the distributed heuristic runs for the same time limit as the
sequential one. The distributed and hierarchical audi-DCMST implementation improved the solutions found by the
sequential heuristic for all Group 3 instances with more than 100 vertices and was always faster than the sequential
heuristic to find the best solution.

To further investigate the impact of the time limit given to the distributed and hierarchical implementation, we
extended the time limit given to audi-DCMST in the previous experiment to 1,000 (resp. 25,000) seconds to all Group
3 instances with up to (resp. more than) 70 vertices. The firstfour columns of Table 9 give the same information as
in the previous table. The last two columns give the cost of the best solution and the average time to find it over five
runs of audi-DCMST. For six instances in Group 3, the audi-DCMST implementation was able to improve the best
known results in the literature (results highlighted in bold). For all instances with more than 50 vertices, the increase
in the time limit lead to better solutions.

The last experiment investigates the scalability of the distributed and hierarchical implementation audi-DCMST in
a heterogeneous and non dedicated environment. Table 10 shows the results for six instances of Group 3, one for each
size of the vertex set: 70, 100, 250, 500, and 1000 vertices. For each instance, this table reports the number of vertices
|V|, the number of edges|E|, the value of the maximum diameter|D|, and the target value used as the stopping criterion.
The last three columns display the average times (in seconds) over five executions of the audi-DCMST implementation
running on 15, 30, and 60 machines. The algorithm scales appropriately, leading to decreasing execution times when
the number of machines increase. The proposed distributed and hierarchical strategy, without a centralized processor
controlling all others, is very efficient and avoids communication bottlenecks.

5. Conclusions

Computational grids aggregate significant numbers of geographically distributed resources to provide sufficient
power for computationally intensive applications. However, the fact that these resources are distributed, typically
heterogeneous and non-dedicated, makes writing parallel grid-enabled applications much more challenging.

This paper proposed a new grid-enabled strategy for the implementation of cooperative metaheuristics on compu-
tational grids. This strategy is based on hierarchically organized distributed pools of elite solutions and managed by

16



the EasyGrid AMS middleware. The hierarchically distributed organization of pools keeps the majority of communi-
cations local, with relatively little traffic between sites, but without eliminating the possibility ofa solution provider
obtaining information generated by another one at a distinct site.

The grid-enabled distributed and hierarchical strategy was validated by applications in the solution of two chal-
lenging combinatorial optimization problems: the mirrored traveling tournament problem and the diameter-constrained
minimum spanning tree, for both of which state-of-the-art sequential implementations of metaheuristics were available
and at hand for performance evaluation studies.

Extensive computational experiments on benchmark instances of both problems have shown that the proposed
grid-enabled approach was able to find better solutions in much smaller running times than the original sequential
implementations. We also observed that grid-enabled distributed and hierarchical algorithm scales appropriately,
leading to decreasing execution times when the number of machines increase. This new strategy, without a centralized
process controlling all others, is very efficient and avoids communication bottlenecks. The numericalresults have
shown that even with state-of-the-art networks, computation with the conventional master-worker model does not
efficiently utilize grid resources. Even small communication overheads can impact performance, especially as the
number of processes increases.

The new strategy performs much better because it addresses three important issues. First, it avoids performance
degradation caused by high communication overheads by clustering frequent communications between the pools
and its solution providers on local resources. Second, it eliminates the bottleneck at a centralized cooperation pool
and improves scalability by distributing this function among multiple intensification pools. Third, the computational
results also highlighted the benefits of an alternative execution model for MPI programs. With the aid of an application
management system, the dynamic creation of processes and the management of messages can be achieved efficiently
and transparently, without the metaheuristic designer having to be preoccupied with the implementation of services
such as scheduling, load balancing, and fault tolerance. The solution provider processes are executed independently
in parallel. They are the only problem specific code that needs to be changed in order to use the proposed strategy to
address different combinatorial optimization problems.

References

[1] N. R. Achuthan, L.Caccetta, P. A. Caccetta, and J. F. Geelen. Computational methods for the diameter restricted minimum weight spanning
tree problem.Australasian Journal of Combinatorics, 10:51–71, 1994.

[2] K. Aida, W. Natsume, and Y. Futakata. Distributed computing with hierarchical master-worker paradigm for parallel branch and bound
algorithm. InProceedings of the 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid, pages 156–164, Washington,
2003. IEEE Computer Society.

[3] R.M. Aiex, M.G.C. Resende, and C.C. Ribeiro. TTTPLOTS: Aperl program to create time-to-target plots.Optimization Letters, 1:355–366,
2007.

[4] E. Alba, editor.Parallel Metaheuristics: A new class of algorithms. Wiley, 2005.
[5] A.P.F. Aráujo. Paralelização Autonômica de Metaheurı́sticas em Ambientes de Grid. PhD thesis, Catholic University of Rio de Janeiro, Rio

de Janeiro, 2008. In Portuguese.
[6] A.P.F. Aráujo, M.C.S. Boeres, V.E.F. Rebello, C.C. Ribeiro, and S. Urrutia. Towards grid implementations of metaheuristics for hardcom-

binatorial optimization problems. InProceedings of the 17th International Symposium on Computer Architecture and High Performance
Computing, pages 19–26, Rio de Janeiro, 2005.

[7] A.P.F. Aráujo, M.C.S. Boeres, V.E.F. Rebello, C.C. Ribeiro, and S. Urrutia. Exploring grid implementations of parallel cooperative meta-
heuristics: A case study for the mirrored traveling tournament problem. In K.F. Doerner, M. Gendreau, P. Greistorfer, W. Gutjahr, R.F. Hartl,
and M. Reimann, editors,Metaheuristics: Progress in Complex Systems Optimization, pages 297–322. Springer, 2007.

[8] K. Bala, K. Petropoulos, and T.E. Stern. Multicasting ina linear lightwave network. InProceedings of the IEEE INFOCOM’93 Conference
on Computer Communications, volume 3, pages 1350–1358, San Francisco, 1993.

[9] J.E. Beasley. Welcome to OR-Library. online reference athttp://people.brunel.ac.uk/mastjjb/jeb/info.html, last visited on June 30, 2011.
[10] F. Berman, R. Wolski, H. Casanova, W. Cirne, H. Dail, M. Faerman, S. M. Figueira, J. Hayes, G. Obertelli, J. M. Schopf, G.Shao, S. Smallen,

N.T. Spring, A. Su, and D. Zagorodnov. Adaptive computing on the grid using AppLeS.IEEE Transactions on Parallel and Distributed
Systems, 14:369–382, 2003.

[11] C. Boeres and V.E.F. Rebello. EasyGrid: Towards a framework for the automatic grid enabling of legacy MPI applications. Concurrency and
Computation Practice and Experience, 17:425–432, 2004.

[12] A. Bookstein and S.T. Klein. Compression of correlated bitvectors.Information Systems, 16:110–118, 2001.
[13] R. Buyya and C. Szyperski, editors.Cluster Computing. Nova Science Publishers, Commack, 2001.
[14] S. Cahon, N. Melab, and E.-G. Talbi. Paradiseo: A framework for the reusable design od parallel and distributed metaheuristics. Journal of

Heuristics, 10:353–376, 2004.
[15] S. Cahon, N. Melab, and E.-G. Talbi. An enabling framework for parallel optimization on the computational grid. InProceedings of the 5th

IEEE Int. Symp. on Cluster Computing and the Grid, volume 2, pages 702–709, Washington, 2005.

17



[16] W. Chrabakh and R. Wolski. GridSAT: A system for solvingsatisfiability problems using a computational grid.Parallel Computing, 32:660–
687, 2006.

[17] V.-D. Cung, S.L. Martins, C.C. Ribeiro, and C. Roucairol. Strategies for the parallel implementation of metaheuristics. In C.C. Ribeiro and
P. Hansen, editors,Essays and Surveys in Metaheuristics, pages 263–308. Kluwer, 2002.

[18] N. Deo and A. Abdalla. Computing a diameter-constrained minimum spanning tree in parallel.Lecture Notes in Computer Science, 1767:17–
31, 2000.

[19] K. Easton, G.L. Nemhauser, and M.A. Trick. The travelingtournament problem: Description and benchmarks.Lecture Notes in Computer
Science, 2239:580–584, 2001.

[20] T.A. Feo, M.G.C. Resende, and S.H. Smith. A greedy randomized adaptive search procedure for maximum independent set.Operations
Research, 42:860–878, 1994.

[21] P. Festa and M.G.C. Resende. An annotated bibliographyof GRASP - Part I: Algorithms.International Transactions in Operational Research,
16:1–14, 2009.

[22] P. Festa and M.G.C. Resende. An annotated bibliographyof GRASP - Part II: Applications.International Transactions in Operational
Research, 16:131–172, 2009.

[23] I. Foster.Designing and Building Parallel Programs. Addison-Wesley, 1995.
[24] I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit.The International Journal of Supercomputer Applications and

High Performance Computing, 11:115–128, 1997.
[25] I. Foster and C. Kesselman, editors.The GRID: Blueprint for a New Computing Infrastructure. 2nd edition. Morgan Kaufmann, 2004.
[26] M.R. Garey and D.S. Johnson.Computers and intractability: A guide to the theory of NP-completeness. W. H. Freeman, New York, 1979.
[27] L. Gouveia and T. L. Magnanti. Network flow models for designing diameter-constrained minimum-spanning and Steiner trees. Networks,

41:159–173, 2003.
[28] L. Gouveia, T. L. Magnanti, and C. Requejo. A 2-path approach for odd-diameter-constrained minimum spanning and steiner trees.Networks,

44:254–265, 2004.
[29] J. Goux, S. Kulkarni, J. Linderoth, and M. Yoder. Master-worker: An enabling framework for applications on the computational grid.Cluster

Computing, 4:63–70, 2001.
[30] M. Gruber and G.R. Raidl. A new 0–1 ILP approach for the bounded diameter minimum spanning tree problem. In P. Hansen, N. Mladenovic,

J.A.M. Prez, B.M.Batista, and J.M. MorenoVega, editors,The 2nd International Network Optimization Conference, pages 178–185. ACM
Press, Spa, 2005.

[31] M. Gruber and G.R. Raidl. Variable neighborhood searchfor the bounded diameter minimum spanning tree problem. In18th Mini Euro
Conference on Variable Neighborhood Search, pages 1–11, Tenerife, 2005.

[32] M. Hardt, K. Seymour, J. Dongarra, M. Zapf, and N.V. Ruiter. Interactive grid-access using gridsolve and giggle.Computing and Informatics,
27:233–248, 2008.

[33] H.H. Hoos and T. Sẗutzle. Evaluation of Las Vegas algorithms - Pitfalls and remedies. InProceedings of the 14th Conference on Uncertainty
in Artificial Intelligence, pages 238–245, 1998.

[34] H.H. Hoos and T. Sẗutzle. On the empirical evaluation of Las Vegas algorithms - Position paper. Technical report, Computer Science
Department, University of British Columbia, 1998.

[35] R. Huang, S. Tong, W. Sheng, and Z. Fan. A problem solvingenvironment for combinatorial optimization based on parallelmeta-heuristics.
In Proceedings of the 7th IEEE International Symposium on Computational Intelligence in Robotics and Automation, pages 432–437, Jack-
sonville, 2007. IEEE.

[36] G. Kendall, S. Knust, C.C. Ribeiro, and S. Urrutia. Scheduling in sports: An annotated bibliography.Computers and Operations Research,
37:1–19, 2010.

[37] LAM /MPI parallel computing. Online document athttp://www.lam-mpi.org/, last visited on June 30, 2011.
[38] H.R. Lourenço, O. Martins, and T. Stutzle. Iterated local search. In F. Glover and G. Kochenberger, editors,Handbook of Metaheuristics,

pages 321–353. Kluwer, 2002.
[39] A.P. Lucena, C.C. Ribeiro, and A.C. Santos. A hybrid heuristic for the diameter constrained minimum spanning tree problem. Journal of

Global Optimization, 46:363–381, 2010.
[40] S.L. Martins, C.C. Ribeiro, and I. Rosseti. Applications and parallel implementations of metaheuristics in network design and routing.Lecture

Notes in Computer Science, 3285:205–213, 2004.
[41] S.L. Martins, C.C. Ribeiro, and I. Rosseti. Application of parallel metaheuristics to optimization problems in telecommunications and

bioinformatics. In E.-G. Talbi, editor,Parallel Combinatorial Optimization, pages 301–325. Wiley, 2006.
[42] A.P. Nascimento, A.C. Sena, J.A. da Silva, D.Q.C. Vianna, C. Boeres, and V.E.F. Rebello. Managing the execution of large scale MPI

applications on computational grids. InProceedings of the 17th International Symposium on Computer Architecture and High Performance
Computing, pages 69–76, Rio de Janeiro, 2005. IEEE.

[43] M. Parashar and S. Hariri. Autonomic computing: An overview. 3566, pages 257–269, 2005.
[44] G.R. Raidl and B.A. Julstrom. Greedy heuristics and an evolutionary algorithm for the bounded-diameter minimum spanning tree problem.

In ACM Symposium on Applied Computing, pages 747–752, Melbourne, 2003.
[45] K. Raymond. A tree-based algorithm for distributed mutual exclusion.ACM Transactions on Computers, 7:61–77, 1989.
[46] V.E.F. Rebello. Grid Sinergia. online reference at http://easygrid.ic.uff.br/, last visited on June 30, 2011.
[47] M.G.C. Resende and C.C. Ribeiro. Greedy randomized adaptive search procedures. In F. Glover and G. Kochenberger, editors,Handbook of

Metaheuristics, pages 219–249. Kluwer, 2003.
[48] C.C. Ribeiro, I. Rosseti, and R. Vallejos. Exploiting run time distributions to compare sequential and parallel stochastic local search algo-

rithms. Journal of Global Optimization, 2011. accepted for publication.
[49] C.C. Ribeiro and S. Urrutia. Heuristics for the mirroredtraveling tournament problem.European Journal of Operational Research, 179:775–

787, 2007.
[50] A.C. Santos, A. Lucena, and C.C. Ribeiro. Solving diameter constrained minimum spanning tree problem in dense graphs.Lecture Notes in

18



Computer Science, 3059:458–467, 2004.
[51] A.C. Sena, A.P. Nascimento, C. Boeres, and V.E.F. Rebello. Easygrid enabling of iterative tightly-coupled parallel MPI applications. In

Proceedings of IEEE International Symposium on Parallel and Distributed Processing with Applications, pages 199–206, Los Alamitos,
2008. IEEE Computer Society.

[52] A.C. Sena, A.P. Nascimento, J. Silva, D. Vianna, C. Boeres, and V.E.F. Rebello. On the advantages of an alternative grid MPI execution
model. InProceedings of the 7th IEEE International Symposium on Cluster Computing and the Grid, pages 575–582, Rio de Janeiro, 2007.
IEEE Computer Society.

[53] J.A. Silva and V. E. F. Rebello. Low cost self-healing inMPI applications.Lecture Notes in Computer Science, 4757:144–152, 2007.
[54] E.-G. Talbi, editor.Parallel Combinatorial Optimization. Wiley, 2006.
[55] M.A. Trick. Challenge traveling tournament instances.Online reference at http://mat.gsia.cmu.edu/TOURN/, last visited on June 30, 2011.
[56] R.V. van Nieuwpoort, T. Kielmann, and H.E. Bal. Efficient load balancing for wide-area divide-and-conquer applications. InProceedings of

the 8th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, pages 34–43, Snowbird, 2001.

19



Table 8: Solutions found by the sequential and audi-DCMST (on ten machines) algorithms for Group 3 instances.

Sequential audi-DCMST
|V| |E| |D| S∗ Time limit (s) Best Avg. time to best (s) Best Avg. time to best (s)

7.599 10 7.599 8.34 7.599 2.10
7.609 10 7.609 9.47 7.609 3.10

50 1225 5 7.240 10 7.240 8.21 7.240 1.72
6.585 10 6.585 7.18 6.585 1.50
7.248 10 7.248 7.65 7.248 1.31
7.228 50 7.228 43.28 7.228 21.93
7.080 50 7.080 42.34 7.080 16.27

70 2415 7 6.983 50 6.983 47.67 6.983 18.23
7.499 50 7.499 48.93 7.499 32.31
7.245 50 7.245 43.05 7.245 18.04
7.759 200 7.835 195.88 7.810 104.03
7.849 200 7.943 197.62 7.881 173.08

100 4950 10 7.904 200 7.976 188.60 7.930 126.89
7.977 200 8.044 195.14 8.032 157.84
8.164 200 8.206 193.11 8.180 131.02

12.231 1,500 12.451 1,274.18 12.412 973.34
12.016 1,500 12.307 1,237.28 12.266 847.37

250 31125 15 12.004 1,500 12.132 1,393.55 12.116 1,036.99
12.462 1,500 12.700 1,432.02 12.606 1,102.66
12.233 1,500 12.444 1,398.76 12.438 1,087.94
16.778 3,000 17.212 2,887.82 16.989 2,004.01
16.626 3,000 17.063 2,973.13 16.810 2,131.29

500 124750 20 16.792 3,000 17.119 2,981.76 16.953 2,200.05
16.796 3,000 17.250 2,853.44 17.150 1,987.32
16.421 3,000 16.941 2,799.87 16.860 1,437.81
23.434 4,500 24.660 4,367.32 24.509 2,733.40
23.464 4,500 24.460 4,411.37 24.286 3,021.23

1000 499500 25 23.635 4,500 24.317 4,303.19 24.134 2,457.89
23.787 4,500 24.609 4,401.15 24.270 3,000.43
23.837 4,500 24.268 4,413.90 24.070 3,423.11

20



Table 9: Solutions found by audi-DCMST (on ten machines) for Group 3 instances on longer time limits.

audi-DCMST
|V| |E| |D| S∗ Best Avg. time to best (s)

7.599 7.599 2.10
7.609 7.609 3.10

50 1225 5 7.240 7.240 1.72
6.585 6.585 1.50
7.248 7.248 1.31
7.228 7.228 21.93
7.080 7.080 16.27

70 2415 7 6.983 6.981 23.14
7.499 7.486 305.67
7.245 7.238 68.89
7.759 7.757 139.11
7.849 7.849 23,965.71

100 4950 10 7.904 7.926 504.04
7.977 7.973 8,704.78
8.164 8.176 336.92
12.231 12.283 11,356.87
12.016 12.123 8,978.35

250 31125 15 12.004 11.999 6,006.41
12.462 12.472 11,373.14
12.233 12.272 9,261.90
16.778 16.899 3,004.49
16.626 16.810 4,300.82

500 124750 20 16.792 16.907 11,572.04
16.796 16.987 7,322.45
16.421 16.555 12,431.17
23.434 23.488 6,103.87
23.464 23.575 6,117.43

1000 499500 25 23.635 23.663 5,782.18
23.787 23.802 4,271.55
23.837 23.887 5,003.86

Table 10: Scalability results for algorithm audi-DCMST on 15, 30, and 60 machines from Grid Sinergia.

Time (s)
|V| |E| |D| Target 15 machines 30 machines 60 machines
70 2415 7 6.983 9.34 8.89 7.16
100 4950 10 7.981 49.23 35.11 24.08
250 31125 15 12.450 3,723.27 2,344.49 1,317.78
500 124750 20 17.063 2,627.14 2,496.45 2,006.08
1000 499500 25 24.609 3,837.79 3,401.71 2,916.25

21


