A Distributed and Hierarchical Strategy for Autonomic Grid-enabled
Cooperative Metaheuristics with Applications

Aletéia P.F. Ar&ijo?, Cristina Boeré? Vinod E.F. Rebellb, Celso C. Ribeirb

aDepartment of Computer Science, Universidade de Bra$liasilia, DF 70910-900, Brazil
bUniversidade Federal Fluminense, Institute of Computiiga Passo da Patria 156, Niterdi, RJ 24210-240, Brazil

Abstract

The adoption of the same cluster-based programming sieatégr grid applications, although requiring minimal
effort from a programmer’s point of view, does not always takeaathge of the available computational resources to
their fullest extent. This paper investigates on the impéet distributed and hierarchical autonomic strategy on the
performance of parallel metaheuristics to solve hard coatbrial optimization problems on grids. Two problems,
the mirrored traveling tournament problem and the boundatheter minimum spanning tree problem, for which
high quality sequential heuristics based on the paradigniseoGRASP and ILS metaheuristics already exist, are
employed as case-studies. The computational resultsneltain a grid by the novel autonomic strategy show that
outstanding performance improvements over the traditioweter-worker parallelization approach can be achieved.

Key words: Grid computing, parallel metaheuristics, GRASP, ILS, aotaic computing.

1. Introduction and Motivation

The growing computational power requirements of largeesagplications and the high costs of developing and
maintaining supercomputers has fueled the drive for chelaigh performance computing environments. With the
considerable increase in commodity computing and netwerfopmance, cluster computing [13] and, more recently,
grid computing [25] have emerged a$eetive alternatives to traditional supercomputing envinents for the execu-
tion of parallel applications that require significantly m@omputing power than communication bandwidth.

A computing cluster generally consists of a fixed number ofibgeneous resources interconnected on a single ad-
ministrative high speed network and dedicated to the ei@tof one parallel application at a time. A computational
grid aims to harness fiicient computing power from a diverse set of resources tjigigeographically distributed
across the internet, in order to execute a number of apjaiasimultaneously. The aggregation of collections (or
sites) of resources frequently means that raw compute piowarger quantities than that available at an individual
cluster are now accessible to almost any researcher.

Although hard combinatorial optimization problems ofteqguire long computation times, they are still among
those applications that have yet to fully embrace and befnefit grid computing. Instance sizes that can be solved
by either exact algorithms or metaheuristics in reasontinle frames are limited by theoretical complexity bounds
and the computing requirements of existing implementatiddarnessing computational grids in order féeore-
searchers the opportunity to solve realistically sizefam instances and apply these benefits to a variety of real
world applications is of utmost importance.

The fact that grid resources are generally distributearbgeneous and non-dedicated, make writing grid-enabled
parallel applications much more challenging [23]. Unlikasters, not only are the computing power and network
capacitieflatencies non-uniform (due to resource heterogeneityt)fHmse also fluctuate over time due to resource
sharing with other applications belonging to either loaadther grid users. Furthermore, inherent due to their size a

Email addressesaleteia@cic.unb.br (Aletéia P.F. Aréijo), boeres@ic.uff.br (Cristina Boeres)yinod@ic.uff.br (Vinod E.F.
Rebello),celso@ic.uff.br (Celso C. Ribeiro)

Preprint submitted to Elsevier July 6, 2011

distribution, grids are more susceptible to resource ahaork failures. Addressing these issues places an addltion
burden on programmers when adapting their cluster-baggatations to run on the grid.

The main obstacle to adopting grid computing seems therefobe the challenge of overcoming the complexity
involved in writing grid-enabled parallel metaheuristiC&he most éicient solution does not lie with the approach
of adopting the same cluster-based programming stratéwiesid applications, due to their inability to address the
dynamic nature of the environment. With resources belantprdifferent owners, applications must also cope with
different access and usage policies simultaneously.

To hide the intricacies of grid computing from the applioatiwriter, this paper describes an alternative, highly
effective, low dfort strategy for porting sequential metaheuristics to aatafional grids. In this context, the sequential
version of the metaheuristic implementation is transfatritdo a two-layer parallel program. All issues related
to the parallel execution of the metaheuristic in the gridimmment are resolved with the EasyGrid Application
Management System (AMS) [11, 52] implemented in an undeglgiiddleware layer This system is an application-
specific middleware designed to create an autonomic apiplicaapable of utilizing the grid in accordance with
resource availability [43]. It not only improves the perfance and robustness of an application, but actually frees
the programmer to focus solely on algorithmic aspects optbelem at hand without having to worry about specific
details of a given target architecture.

The EasyGrid AMS has been enhanced with a application layerthat employs a hierarchy of distributed pools
of elite solutions to support cooperation between parakelcutions of the sequential heuristic. The hierarchical
organization of the pools leads to smaller running timesjenheir distribution takes advantage of the grid archi-
tecture to foster diversity and facilitateffective independent local searches. This combination of&ad AMS
(middleware layer) with the parallelization strategy lzhea the hierarchy of distributed pools (application layex)
only improves the running times, but also contributes to Biatter quality solutions to several benchmark instances.
Moreover, the complexities of grids and parallelism becdraesparent to the metaheuristic programmer.

This parallelization strategy can be applied to any numlbenetaheuristics and their hybrids. In this paper, it
is validated by the results obtained for twdfaiult combinatorial optimization problems: the mirroredaVieling
Tournament Problem (mTTP) [19, 55] and the Diameter Coim&tcaMinimum Spanning Tree Problem (DCMSTP)
problem [1, 50]. The choice of these two problems was drivethe existence of high quality algorithms for their
solution that can be used not only in comparative studiesal3o as the main components of the parallel imple-
mentations: a sequential heuristic and its parallel impletation using a centralized pool of elite solutions witain
straightforward master-worker strategy for the mTTP, amdfacient sequential hybrid heuristic for the DCMSTP.

The remainder of the paper is organized as follows. Worktedl#o this paper is described next. Section 2.1
reviews other projects andferts towards the parallelization of metaheuristics ongri®ection 2.2 describes the
formulation of the mirrored traveling tournament problendaummarizes the hybrid GRASP with ILS sequential
heuristic of Ribeiro and Urrutia [49] and preliminarff@rts towards its parallel implementation in grids [6, 7]cSe
tion 2.3 reports on the formulation of the diameter consrdiminimum spanning tree problem and gives a description
of a hybrid heuristic for its solution [39]. The distributadtonomic strategy proposed for executing sequential-meta
heuristics on computational grids is presented in Sectiah@application layer is described in Section 3.1 and the
middleware layer in 3.2. Section 4 evaluates the experiahegsults obtained with the proposed strategy. Concluding
remarks are made in the last section.

2. Related Work

In this section, we review work related with this paper. &ivge present an account of other environments and
projects for the implementation of metaheuristics and exaethods for combinatorial optimization problems in
grids. Next, we review the formulation and the main seqahturistics available for the two application problems
that will be used as case studies: the mirrored travelingneouent problem and the diameter constrained minimum
spanning tree problem. Surveys about the parallelizatfametaheuristics and applications can be found, e.g. in
[4,17, 40, 41, 54].

2.1. Grid Environments for Parallel Metaheuristics

The programming f€ort required to assemble grid-enabling parallel softwaes toe hard. A variety of tools
and projects under developmerfiey middleware, functionalities, and services that featiéitthe implementation of
optimization algorithms in grid environments.

GridSolve [32] is a RPC based cligagentserver system that allows one to remotely access both heedcavel
software components. It provides an API to access and sthgdd resources in a seamless way, but is not suited
for writing non-embarrassingly parallel codes, i.e., thmswhich the processes communicate with each other during
processing [23].

The AppLeS (Application-Level Scheduling) [10] systemyides a software environment for adaptively schedul-
ing and deploying applications in grid environments. ltUdses on the development of scheduling agents, in which
each agent is written in a case-by-case basis. The agentbaiservices fiered by the NWS (Network Weather
Service) to monitor the varying performance of availabkoreces, but the AppLeS agents need to know a priori the
number of tasks to be scheduled.

MW [29] is another framework that allows users to paralklgcientific computations using the master-worker
paradigm on a computational grid. MW is formed by a set-ef@bstract classes providing interfaces to programmers
of applications and grid-infrastructure. To build a grithéle application with MW, the application programmer must
re-implement some virtual functions. Likewise, to port gV framework to a new grid software toolkit, the grid
infrastructure programmer must re-implement a numberrtdai functions. The use of MW requires some knowledge
about the grid platform.

The hierarchical master-worker paradigm [2, 56] was useldarnmplementation of grid-oriented parallel branch-
and-bound algorithms for distinct combinatorial optintiaa problems. Services such as load balance and fault
tolerance are also provided in these implementations.

Projects that provide functionalities (or services) talfte the implementation of grid-enabling parallel meta
heuristics can be divided into two groups: those in whichapglication and management layers are integrated, and
those where these layers are decoupled.

In the first group, GridSAT [16] is a parallel boolean satisility solver of non-trivial SAT problems, based on
a special form of the master-worker model for grids, in whikh individual workers may communicate directly
with each other whenever necessary. The problem to be s@haalit into subproblems, which are independently
investigated for satisfiability. All management tasks anplemented exclusively in the master process: the resource
manager, the worker manager, the scheduler, and the chiatkpovice.

Also in the first group we find PSEPMH [35], which is a problenitvsw environment for combinatorial opti-
mization based on parallel meta-heuristics to help spetsab harness heterogeneous computational resources and
handle dynamic granularity control. It requires the decosiljon of the problem into two sub-problems by divide-
and-conquer. The compiler generates mobile agent codatit@matically forms adaptive multi-granularity parallel
computations at runtime by cloning itself and distributompies along the grid environment.

In the second group, with separate application and managdayers, the application programmer does not need
any knowledge of the grid infrastructure. In this categ&gradisEO-CMW [15] is a framework for designing and
deploying parallel metaheuristics on computational gradsembling together the ParadiseO [14] and MW frame-
works. ParadisEO (application layer) is dedicated to thusable design of parallel hybrid metaheuristics. However,
grid-enabling an application with MW (middleware) invods/ehe reimplementation of a number of virtual functions.

In this paper, we show the benefitfered by a distributed autonomic strategy t&ogently parallelize grid-
enabled metaheuristics. The distributed and hierarckicategy in the application layer provides greater fleiibil
to the programmer and greater scalability. It is supportethle EasyGrid AMS running in the middleware layer,
which ensures that the application may run in heterogenaodision-dedicated platforms. This architecture increases
portability, ensuring that the parallel metaheuristic may on dtferent grids without any changes in the application
layer. Furthermore, while ParadisEO-CMW is limited to rimgna number of tasks that must be created in the
beginning of the execution of the application, the Easy@iuiS creates the tasks on demand during the execution.

2.2. The Mirrored Traveling Tournament Problem

Professional sport leagues involve millions of fans anaifigant investments in players, broadcast rights, mer-
chandising, and advertising. Multiple agents, such as tjanizers, media, players, fans, security forces andhasli

3

are involved and play major roles in the organization of leggyand tournaments. Teams and professional sports
leagues do not want to have their return in investments yeptaand infrastructure wasted as a consequence of a poor
scheduling of games. An annotated bibliography on fundaateand applications of scheduling algorithms in sports
appears in [36].

We consider a tournament played byeams, whera is an even number. In simple round-robinSRR) tour-
nament, each team plays every other exactly onece-iri rounds. In alouble round-robi(DRR) tournament, each
team plays every other twice, once at home and the other dinayassumed that each team in the tournament has a
stadium in its home city and that the distances between theetuities are known. Each team is located at its home
city at the beginning of the tournament, to where it retutrtb@ end after playing the last away game.

TheTraveling Tournament Proble(T TP) was first established by Easton et al. [19] and conisisisding a DRR
tournament schedule such that every team does not play imamdtiree consecutive home games or more than three
consecutive away games, no repeaters (i.e., two conseg#ines between the same two teams) occur, and the sum
of the distances traveled by the teams is minimized. Whereteam plays two consecutive away games, it goes
directly from the city of the first opponent to the other, with returning to its own home city. Benchmark challenge
instances have been proposed and are available in [55]. t€ el&en small benchmark instances of the TTP with
n = 10 teams cannot be solved exactly.

The Mirrored Traveling Tournament ProblemTTP) has an additional constraint: the games played ind&u
are exactly the same played in roukd (n— 1) fork = 1,...,n - 1, although with reversed venues. Once again,
the objective consists in minimizing the total distancedtad by the teams, subject to the constraint that no team can
play more than three consecutive games at home or away.

GRASP (Greedy Randomized Adaptive Search Procedure) maiatic [47] is a multi-start heuristic, in which
each iteration consists of two phases: construction aral sgarch. The construction phase builds a feasible solutio
whose neighborhood is investigated during the local seghese until a local minimum is found. The best overall
solution is kept as the result. The construction and locatctephases are problem-dependent and should be cus-
tomized for each problem. GRASP has experienced contineeelapment and has been applied in a wide range of
areas [21, 22].

The ILS (lterated Local Search) metaheuristic [38] stamtenfa locally optimal feasible solution. A random
perturbation is applied to the current solution, which isrttiollowed by local search. If the local optimum obtained
after these steps satisfies some acceptance criteriorit th@accepted as the new current solution, otherwise therlat
does not change. The best solution is, if necessary, updaidhe above steps are repeated until some stopping
criterion is met.

Ribeiro and Urrutia [49] proposed ti@&RILS-mTTP heuristic for the approximate solution of the mTTP. It is not
only the most &ective heuristic for the mTTP, but was also able to find the kieswn solutions for some benchmark
non-mirrored instances of the TTP. This heuristic is basethe hybridization of GRASP with ILS. Basically, the
local search phase of GRASP is replaced by an ILS procedure.p$eudo-code in Figure 1 summarizes the main
steps of th&GRILS-mTTP heuristic.

Each iteration of the outer while loop in lines 1 to 11 of Figur starts by a GRASEonstruction phas¢hat
builds an initial solutiorss in line 2. This is followed by an IL$ocal search phas¢hat starts in line 3 by attempting
to improve the current solutioB. Three diferent types of moves are considered: team swaps, home-aveqs s
and partial round swaps. Once a local optimum with respetitedeam swaps is found, a quick local search using
home-away swaps is performed. Next, partial round swapgeestigated, followed again by a local search using
home-away swaps. This scheme is repeated until a local optimith respect to these three neighborhoods is found
and saved irs andS.

The ILS phase of the iteration proceeds to the inner repegtitolines 4 to 10, which starts in line 5 by applying
a perturbation move in the game rotation neighborhood teuinesnt solutiors, obtaining a new solutio8’. A game
rotation perturbation move consists in enforcing some ifipagame to be played at a given tournament round. The
same local search strategy is then applie8’toThe solutionS’ resulting from local search is accepted or not as the
new current solution, depending on an acceptance critefiiba best overall solutioB* and the best solution found
in the current iteration of the outer loop are updated, ifessary, and a new cycle starts with the perturbation of the
current solution, until a re-initialization criterion isan

Re-initialization occurs if too many perturbations folledvby local search are performed without improving the
best solution in the current GRASP iteration. A new itenatdd the outer loop starts if 50 consecutive deteriorating

4

Procedure GRILS-mTTP();

1. while .NOT. stopping criteriondo
2 S < BuildGreedyRandomizedSolution();
3 S, S « LocalSearch(S);

4. repeat

5. S’ « Perturbation(S);
6 S’ « LocalSearch(S);

7 S « AcceptanceCriterion(S,S’);

8 S* « UpdateGlobalBestSolution(S, S¥);
9. S « UpdateIterationBestSolution(S,S);
10. until ReinitializationCriterion

11. end;

12. return S*;

Figure 1: Pseudo-code of the GRASP with ILS heuristic formtfier P.

solutions have been accepted since the last 8nfe best solution found in the current iteration of the olgep)
was updated. The outer loop is interrupted when some stgmpiterion is met.

As an attempt to speedup the sequential heuristic, a stfaiglard parallelization of th&RILS-mTTP heuristic
was developed in [6, 7], using MPI and the conventional nmasteker paradigm to exploit the benefits of cluster
or grid environments. It basically consists of a single maptocess which coordinates multiple workers, each of
them executing a slightly modified version of the sequertt@lristic. The algorithm fosters cooperation between
the workers by means of a centralized pool of elite solutioaisdled by the master, which collects and distributes
elite solutions (found by the workers along their searcfettaries) upon request. Whenever a worker completes an
iteration, it can either request an elite solution from tbhelpr construct a new initial solution, with probabiliti€s
and 1- Q, respectively.

By exchanging meaningful information in a timely manner sotlzat the search in parallel achieves a better
performance than the simple concatenation of the resultieoindividual methods, this parallel implementation
obtained good performance and achieved reasonable speiadtipsters [7].

However, a number of issues remain to be resol@diently in order to harness the true potential of the grid
environment and this cannot be achieved following the nnagteker paradigm. The centralized master is a potential
bottleneck, and worker resources remain idle due to comeatioh latencies and synchronization costs with the
master. Other management issues such as resource diseovesglection, process allocation and scheduling, and
fault tolerance, add complexity to the master process aed @ be addressed to optimize the execution in grid
platforms.

2.3. Diameter Constrained Minimum Spanning Tree Problem

LetG = (V, E) be a connected undirected graph with a\seff vertices, a seE of edges, and a cosf; associated
with every edgeif j] € E. The diameter of a spanning tree @fis defined as the number of edges in the longest
path linking any two nodes j € V in this spanning tree, with# j. Given an integer parameter2D < |V| -1,
the Diameter Constrained Minimum Spanning Tree Prob[@@MSTP) seeks a least cost spanning tre€ @fhose
diameter does not exceddl This problem was proved to B¢P-hard whenD > 4 [26] and has been used as a
model for applications in telecommunications [8], data poession [12], and distributed mutual exclusion in patalle
computing [18, 45].

Exact algorithms for solving DCMSTP mostly rely on mixedegér linear programming formulations based
on multi-commodity flows [27, 28]. Santos et al. [50] presgh& model based on the lifted Miller-Tucker-Zemlin
inequalities. A branch-and-cut algorithm was suggestef8®). However, the applicability of exact methods is
restricted, in practice, to instances with less than 10@&add complete graphs. Heuristics based dafedént meta-

5

heuristics have been proposed in [31, 39, 44]. The hybridistauproposed by Santos et al. [39] is also built upon
the hybridization of the GRASP and ILS metaheuristics afidvicthe same scheme presented in Figure 1.

The GRASP construction phase builds initial solutions gisnrandomized version of the greedy construction
heuristic OTT-M2 [39]. This heuristic starts with a tree stting of an arbitrarily chosen node that is progressively
extended by nodes randomly selected fromestricted candidate lis(RCL), until all nodes are connected. To add
more diversity to the search, the heuristic alternates detwiwo perturbations applied during the ILS local search:
DCN (dislocation of the center towards a neighbor) and R8Rdom substitution of the root). In a DCN perturbation,
a child node of the central node of the tree is considered éleaenter of the tree in the even case. In the case odd,
a child node of one of the extremities of the central edge ibesoan extremity of the central edge. In a RSR
perturbation, a node is chosen at random to be the new centlee ¢ree in the even case, or to replace one of the
extremities of the central edge, in the odd case. All chiidrethe last central node in the odd case (respectively, from
one end of the former central edge in the odd case) are ieldsit the new node.

Metaheuristics may require significant computation timéirid good solutions to hard optimization problems.
To speedup their performance, developers are turninggtheamewhat tentatively, to parallelization in clusterd an
grids. Easing this transition by hiding the intricacies oflgomputing, the next section presents an alternatietesiy
to develop parallel metaheuristics.

3. Distributed Autonomic Parall€elization

Although the master-worker strategy may &ogent in cluster environments, using a single master may be a
potential bottleneck in the presence of a large number afgesors. In a grid, the application performance will be
clearly dfected as the number of workers increases and by the facetf@inces are geographically distributed. Also,
good performance depends of gfi@ent mechanism to monitor and react to changes in the envieot.

We propose a distributed and hierarchical strategy fontip@émentation of parallel metaheuristics running under
the EasyGrid AMS middleware in computational grids. Mamaget and application related functions are separated
in a middleware layer and an application layer, respegtivihe EasyGrid AMS middleware is able to transform ex-
isting parallel applications into autonomic and systena@implementations, which are adaptive, fault toleramd, a
capable of reacting to changes of load and resource audilaifithe platform. The application layer is composed of
independent processes that find solutions and keep theftieetioin a hierarchy of distributed pools. The integration
of these two layersfectively creates a framework to transform a sequential neetdstic into an autonomic parallel
version capable of automatically adapting to run time cleangithin a computational grid.

3.1. Application Layer: Distributed and Hierarchical Steyy

With the middleware layer taking responsibility for managthe grid execution of the application processes, this
layer focuses solely on solving the problem and is subdiVigerarchically in three levels, as seen in Figure 2. At
the top level, a singleooperation poo{CP) management process is responsible for maintainingtebpool of elite
solutions. The second level employsiatensification poo(IP) process at each site of the grid to maintain local pools
of elite solutions for each site. At a third leveblution provide(SP) processes apply identical offdrent heuristics
to build solutions for the problem at hand. The followingts@ts describe the main functions performed at each level
of the application layer.

3.1.1. Solution Providers

These user application processes contain the problemfispamie (e.g. the sequential heuristic chosen to solve
the given optimization problem) and are executed in pdratlthe lower level of the application layer. By following
a standardized communication protocol, the internal fonelity of each process is independent of the strategy.
Thus, the programmer can choose to employ the sameflaratit metaheuristics in each processes. Even a mix
of heuristics and exact methods can be used simultaneolist/solution providers processes are independent and
asynchronous, but interact by exchanging informationughothe distributed and hierarchical structure of the pools
created to facilitate cooperation between them, withoetloading the system.

In the parallel implementation of the heuristics develoftedhe problems presented in Sections 2.2 and 2.3, the
SP processes execute slightly modified versions of the séiquialgorithms in order to use pool of elite solutions.

6

cooperation
pool
Cooperation pool
manager
/ \ Level 0
intensification intensification
pool Intensification pool Intensification pool pool
manager - manager
Level 1
Level 2

Figure 2: Application layer of the proposed strategy.

Each SP process randomly chooses if it should initiate gsw@on from the GRASP construction phase or from the
ILS local search phase. In the first case, an SP process wotssén initial solution during the GRASP phase and
then proceeds to the ILS local search phase. Otherwise@jliests an elite solution from the local intensification pool
by sending a message to the respective IP manager procekis pbol is empty, the SP is obliged to initiate from
the GRASP phase, otherwise it receives a solution andtiedtiiiom the ILS phase. Before finalizing, the SP process
sends the best solution found to the associated local IPgeana

3.1.2. Intensification Pools

The IP manager processes play two important roles: theytaiaifocal intensification pools of elite solutions
and exchange solutions with the global cooperation poothHBacal pool has a limited number of positions that are
initially empty and supports four essential operationseition of a new solution; selection of a pool solution from
which an SP process can initiate an ILS phase; sending thedlesons to the CP manager; and refreshing the pool
after its stabilization.

The first operation (insertion of a new solution) is actidagwery time an IP manager receives a solution from
an SP process. The new solution is considered for insenidnei intensification pool only if it is dierent from all
solutions presently stored. If the new solution was obthlmeapplying the ILS local search phase to an elite solution
obtained from an intensification pool and it improves thgioal one, then the new solution replaces the original elite
solution in the pool. If the new solution was obtained fromRASP construction phase and the pool is not full, then
the new solution is inserted into any free position of thelpotherwise (i.e., if the pool is full), the new solution is
compared with the worst in the pool and replaces it in casmpfavement.

The second operation (selection of a pool solution) occumsngver a SP process requests an elite solution from
the intensification pool. If the pool is empty, then the IP eger indicates to the SP process to build a new solution
by applying the GRASP construction phase. Otherwise, idoarly selects any elite solution from the pool. The
third operation (sending the best solutions) is performbdmever an intensification pool becomes full. At this time,
a number of the best solutions in the intensification pooéig $0 the cooperation pool.

The fourth operation (a pool refresh) is executed whenavémtansification pool stabilizes. This situation occurs
whenever a given number of consecutive solutions receik@u focal SP processes have not been accepted for
insertion in the intensification pool. In this case, the IPhager empties its intensification pool and reinitializes it
with a small number of solutions (set at 50% in our implemeéaitg that have been requested from the CP manager
and randomly selected from the cooperation pool. This séfpgocedure makes it possible to exchange elite solutions
obtained by SP processes running ifietient sites of the grid.

3.1.3. Cooperation Pool Manager
Cooperation between SP processes ifedint sites is crucial to improve the performance of thelfmhiapplica-
tion. It is achieved through the global cooperation poothattop of the hierarchy. For this, the CP manager process
7

supports three operations: insertion of new solutionsiveddrom an intensification pool; sending solutions to an in
tensification pool; and sending a renewal request in casalbifization. The CP manager process is also responsible
for finalizing the application.

The first operation (insertion of a new solution) followsasivery similar to those for insertion in the intensification
pool. The second operation (sending solutions to an irfieason pool) occurs whenever an intensification pool
stabilizes. In this case, the CP manager randomly selecestdn of its solutions and sends them to the stabilized
IP. Since some of these solutions may have been suppliedfigyatit IP managers, this operation allows search
diversification by providing new solutions to refresh thabslized intensification pool. The third operation (renkwa
request) takes place whenever the cooperation pool gebiifter receiving a large number (set at five times the size
of the cooperation pool in our implementation) of conse®usiolutions from the same intensification pool that are all
worse than the solutions currently stored. In this caseCthenanager sends a renewal request to the corresponding IP
manager to empty its intensification pool. The CP manageiitetes when the stopping criterion is met. Termination
is detected by the middleware layer, which in turn termisdhe execution of the remaining application processes and
IP managers.

We notice that the proposed hierarchical organization sfritiuted pools handles communicatiorfBogently,
since most information is locally exchanged and there ig little traffic between distinct sites.

3.2. Middleware Layer: EasyGrid AMS

Embedded into the application and permitting the latter &mage its own executiorfiigiently, the middleware
layer is responsible for the creation of the applicatioretgyrocesses, message routing and delivery, load balancing
and fault tolerance processes, and discovery of availaseurces. These management functions are carried out
transparently to the application layer, in accordance witlironmental conditions and application demand. The
EasyGrid middleware [42, 52] is based on standard MPI implaations which support dynamic process creation
(e.g. MPJLAM) and thus requires no specialized system installation.

For reasons of portability, no modifications have been madked standard release of MBAM library and this
AMS middleware does not need to be installed on grid ressurd&e middleware functionality is incorporated at
the application level transforming the algorithm of theniséo an autonomic application. Autonomic applications
are adaptive, robust to resource failure, self-schedylingrams capable of reacting to changes that occur in shared
dynamic, and unstable distributed environments like caatmnal grids. A key distinguishing characteristic of the
EasyGrid AMS is the adopted execution model. Applicatioeschto be written so that the available parallelism is
maximized, independently of the number of available preces in order to take advantage of dynamic environments.
Although the traditional “one process per processor” masleffective for dedicated homogeneous clusters, an im-
plementation using a larger number of shorter running E®es can obtain better performance in a grid in spite of
process overheads [51, 52]. Furthermore, for sakdfmiency, the management policies employed by the EasyGrid
AMS can be tuned to the specific needs of each application.

Unlike the standard execution of an MPI program, the Easy@&MS does not create all SP processes at once.
Their creation is carried out dynamically and orchestratmbrding to a distributed scheduling policy. Due to thédtfau
tolerance limitations of MPI, the EasyGrid AMS architeetadopts a distributed three level hierarchy of management
processes to control the execution of the MPI applicati@iciently and robustly on a computational grid. A single
global manage(GM), at the top level, supervises the sites in the grid whkesapplication is running (or could
run). At each of these sites,site managel(SM) is responsible for the allocation of the applicatiogesses to
the machines available at the site. Finalljyast manage(HM) on each machine is responsible for the scheduling,
creation and execution of the application processes agsdaith that host.

Initially, the GM process of the middleware layer createsSah at each site and the CP manager (application
layer). Each SM in turn creates its local IP manager and, ch essource at its site, creates a HM process with an
initial number of SP processes allocated to its work queuse khat the initial number of SP processes allocated to
each resource is proportional to its processing capacity.

Executing on each grid resource, a HM is responsible forditegj in accordance with that resource’s access policy
(e.g. execution may only be permitted at certain hours omwhe resource is idle), when a SP may be executed. By
monitoring the SP processes and resource utilization, datldetermines the appropriate number of processes that
may execute concurrently, in order to maximize performahaewithout allowing its host to become overloaded.

8

Each SM monitors the state of the site, keeping the load bathin accordance with the computational power
offered by each resource, which may be heterogeneous or maymaputing cycles with other applications. The
SM distributes new tasks to its resources according to teemirements. In this way, sites always havéisient
tasks and never leave resources idle unnecessarily, indaree with a dynamic scheduler policy. Additionally, iéth
workload changes dynamically on the grid resources, thestae re-scheduled automatically by the load balancing
mechanism embedded in the application.

By dynamically creating processes, distinct inter-comitators between each pair of processes are used so that
faults can be easily identified and isolated. In the Easy@NtS, lighter SP processes than the usual one-process-
per-resource in the traditional master-worker model afmneld. Therefore, an SP process is reinitiated on the same
processor rather than using checkpointing mechanismssim @ffailure. Should the same process continue to fail,
it is flagged for re-execution on an alternative resourceredéxecution is still unsuccessful, this is reported to the
SM and the process is permanently removed from the list afge®es to be created. The application is consequently
capable of recovering if failures occur, without the needli@ entire application be re-executed again.

In the mechanism of fault tolerance of the EasyGrid AMS, thig €ailure that the application itself cannot recover
from is a failure in the GM process. In this case, the appbeoamust be re-executed. If any SM process fails, it is
detected and recreated by the GM process. If a HM process fladd SM process of its site recreates it and sends its
remaning workload. If recreation is not possible, for exntue to hardware failure or to a change in access policy,
the workload of this HM is re-scheduled across other HMs efgame site [53].

By compiling the middleware layer together with the apiima layer, all features of EasyGrid AMS are auto-
matically embedded in the application. Figure 3 shows am@ka of an integration between an application with five
SP processes and the EasyGrid AMS managing two sites of thputational grid. This integration results in an
autonomic and portable parallel application since, dubeatiddleware being embedded in the application, it can ef-
ficiently be executed on any grid environment with LAXPI installed (Globus [24] is used to provide authenticatio
and authorization to access grid resources and to permfitétteansfer of the MPI program to grid resources).

Cooperation) ’
pool

Cooperation pool R
manager 1SM 1
. ’
N AR 4
1 i .
Intensification s A} Intensification

Intensification pool
manager

-
"HMI "HMI THM i "HMI "HMI
~ L ef vl ‘\'.’I ~ .t .00

Figure 3: Integration of the application layer with the migldare layer, managing two sites of the grid.

4. Experimental Results

This section summarizes the experiments carried out taetalthe distributed and hierarchical strategy, used
in the development of parallel implementations of the GRA@# ILS heuristics for the mTTP and DCMSTP
problems described in Sections 2.2 and 2.3, denoted bymti@ip and audi-DCMST, respectively. The audi-mTTp
implementation is compared with the sequential GRASP with lheuristic described in Section 2.2 and with its
PAR-MP parallel version developed in [6] and also summarized oti@®2.2. audi-DCMST is compared with the
sequential hybrid heuristic described in Section 2.3. Tarlel implementations for both problems have been
developed using €+ and version 7.0.6 of MPALAM [37].

9

The experiments used up to 60 resources from three siteseaf gnid environment, known as Grid Sinergia [46]
(a research oriented production class computational griie southeast of Brazil), located in threéelient cities
within the state of Rio de Janeiro: (a) one cluster in Rio ¢heita, with 22 Pentium 11 400 MHz machines, denoted as
S1; (b) one cluster in Nitéi with 28 Pentium IV 2.6 GHz machines and three Pentium IV@H machines, denoted
as S2 and 40km away from the first; and (c) another clustertiop@is, with seven Pentium IV 3.2 GHz machines
and 100km away from the first, denoted as S3. Grid Sinergid@mpersion 2.4 of the Globus Toolkit middleware
across participating sites, which are interconnected &Btlazilian experimental high speed optical research mitwo
Rede Giga

All the computation times are reported in seconds and cooreto average results over five runs witffelient
seeds. Since the experiments could not be executed on testliesources, all runs took place at night when resources
were typically idle and network tfic was low.

4.1. Tests with audi-mTTp

Three sets of benchmark instances have been proposed foifthie [19]. The first is made up aircle instances
(circn denotes an instance wittteams), artificially generated to represent easier ins&anthe second set consists of
realistic instances, generated using the distances betivedome cities of a subset of teams playing in the National
League of the Major League Baseball in the United Statesd@hotes an instance withteams). The third is made
up of one real-life instance (br24) defined by the home citiethe 24 teams that played in the top division of the
2003 edition of the Brazilian soccer championship [49]. iAltances and their best known solutions are available
from [55].

The first experiment involved all circle and National Leagngtances. Its goal was to evaluate the quality of the
solutions achieved by the sequential, PM®, and audi-mTTp implementations. Each row in Table 1 cpords to a
specific instance. For each instance, the table preserigshsolution values found by the sequential implementatio
by PAR-MP, and by audi-mTTp. The last column shows the improvemetairedd by audi-mTTp with respect to the
best solution value obtained by the sequential algorithhe Jolutions values reported for the sequential version are
the best found after five days of processing [49], while thaigeained by PARMP and audi-mTTp were the best after
20 hours on ten machines from site S2.

Table 1: Solution values found by the sequential, PMR; and audi-mTTp implementations.

Instance Sequential PARHP audi-mTTp Improvement (%)

circ8 140 140 140 -
circ10 276 272 272 1.45
circl2 456 456 456 -
circl4 714 714 696 2.52
circlé 1004 978 974 2.99
circl8 1364 1306 1306 4.25
circ20 1882 1882 1882 -
ni8 41928 41928 41928 -
nl10 63832 63832 63832 -
ni12 120655 120655 119608 0.87
nl14 208086 208086 199363 4.19
nl16 285614 279618 279077 2.29
br24 506433 503158 502971 0.68

The solution values highlighted in bold in Table 1 corregptminstances for which audi-mTTP improved upon
the solutions obtained by the other implementations. aulii-p improved the results obtained by the sequential (resp.
PAR-MP) implementation for eight (resp. six) out of the 13 instmntested, using essentially the same code.

These results illustrate that the proposed parallel imphgation outperformed the others in terms of solution
quality.

10

The second experiment was designed to compare the propastebuied and hierarchical strategy with the
master-worker traditional strategy, used by PAR version. This test was performed on the same ten machines
of site S2 involved in the previous experiment.

Table 2 shows for each of the 13 instances of the first and degronips, the target value used as stopping criterion
for both algorithms and the average time in seconds over e of PARMP and audi-mTTp.

Table 2: Average times in seconds over five runs of MR-and audi-mTTp running on ten machines.

Instance Target PARAP audi-mTTp

circ8 140 0.03 1.28
circ10 276 629.43 297.54
circl2 456 0.18 2.57
circl4 714 0.47 2.53
circl6 982 3,744.72 575.66
circ18 1308 6,703.00 3,570.78
circ20 1882 26.64 27.49
ni8 41928 0.05 1.86
nl10 63832 43.18 43.19
ni12 120655 271 3.69
nl14 208086 2.43 4.75
nl16 280116 3,894.20 2,705.62

br24 504000 4,905.63 1,154.02

In principle, this test environment with all machines in #ane cluster should be favorable to the master-worker
strategy, because of its homogeneity and connexity. Inflacthe smaller instances running in less than 200 seconds,
PAR-MP was faster than audi-mTTp. This is due to the fact that, fmalkinstances, the time taken by audi-mTTp
to activate all middleware layer processes and to creatditrarchy of pools is greater than the time needed by
PAR-MP to reach the stopping criterion. However, the audi-mT Tplémentation with only one intensification pool
already outperformed PARAP for all instances that required execution times longar 280 seconds, illustrating the
efficiency of the proposed distributed and hierarchical sgsat€or instance circ16, for example, the execution time
of PAR-MP was nearly seven times longer than that of audi-mTTp.

The third experiment addressed the behavior of audi-mTTpnwinore than one intensification pool is used.
The target values used as stopping criterion are the sanietetbjin Table 2. Table 3 displays, for each instance,
the average times in seconds over five runs of audi-mTTp usiegor two intensification pools. It also shows the
reduction in percent obtained with the use of two intendificepools.

These results show that audi-mTTp benefits from the use oaiddiional intensification pool, since the load of
the IP manager processes is divided by two and the diverkibhesolutions in the intensification pools increase. The
average improvement amounts to a reduction of 19% in themgrirmes when two intensification pools are used.

The fourth experiment compares the performance of RARand audi-mTTp in two dierent platforms. Results
in a LAN environment refer to experiments performed on allotsster, formed exclusively by machines of site S2.
Times on a WAN environment were obtained from runs on mashgpgead over two clusters, one in site S1 and
the other in S2: the PARAP master process and the audi-mTTp CP manager processexeaute of the sites,
while the other processes execute in the other site. Thiatgin reflects the extreme case, in which communication
between the two sites achieves its maximum. This experinmeotved only the five mTTP instances with longer
running times (circ10, circ16, circ18, nl16, and br24). Asdre, the algorithms stop whenever they find a solution
with cost less than or equal to the target displayed in TablglZimes in Table 4 are reported in seconds and have
been averaged over five runs on ten machines for each instaineeexecution times of PARAP and audi-mTTp
(using two intensification pools) on the LAN environment eextracted from Tables 2 and 3, respectively.

The advantage of the proposed distributed and hierarchicategy is clear even for LAN environments which
favor the master-worker approach. The fourth and sevetitimets in Table 4 display the deterioration in the execution

11

Table 3: Average times in seconds over five runs of audi-mTTpingnon ten machines with one and two intensification pools.

Instance One Pool Two Pools Reduction (%)

circ8 1.28 0.92 28
circ10 297.54 252.26 15
circl2 2.57 1.28 50
circl4 2.53 1.81 28
circl6 575.66 515.86 10
circl8 3,570.78 3,482.06 2
circ20 27.49 24.31 12
ni8 1.86 0.98 47
ni10 43.19 41.80 3
ni12 3.69 3.36 9
ni14 4.75 2.78 41
ni16 2,705.62 2,685.08 1
br24 1,154.02 1,129.62 2
Average 19

Table 4: Average times in seconds over five runs of MR-and audi-mTTp on LAN and WAN environments with ten machines.

PAR-MP (seconds) audi-mTTp (seconds) aﬁéﬁr#ll'q'p

Instance LAN WAN deg.(%) LAN WAN deg.(%)|LAN WAN
circ10 629.43 747.52 18.76 252.26 257.95 2.262.50 2.90
circl6 | 3,744.72 4,537.74 2118 51586 521.49 1.097.26 8.70
circl8 | 6,703.00 7,532.03 12.373,482.06 3,516.47 0.991.93 214
ni16 3,894.20 4,500.76 15.582,685.08 2,723.68 1.441.45 1.65
br24 4,905.63 5,106.51 4.091,129.62 1,190.35 5.381.34 4.29
Averages 14.04 2.01 350 3.94

time on the WAN environment with respect to the LAN enviromtj&lue to the increase in inter-site communication.
They show that the deterioration in the running times is msitialler in the case of audi-mTTp, which is able to
keep most communications locally even if the machines amaspover multiple sites, thanks to the use of the local
intensification pools. The running times of PARP deteriorate on average by 14.40% in the WAN environment,
while audi-mTTp maintains almost the same performance aitlaverage degradation of only 2.01%. The average
speedup of audi-mTTp over PARP is also larger for the WAN environment, showing once mosg this more
appropriate to grids.

To further evaluate and compare the behavior of the two lghiadplementations, theitime-to-target solution
value plots [3, 48] for the measured running times were also usedus approach is based on plots showing the
empirical run time distributions. To plot the running timistdbution of an algorithm, we choose a problem instance
and set a target value. Next, this algorithm is execdieines and its running time to find the first solution as least as
good as the target value is recorded. For each algorithmssara@ted with theth sorted running timg a probability
pi= (- %)/N and plot the pointg = (t;, p;), fori = 1,..., N. Therefore, for each implementation and for each point
z = (t, pi), withi = 1,..., N, p; denotes the probability that this implementation will findaution at least as good
as the target value in time less than or equaj.tn other words, run time distributions or time-to-targkidtp display
on the ordinate axis the probability that an algorithm wiltfia solution at least as good as a given target value within
a given running time, shown on the abscissa axis. Timergetglots were first used by Feo et al. [20]. Run time
distributions have been advocated also by Hoos aiitzl6t[33, 34] as a way to characterize the running times of
stochastic algorithms for combinatorial optimization.

12

Figure 4 displays the running time distribution (or the titnetarget plot) for instance circ10, obtained from 100
independent runs of PARMP and audi-mTTp implementations on LAN and WAN environmeritke target value
used as the stopping criterion was 274.

PAR-MP in LAN environment —+— f
PAR-MP in WAN environment i
09 I audi-mTTp in LAN environment —*— f
audi-mTTp in WAN environment —&— f
0.8 gf
F
0.7
0.6
2
Z
8 05
o
S
0.4
0.3
0.2
0.1
0
1 1000 10000

time to target value (seconds)

Figure 4: Empirical running time distributions of PARP and audi-mTTp on LAN and WAN environments on ten machines.

The curves corresponding to audi-mTTp running in LAN and W&iNironments in Figure 4 almost overlap, once
again showing that there is almost no degradation when the éAvironment is replaced by a WAN environment.

The next experiment investigates the scalability of tha-ailiTp implementation with respect to the number of
intensification pools. The experiment was performed on 66hinas of the same Grid Sinergia. Table 5 shows, for
each instance, the average time in seconds over ten runsRMHRA and audi-mTTp implementations. The third
column in this table shows the running times taken by P4R-to reach the stopping criterion. The next three
columns show the running times of audi-mTTp when three, five] seven intensification pools, followed by the
speedups observed for audi-mTTp with respect to BAR-

Table 5: Average times in seconds over ten runs of MR-and audi-mTTp on 60 machines with three, five, and seven ifitati®n pools .

audi-mTTp —d‘—aEAfrjn'\{I'fr b
Instance| PAR-MP 3 pools 5 pools 7 pools 3 pools 5pools 7 pools
circ10 72.11 36.84 31.02 32,57 1.96 2.32 2.21
circlé 980.66 345.03 319.22 32154 284 3.07 3.05
circl8 5,647.42| 1,822.45 1,783.69 1,801.76 3.10 3.17 3.13
nl16 2,759.23| 1,975.99 1,67851 1,708.97 1.40 1.64 1.61
br24 1,244.28| 493.82 374.01 390.68 2.52 3.33 3.18

Average 2.36 271 2.64

The results in this table show that for 60 machines, all etxe@cuimes of audi-mTTp are shorter than for PAR-
MP. audi-mTTp obtained the best results with five intensificapools, reducing the execution times obtained with
PAR-MP on the average by a factor of 2.71. However, these ressltsshlow that the parallel application seems to
become saturated when seven intensification pools arefiggecThis can also be viewed in the time-to-target plots
displayed in Figure 5 for instance circ10 with the targetiesdet at 274, in which we show the run time distributions

13

of PAR-MP and audi-mTTp with three, five, seven, and nine IP managdés best running times correspond to the
leftmost curve, which is that of audi-mTTp running with fiveensification pools.

1 T

T
PAR-MP —+—
audi-mTTp with 3 intensification pools
09 I audi-mTTp with 5 intensification pools —*—
audi-mTTp with 7 intensification pools —&—
audi-mTTp with 9 intensification pools

0.8

0.7

0.6

0.5

probability

0.4

0.3

0.2

0.1

0 et
0.1 1

1000

time to target value (seconds)

Figure 5: Empirical running time distributions of PARP and audi-mTTp on 60 machines with three, five, seven, and miersification pools.

The last experiment focus on the overall quality of the sohg obtained by audi-mTTp for the National League
instances. Table 6 shows, for eacln mstance, the best known solution value before [5], fromaltthe results
presented in this section have been extracted, followedhéybest solution value found by the sequential heuristic
GRILS-mTTP and by the audi-mTTp parallel implementation on ten machfrnam site S2.

Table 6: Best solutions for National League instances:ltefar audi-mTTp on ten machines.

Instance Previous best Sequential audi-mTTp

ni16 248818 251289 249806
ni18 299903 299903 2990112
nl20 359748 359748 359748
ni22 418086 418086 418022
nl24 467135 467135 465491
ni26 554670 554670 548643
ni28 618801 618801 609788
ni30 740458 740458 739697
ni32 924559 924559 914620

The audi-mTTp parallel implementation improved the besivkm solutions for seven out of the nine National
League instances (results highlighted in bold), and makthe best known solution in the literature [55] for nl20.
The longest running time over all National League instanezs 10.2 hours (nfl24), while the shortest was 3.01 hours
for nfl18.

4.2. Tests with audi-DCMST
Three groups of instances withfiirent characteristics were used to evaluate audi-DCMSJuist consists of
43 instances used in [45], of which 15 are sparse graphs Witlo B0 vertices and 28 are complete graphs with 10
14

to 25 vertices. The diameters of the instances in this graup from 4 to 10. Optimal solution are known for all
instances in this group [39].

Group 2 is composed of 12 sparse graph instances used in3B&7af them have random costs, while the other
six were generated in the Euclidean plane. Instances ingytbigp have diameter values equal to 5, 7, and 9. Optimal
solutions are also known for all instances in this group [39]

Group 3 is formed by 30 complete graph instances obtained fine OR-Library [9], originally proposed for the
Euclidean Steiner Tree problem. These instances are fdognpdints in the unit square, with edge costs equal to the
Euclidean distances between their extremities. We coneiulg the first five instances of each size (50, 70, 100, 250,
500 and 1,000 vertices), since these are the hardest iestanc

The first experiment addresses the comparison of the sotufiaund by the sequential algorithm with those
obtained by the audi-DCMST implementation running on terhitges of site S2. Both algorithms received exactly
the same execution time, defined for each instance as thagevennning time of 500 iterations of the sequential
heuristic. Algorithm audi-DCMST achieved the optimal s@as for all instances of Group 1, outperforming the
sequential version that was not able to find the optimal sniuior one instance with 60 vertices and 150 edges.
The distributed and hierarchical implementation founddpémal solution of this instance in only 35.96 seconds.
Figures 6 and 7 illustrate the solutions found by the sedaleantd parallel implementations, respectively.

AN/ RN~
X W

Figure 6: Solution found by the sequential heuristic, witistc Figure 7: Optimal solution found by the audi-DCMST parallel
equal to 983 (Group 1 instance with 60 vertices and 150 edges) implementation, with cost equal to 968 (same Group 1 instance
with 60 vertices and 150 edges).

Results for Group 2 instances are shown in Table 7, whérand|E| denote the number of vertices and edges,
respectively, whilgD| represents the maximum diameter. Optimal values are givétmei fourth column. The time
limit given to both algorithms is given in the fifth column. Feach instance, the next pair of columns show the
cost of the best solution and the average time in secondsddt faver five runs of the sequential heuristic. The last
two columns give the cost of the best solution and the avetiageto find it over five runs of audi-DCMST. Each
execution of the distributed heuristic runs for the sametiimit as the sequential one.

The sequential heuristic did not reach the optimal solufdsriour out of the 12 instances in Group 2. Algorithm
audi-DCMST performed better than the sequential heuriftiding two additional optimal solutions. For the two
instances that audi-DCMST was not able to find their optirohltions, the best solutions values have not been worse
by more than 0.5% of the optimal. The distributed and hidviaat implementation audi-DCMST was always faster
than the sequential heuristic to find the best solution.

15

Table 7: Solutions found by the sequential and audi-DCMSiltém machines) algorithms for Group 2 instances.

Sequential audi-DCMST
VI | |E|l | ID|] | Optimal | Time limit (s) | Best Avg. time to best (s) Best Avg. time to best (s)
5 612 10 612 8.34| 612 3.58
7 527 10 527 8.68| 527 4.02
9 495 10 495 9.04| 495 4.39
40 | 400| 5 253 10 253 8.59| 253 3.88
7 171 10 171 9.73| 171 6.04
9 154 10 154 9.17| 154 5.67
5 965 50 965 39.33| 965 4.80
7 789 50 796 43.18| 793 17.22
9 738 50 741 41.77| 738 18.07
60 | 600 | 5 256 50 257 36.54| 257 5.13
7 150 50 152 48.07| 150 4.60
9 124 50 124 42.57| 124 8.94

Table 8 displays the results obtained for the 30 instanc€saup 3, whergV| and|E| denote the number of ver-
tices and edges, respectively, whilg represents the maximum diameter. Since the optimal valutrese instances
are unknown, the fourth column in this table shows the ctiyrérest known solution values in the literature at the
time of writing [39]. The time limit given to both algorithmis given in the fifth column. For each instance, the
next pair of columns show the cost of the best solution andatleeage time in seconds to find it over five runs of
the sequential heuristic. The last two columns give the ab#te best solution and the average time to find it over
five runs of audi-DCMST. As before, each execution of therilisted heuristic runs for the same time limit as the
sequential one. The distributed and hierarchical audi-IBTNmplementation improved the solutions found by the
sequential heuristic for all Group 3 instances with morenth@0 vertices and was always faster than the sequential
heuristic to find the best solution.

To further investigate the impact of the time limit given tetdistributed and hierarchical implementation, we
extended the time limit given to audi-DCMST in the previoype&riment to 1,000 (resp. 25,000) seconds to all Group
3 instances with up to (resp. more than) 70 vertices. Theféitstcolumns of Table 9 give the same information as
in the previous table. The last two columns give the cost eftbst solution and the average time to find it over five
runs of audi-DCMST. For six instances in Group 3, the audM3ET implementation was able to improve the best
known results in the literature (results highlighted indjolFor all instances with more than 50 vertices, the inaeas
in the time limit lead to better solutions.

The last experiment investigates the scalability of thé&ithsted and hierarchical implementation audi-DCMST in
a heterogeneous and non dedicated environment. Table %3 she results for six instances of Group 3, one for each
size of the vertex set: 70, 100, 250, 500, and 1000 verticase&ch instance, this table reports the number of vertices
[V|, the number of edgeE|, the value of the maximum diamet&, and the target value used as the stopping criterion.
The last three columns display the average times (in seyondsfive executions of the audi-DCMST implementation
running on 15, 30, and 60 machines. The algorithm scale®ppptely, leading to decreasing execution times when
the number of machines increase. The proposed distribugtiiararchical strategy, without a centralized processor
controlling all others, is veryféicient and avoids communication bottlenecks.

5. Conclusions

Computational grids aggregate significant numbers of geigcally distributed resources to providefaient
power for computationally intensive applications. Howewhle fact that these resources are distributed, typically
heterogeneous and non-dedicated, makes writing paraiteegabled applications much more challenging.

This paper proposed a new grid-enabled strategy for thesimghtation of cooperative metaheuristics on compu-
tational grids. This strategy is based on hierarchicalfyaaized distributed pools of elite solutions and managed by

16

the EasyGrid AMS middleware. The hierarchically distrémibrganization of pools keeps the majority of communi-
cations local, with relatively little tiic between sites, but without eliminating the possibilityacolution provider
obtaining information generated by another one at a dissite.

The grid-enabled distributed and hierarchical strategy vadidated by applications in the solution of two chal-
lenging combinatorial optimization problems: the mirmteaveling tournament problem and the diameter-conscain
minimum spanning tree, for both of which state-of-the-aguential implementations of metaheuristics were avigilab
and at hand for performance evaluation studies.

Extensive computational experiments on benchmark instaon€ both problems have shown that the proposed
grid-enabled approach was able to find better solutions iohnsmaller running times than the original sequential
implementations. We also observed that grid-enabledilolisd and hierarchical algorithm scales appropriately,
leading to decreasing execution times when the number ofimes increase. This new strategy, without a centralized
process controlling all others, is verffieient and avoids communication bottlenecks. The numergsallts have
shown that even with state-of-the-art networks, companatiith the conventional master-worker model does not
efficiently utilize grid resources. Even small communicatimerbeads can impact performance, especially as the
number of processes increases.

The new strategy performs much better because it addrdssesimportant issues. First, it avoids performance
degradation caused by high communication overheads byeding frequent communications between the pools
and its solution providers on local resources. Secondintiehtes the bottleneck at a centralized cooperation pool
and improves scalability by distributing this function amgamultiple intensification pools. Third, the computatibna
results also highlighted the benefits of an alternative ete@c model for MPI programs. With the aid of an application
management system, the dynamic creation of processes enthiiagement of messages can be achie¥ieicatly
and transparently, without the metaheuristic designeinigao be preoccupied with the implementation of services
such as scheduling, load balancing, and fault tolerance.sblution provider processes are executed independently
in parallel. They are the only problem specific code that sgedbe changed in order to use the proposed strategy to
address dierent combinatorial optimization problems.

References

[1] N.R. Achuthan, L.Caccetta, P. A. Caccetta, and J. F. @eeComputational methods for the diameter restricted minimuighwepanning
tree problem Australasian Journal of Combinatoric$0:51-71, 1994.

[2] K. Aida, W. Natsume, and Y. Futakata. Distributed compgtimith hierarchical master-worker paradigm for parallelrimta and bound
algorithm. InProceedings of the 3rd IEEECM International Symposium on Cluster Computing and the @rages 156-164, Washington,
2003. IEEE Computer Society.

[3] R.M. Aiex, M.G.C. Resende, and C.C. Ribeiro. TTTPLOTSpé¥l program to create time-to-target ploBptimization Letters1:355-366,
2007.

[4] E. Alba, editor.Parallel Metaheuristics: A new class of algorithma/iley, 2005.

[5] A.P.F. Ardljo. Paralelizagao Autondmica de Metaheuristicas em Antbede Grid PhD thesis, Catholic University of Rio de Janeiro, Rio
de Janeiro, 2008. In Portuguese.

[6] A.P.F. Araljo, M.C.S. Boeres, V.E.F. Rebello, C.C. Ribeiro, and Sutier Towards grid implementations of metaheuristics for tamah-
binatorial optimization problems. IRroceedings of the 17th International Symposium on Comprghitecture and High Performance
Computing pages 19-26, Rio de Janeiro, 2005.

[7]1 A.P.F. Ardijo, M.C.S. Boeres, V.E.F. Rebello, C.C. Ribeiro, and Sutisr Exploring grid implementations of parallel cooperatineta-
heuristics: A case study for the mirrored traveling tournanpeoblem. In K.F. Doerner, M. Gendreau, P. Greistorfer, Wj&u, R.F. Hartl,
and M. Reimann, editord/etaheuristics: Progress in Complex Systems Optimizatiages 297—-322. Springer, 2007.

[8] K. Bala, K. Petropoulos, and T.E. Stern. Multicastingaitinear lightwave network. IRroceedings of the IEEE INFOCOM'93 Conference
on Computer Communicationgolume 3, pages 1350-1358, San Francisco, 1993.

[9] J.E. Beasley. Welcome to OR-Library. online referencetat;/people.brunel.ac.yikastjjlyjelyinfo.html, last visited on June 30, 2011.

[10] F. Berman, R. Wolski, H. Casanova, W. Cirne, H. Dail, MeFaan, S. M. Figueira, J. Hayes, G. Obertelli, J. M. Schop&l@&o, S. Smallen,
N.T. Spring, A. Su, and D. Zagorodnov. Adaptive computing le& grid using AppLeS.IEEE Transactions on Parallel and Distributed
Systemsl14:369-382, 2003.

[11] C. Boeres and V.E.F. Rebello. EasyGrid: Towards a fraankvor the automatic grid enabling of legacy MPI applicaoBoncurrency and
Computation Practice and Experiender:425-432, 2004.

[12] A.Bookstein and S.T. Klein. Compression of correlat@ddztors. Information Systemd4.6:110-118, 2001.

[13] R.Buyya and C. Szyperski, editorSluster ComputingNova Science Publishers, Commack, 2001.

[14] S. Cahon, N. Melab, and E.-G. Talbi. Paradiseo: A frantévfor the reusable design od parallel and distributed metidtécs. Journal of
Heuristics 10:353-376, 2004.

[15] S. Cahon, N. Melab, and E.-G. Talbi. An enabling framewfor parallel optimization on the computational grid. Pnoceedings of the 5th
IEEE Int. Symp. on Cluster Computing and the Gridlume 2, pages 702—709, Washington, 2005.

17

[16] W. Chrabakh and R. Wolski. GridSAT: A system for solvisafisfiability problems using a computational gitérallel Computing32:660—
687, 2006.

[17] V.-D. Cung, S.L. Martins, C.C. Ribeiro, and C. RoucdirBtrategies for the parallel implementation of metahewsstin C.C. Ribeiro and
P. Hansen, editorg&ssays and Surveys in Metaheuristigages 263-308. Kluwer, 2002.

[18] N.Deo and A. Abdalla. Computing a diameter-constraineaimmiim spanning tree in paralldlecture Notes in Computer Sciend@67:17—
31, 2000.

[19] K. Easton, G.L. Nemhauser, and M.A. Trick. The travelingrnament problem: Description and benchmatlecture Notes in Computer
Science2239:580-584, 2001.

[20] T.A. Feo, M.G.C. Resende, and S.H. Smith. A greedy randethadaptive search procedure for maximum independeniQysdrations
Research42:860-878, 1994.

[21] P.Festaand M.G.C. Resende. An annotated bibliograpBRASP - Part |: Algorithmsinternational Transactions in Operational Research
16:1-14, 2009.

[22] P. Festa and M.G.C. Resende. An annotated bibliograplyRASP - Part II: Applications.International Transactions in Operational
Research16:131-172, 2009.

[23] I. Foster.Designing and Building Parallel Programg\ddison-Wesley, 1995.

[24] I. Foster and C. Kesselman. Globus: A metacomputing itriragire toolkit. The International Journal of Supercomputer Applications a
High Performance Computind1:115-128, 1997.

[25] 1. Foster and C. Kesselman, editof$ie GRID: Blueprint for a New Computing Infrastructund edition. Morgan Kaufmann, 2004.

[26] M.R. Garey and D.S. Johnso@omputers and intractability: A guide to the theory of NRvgietenessW. H. Freeman, New York, 1979.

[27] L. Gouveia and T. L. Magnanti. Network flow models for dgshg diameter-constrained minimum-spanning and Steines.tiéetworks
41:159-173, 2003.

[28] L. Gouveia, T. L. Magnanti, and C. Requejo. A 2-path aamh for odd-diameter-constrained minimum spanning andestazes Networks
44:254-265, 2004.

[29] J. Goux, S. Kulkarni, J. Linderoth, and M. Yoder. Mastarker: An enabling framework for applications on the conapional grid.Cluster
Computing 4:63-70, 2001.

[30] M. Gruber and G.R. Raidl. A new 0-1 ILP approach for tharxed diameter minimum spanning tree problem. In P. Hansen, &évibvic,
J.AM. Prez, B.M.Batista, and J.M. MorenoVega, editdrise 2nd International Network Optimization Conferengages 178-185. ACM
Press, Spa, 2005.

[31] M. Gruber and G.R. Raidl. Variable neighborhood sedoctthe bounded diameter minimum spanning tree probleml18th Mini Euro
Conference on Variable Neighborhood Seargages 1-11, Tenerife, 2005.

[32] M. Hardt, K. Seymour, J. Dongarra, M. Zapf, and N.V. Ruitateractive grid-access using gridsolve and gigglemputing and Informatics
27:233-248, 2008.

[33] H.H.Hoos and T. Sttzle. Evaluation of Las Vegas algorithms - Pitfalls and reieednProceedings of the 14th Conference on Uncertainty
in Artificial Intelligence pages 238-245, 1998.

[34] H.H. Hoos and T. Sitzle. On the empirical evaluation of Las Vegas algorithms sitRm paper. Technical report, Computer Science
Department, University of British Columbia, 1998.

[35] R.Huang, S. Tong, W. Sheng, and Z. Fan. A problem soleimgronment for combinatorial optimization based on paratleta-heuristics.
In Proceedings of the 7th IEEE International Symposium on Qaatipnal Intelligence in Robotics and Automatjgrages 432—-437, Jack-
sonville, 2007. IEEE.

[36] G. Kendall, S. Knust, C.C. Ribeiro, and S. Urrutia. Saeng in sports: An annotated bibliograph@omputers and Operations Research
37:1-19, 2010.

[37] LAM/MPI parallel computing. Online documentlatitp: //www.lam-mpi.org/, last visited on June 30, 2011.

[38] H.R. Lourenco, O. Martins, and T. Stutzle. Iterateddbsearch. In F. Glover and G. Kochenberger, editdeydbook of Metaheuristics
pages 321-353. Kluwer, 2002.

[39] A.P. Lucena, C.C. Ribeiro, and A.C. Santos. A hybridtetic for the diameter constrained minimum spanning tree lprab Journal of
Global Optimization46:363—-381, 2010.

[40] S.L.Martins, C.C. Ribeiro, and |. Rosseti. Applicatgoand parallel implementations of metaheuristics in netweskgh and routing.ecture
Notes in Computer Sciencg285:205-213, 2004.

[41] S.L. Martins, C.C. Ribeiro, and |. Rosseti. Applicatiof parallel metaheuristics to optimization problems in tefemunications and
bioinformatics. In E.-G. Talbi, editoRarallel Combinatorial Optimizationpages 301-325. Wiley, 2006.

[42] A.P. Nascimento, A.C. Sena, J.A. da Silva, D.Q.C. VignBaBoeres, and V.E.F. Rebello. Managing the execution roelacale MPI
applications on computational grids. Broceedings of the 17th International Symposium on Computhitecture and High Performance
Computing pages 69-76, Rio de Janeiro, 2005. IEEE.

[43] M. Parashar and S. Hariri. Autonomic computing: An ovewi3566 pages 257-269, 2005.

[44] G.R. Raidl and B.A. Julstrom. Greedy heuristics and aslwgionary algorithm for the bounded-diameter minimum spagrtiee problem.
In ACM Symposium on Applied Computipages 747—-752, Melbourne, 2003.

[45] K. Raymond. A tree-based algorithm for distributed mutselusion. ACM Transactions on Computera61-77, 1989.

[46] V.E.F. Rebello. Grid Sinergia. online reference apfjteasygrid.ic.&.br/, last visited on June 30, 2011.

[47] M.G.C. Resende and C.C. Ribeiro. Greedy randomizedtagagearch procedures. In F. Glover and G. KochenbergigoredHandbook of
Metaheuristicspages 219-249. Kluwer, 2003.

[48] C.C. Ribeiro, I. Rosseti, and R. Vallejos. Exploitingnrtime distributions to compare sequential and parallelhstsiic local search algo-
rithms. Journal of Global Optimization2011. accepted for publication.

[49] C.C. Ribeiro and S. Urrutia. Heuristics for the mirrotealeling tournament problenturopean Journal of Operational Researd79:775—
787, 2007.

[50] A.C. Santos, A. Lucena, and C.C. Ribeiro. Solving disanebnstrained minimum spanning tree problem in dense gramsure Notes in

18

(51]

(52]

(53]
[54]
[55]
(56]

Computer Scien¢8059:458-467, 2004.

A.C. Sena, A.P. Nascimento, C. Boeres, and V.E.F. RebdHlasygrid enabling of iterative tightly-coupled paraMPI applications. In
Proceedings of IEEE International Symposium on Paralledl &nistributed Processing with Applicationpages 199-206, Los Alamitos,
2008. IEEE Computer Society.

A.C. Sena, A.P. Nascimento, J. Silva, D. Vianna, C. Bseand V.E.F. Rebello. On the advantages of an alternatideMfP| execution
model. InProceedings of the 7th IEEE International Symposium ont€fuSomputing and the Gricpages 575-582, Rio de Janeiro, 2007.
IEEE Computer Society.

J.A. Silva and V. E. F. Rebello. Low cost self-healingMi®l applications.Lecture Notes in Computer Sciend@57:144-152, 2007.

E.-G. Talbi, editor.Parallel Combinatorial OptimizationWiley, 2006.

M.A. Trick. Challenge traveling tournament instanc@siline reference at httfimat.gsia.cmu.ediOURN), last visited on June 30, 2011.
R.V. van Nieuwpoort, T. Kielmann, and H.E. Balffi€ient load balancing for wide-area divide-and-conquetieafions. InProceedings of
the 8th ACM SIGPLAN Symposium on Principles and Practicaddllel Programming pages 34—43, Snowbird, 2001.

19

Table 8: Solutions found by the sequential and audi-DCMSiltém machines) algorithms for Group 3 instances.

Sequential audi-DCMST
V]| |E]| D] S* Time limit (s) | Best Avg. time to best (s) Best Avg. time to best (s)
7.599 10| 7.599 8.34| 7.599 2.10
7.609 10| 7.609 9.47| 7.609 3.10
50 1225 5 7.240 10| 7.240 8.21| 7.240 1.72
6.585 10| 6.585 7.18| 6.585 1.50
7.248 10| 7.248 7.65| 7.248 1.31
7.228 50 | 7.228 43.28| 7.228 21.93
7.080 50 | 7.080 42.34| 7.080 16.27
70 2415 7 6.983 50 | 6.983 47.67| 6.983 18.23
7.499 50 | 7.499 48.93| 7.499 32.31
7.245 50 | 7.245 43.05| 7.245 18.04
7.759 200 | 7.835 195.88 7.810 104.03
7.849 200 | 7.943 197.62 7.881 173.08
100 | 4950 10 | 7.904 200 | 7.976 188.60, 7.930 126.89
7.977 200 | 8.044 195.14| 8.032 157.84
8.164 200 | 8.206 193.11] 8.180 131.02
12.231 1,500| 12.451 1,274.18 12.412 973.34
12.016 1,500| 12.307 1,237.28 12.266 847.37
250 | 31125 | 15 | 12.004 1,500| 12.132 1,393.55 12.116 1,036.99
12.462 1,500| 12.700 1,432.02 12.606 1,102.66
12.233 1,500 | 12.444 1,398.76 12.438 1,087.94
16.778 3,000 17.212 2,887.82 16.989 2,004.01
16.626 3,000 17.063 2,973.13 16.810 2,131.29
500 | 124750| 20 | 16.792 3,000 17.119 2,981.76 16.953 2,200.05
16.796 3,000 | 17.250 2,853.44 17.150 1,987.32
16.421 3,000 | 16.941 2,799.87 16.860 1,437.81
23.434 4,500 | 24.660 4,367.32 24.509 2,733.40
23.464 4,500 | 24.460 4,411.37 24.286 3,021.23
1000 | 499500| 25 | 23.635 4,500 | 24.317 4,303.19 24.134 2,457.89
23.787 4,500 | 24.609 4,401.15 24.270 3,000.43
23.837 4,500 | 24.268 4,413.90 24.070 3,423.11

20

Table 9: Solutions found by audi-DCMST (on ten machines) faup 3 instances on longer time limits.

audi-DCMST
V| |E| D] S* Best Avg. time to best (s)
7.599 7.599 2.10
7.609 7.609 3.10
50 1225 5 7.240 7.240 1.72
6.585 6.585 1.50
7.248 7.248 1.31
7.228 7.228 21.93
7.080 7.080 16.27
70 2415 7 6.983 6.981 23.14
7.499 7.486 305.67
7.245 7.238 68.89
7.759 7.757 139.11
7.849 7.849 23,965.71
100 | 4950 10 | 7.904 7.926 504.04
7.977 7.973 8,704.78
8.164 8.176 336.92
12.231| 12.283 11,356.87
12.016| 12.123 8,978.35
250 | 31125 | 15 | 12.004| 11.999 6,006.41
12.462| 12.472 11,373.14
12.233| 12.272 9,261.90
16.778| 16.899 3,004.49
16.626 | 16.810 4,300.82
500 | 124750| 20 | 16.792| 16.907 11,572.04
16.796 | 16.987 7,322.45
16.421| 16.555 12,431.17
23.434| 23.488 6,103.87
23.464 | 23.575 6,117.43
1000 | 499500| 25 | 23.635| 23.663 5,782.18
23.787| 23.802 4,271.55
23.837| 23.887 5,003.86

Table 10: Scalability results for algorithm audi-DCMST ds 80, and 60 machines from Grid Sinergia.

Time (s)
V| |E| ID| | Target | 15 machines 30 machines 60 machines
70 2415 7 6.983 9.34 8.89 7.16
100 | 4950 | 10 | 7.981 49.23 35.11 24.08

250 | 31125 | 15| 12.450 3,723.27 2,344.49 1,317.78
500 | 124750| 20 | 17.063 2,627.14 2,496.45 2,006.08
1000 | 499500| 25 | 24.609 3,837.79 3,401.71 2,916.25

21

