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Abstract. Path-relinking is major enhancement to heuristic search meth-

ods for solving combinatorial optimization problems, leading to significant
improvements in both solution quality and running times. We review its fun-
damentals and implementation strategies, as well as advanced hybridizations

with more elaborate metaheuristic schemes such as genetic algorithms and
scatter search. Numerical examples are discussed and algorithms compared
based on their run time distributions.

1. Introduction and motivation

We consider in this paper a combinatorial optimization problem (COP), defined
by a finite ground set E = {1, . . . , n}, a set of feasible solutions F ⊆ 2E , and
an objective function f : 2E → R. In its minimization version, we seek a global
optimum x∗ ∈ F such that f(x∗) ≤ f(x), ∀x ∈ F , with each solution being
represented by its characteristic vector x ∈ {0, 1}|E|. The ground set E, the cost
function f , and the set of feasible solutions F are defined for each specific problem.

In the case of the classical traveling salesman problem, the ground set E is that of
all edges connecting the cities to be visited, f(x) is the sum of the costs of all edges
in a solution x, and F is formed by all edge subsets that determine a Hamiltonian
cycle.

The Ising model has been a subject of great interest in Physics. In spite of its
simplicity, it retains many of the characteristics of real systems. As the temperature
decreases, the system moves to a ground state of minimum energy. Finding a
ground state amounts to solve an equivalent max-cut combinatorial optimization
problem (Barahona, 1994). Given an undirected graph G = (V,E), where V =
{1, . . . , n} is the set of vertices and E is the set of edges, and weights wij associated
with the edges (i, j) ∈ E, the max-cut problem consists in finding a subset of
vertices S such that the weight of the cut (S, S̄) given by

w(S, S̄) =
∑

i∈S,j∈S̄

wij

is maximized. Applications are found in VLSI design and statistical physics, see
e.g. Barahona et al. (1988), Chang and Du (1987), Chen et al. (1983), and Pinter
(1984) among others. The max-cut problem can be formulated as the following
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integer quadratic program:

max
1

2

∑

1≤i<j≤n

wij(1− yiyj)

subject to

yi ∈ {−1, 1} ∀ i ∈ V.

Each set S = {i ∈ V : yi = 1} induces a cut (S, S̄) with weight

w(S, S̄) =
1

2

∑

1≤i<j≤n

wij(1− yiyj).

Since the decision version of the max-cut problem was proved to be NP-complete by
Karp (1972), it is very unlikely that exact and efficient polynomial-time algorithms
exist for handling large grids in magnetic fields.

The algorithms considered in this paper play a major role in finding quasi-optimal
solutions for such hard combinatorial optimization problems, as shown in Festa et al.
(2006) for the max-cut problem.

A neighborhood of a solution x ∈ F is any set N(x) ⊆ F . Each solution y ∈ N(x)
is reachable from x by an operation called move. Normally, two neighbor solutions
x and y ∈ N(x) differ by only a few elements.

We define an undirected graph G = (F,M) associated with the search space of
COP, where the nodes in F correspond to feasible solutions and the edges in M
correspond to moves in the neighborhood structure, i.e. (x, y) ∈ M if and only if
x ∈ F , y ∈ F , x ∈ N(y), and y ∈ N(x).

A solution x′ is a local optimum with respect to a given neighborhood N if
f(x′) ≤ f(x), ∀x ∈ N(x′). Stochastic local search (SLS) algorithms are based on
the exploration of solution neighborhoods, searching for improving solutions until
a local optimum is found. Different high-level strategies can be implemented in
stochastic local search methods to avoid entrapment or premature convergence to
local minima which are not globally optimal solutions. These high-level strategies
are often referred to as metaheuristics, which are general procedures that coor-
dinate simple heuristics and rules to find good (often optimal) approximate so-
lutions to computationally difficult combinatorial optimization problems. Among
them, we find simulated annealing (Kirkpatrick et al., 1983), the cross-entropy
method (Rubinstein and Kroese, 2004), greedy randomized adaptive search pro-
cedures (GRASP) (Festa and Resende, 2009a;b), variable neighborhood search
(VNS) (Mladenović and Hansen, 1997; Hansen and Mladenović, 2002), genetic al-
gorithms (Holland, 1975), scatter search (Glover et al., 2003), and others. These
methods can be grouped in two major classes: trajectory-based or population-
based.

Trajectory-based stochastic local search algorithms start from a feasible solution
x0 corresponding to a node of the search space graph G = (F,M). At any iteration
k, they basically search for an improving solution xk+1 ∈ N(xk) in the neighbor-
hood of the current solution xk, such that f(xk+1) < f(xk). In the case of a first

improving strategy, any improving solution xk+1 ∈ N(xk) may be used. If a best

improving strategy is used, the improving solution xk+1 is the best in the neighbor-
hood, i..e f(xk+1) = min{f(x) : x ∈ N(xk)}. Each stochastic local search algorithm
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makes use of a distinct paradigm and offers different mechanisms to escape from
locally optimal solutions, going beyond the first local optimum found.

On the other hand, population-based metaheuristics are based on the computa-
tion of samples of the solutions (or nodes) of the search space graph. Starting from
an initial population X0 ⊆ F , they attempt to build a new population Xk+1 ⊆ F
at each iteration k, such that min{f(x) : x ∈ Xk+1} < min{f(x) : x ∈ Xk}.

Both trajectory-based stochastic local search algorithms and population-based
metaheuristics visit a subset of elite or reference solutions of COP formed by some
of its best local optima.

Good solutions for a combinatorial optimization problem often share a significant
portion of their attributes. Examples of such attributes include edges and nodes
of a graph, sequence positions in a schedule, subsets of a partition or a cover of an
item set, membership in a subset of potential locations, or basic variables in the
solutions of linear programming problems. Paths between a pair of nodes x and y
in the search space graph G = (F,M) traverse other solutions that share attributes
contained in x and y. The underlying assumption of path-relinking is that undiscov-
ered high-quality solutions can be found by exploring paths connecting previously
found high-quality elite solutions. To generate the desired paths, it is only neces-
sary to select moves that upon starting from an initiating solution x progressively
introduce attributes contributed by a guiding solution y. The construction of such
paths in the search space graph characteristically connects previous points in ways
not achieved in the previous search history (Glover, 1999), often leading to better
local optimal.

The remainder of this paper is organized as follows. In the next section, we in-
troduce the reader to run time distributions, which are of major importance in the
evaluation and comparison of stochastic local search algorithms. Next, we describe
the template of the basic path-relinking algorithm. We review its mechanics and
different strategies for generating paths to, from, or between elite solutions. Hy-
bridizations of path-relinking with different metaheuristics such as GRASP, VNS,
genetic algorithms, and scatter search are reviewed in the following. Illustrative nu-
merical results profiling the improvements obtained with the use of path-relinking
are also reported along the paper. Concluding remarks are drawn in the last section.

2. Run time distributions

Run time distributions or time-to-target plots display on the ordinate axis the
probability that an algorithm will find a solution at least as good as a given target
value within a given running time, shown on the abscissa axis. Time-to-target plots
were first used by Feo et al. (1994). Run time distributions have been advocated
by Hoos and Stützle (1998) as a way to characterize the running times of stochastic
algorithms for combinatorial optimization.

Aiex et al. (2007) described a Perl program to create time-to-target plots for
measured times that are assumed to fit a shifted exponential distribution, closely
following Aiex et al. (2002). Such plots are very useful in the comparison of different
algorithms or strategies for solving a given problem and have been widely used as
a tool for algorithm design and comparison.
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Figure 1. Run time distributions for algorithms A1 and A2.

We suppose that two stochastic local search algorithms A1 and A2 are available
for solving the same problem. To plot and compare the empirical run time distribu-
tions of these two stochastic local search algorithms, we fix a target solution value
and run each algorithm N times, recording the running time when a solution with
cost at least as good as the target value is found. For each algorithm, we associate
with the i-th largest running time ti a probability pi = (i − 1

2
)/N and plot the
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points zi = (ti, pi), for i = 1, . . . , N . Typically, we consider a sample of N = 200
runs of each algorithm to be evaluated.

To illustrate the use of run time distributions in the comparison of two sto-
chastic local search algorithms, we consider two algorithms A1 (a GRASP with
path-relinking heuristic) and A2 (a pure GRASP heuristic) for solving the same
test instance of some problem. Figure 1 depicts the run time distributions of each
algorithm, obtained after N = 500 runs with different seeds.
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Figure 2. Superimposed run time distributions of algorithms A1

and A2.

To further explore the comparison of the two algorithms, their run time distri-
butions are superimposed in Figure 2. Since the run time distribution of algorithm
A1 is far to the left of that of algorithm A2, we conclude that the former performs
much better than the latter, since A1 finds same quality solutions as A2 in much
smaller running times. However, in some situations the picture is not so clear and
the comparison of two algorithms by observing their run time distributions is not
evident. This appears, for instance, in the case of the comparison of a multistart
algorithm and a tabu search heuristic for the problem of routing and wavelength
assignment in optical networks (Ribeiro et al., 2009), as depicted in Figure 3.

Given the two stochastic local search algorithms A1 and A2 for the same problem,
we denote by X1 (resp. X2) the continuous random variable representing the time
needed by algorithm A1 (resp. A2) to find a solution for a problem instance under
consideration. To cope with the situation illustrated in Figure 3, Ribeiro et al.
(2009) developed a numerical tool to compute the probability Pr(X1 ≤ X2) that
the running time of algorithm A1 is smaller than or equal to that of A2. Using this
tool, we obtain Pr(X1 ≤ X2) = 0.943516 for the algorithms A1 (GRASP+biPR) and
A2 (GRASP) considered in Figure 2 and Pr(X1 ≤ X2) = 0.545619 for the case of
algorithms A1 (Multistart) and A2 (Tabu search) considered in Figure 3.
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Figure 3. Superimposed run time distributions of multistart and
tabu search for the Finland instance of the problem of routing and
wavelength assignment in optical networks (with the target set at
50).

3. Template and mechanics of path-relinking

Path-relinking was originally proposed by Glover (1996) as an intensification
strategy to explore trajectories connecting elite solutions obtained by tabu search
or scatter search (Glover, 2000; Glover and Laguna, 1997; Glover et al., 2000). In
the remainder of this section, we focus on path-relinking, including its template and
mechanics, implementation issues, randomization, the use of elite sets to hybridize
path-relinking with other heuristic methods, and evolutionary path-relinking.

We consider the undirected search space graph G = (F,M) associated with a
combinatorial optimization problem: (x, y) ∈ M if and only if x ∈ F , y ∈ F ,
x ∈ N(y), and y ∈ N(x). Path-relinking is usually carried out between two solutions
in F : one is the initial solution, while the other is the guiding solution. One or
more paths in the search space graph connecting these solutions are explored in
the search for better solutions. Local search may be applied to the best solution in
each of these paths, since there is no guarantee that this solution is locally optimal.

Let x ∈ F be a node on the path between an initial solution x and a guiding
solution g ∈ F . Not all solutions in the neighborhood N(x) are allowed to follow x
on the path from x to g. We restrict the choice to those solutions in N(x) that are
more similar to g than x is. We denote by Ng(x) this restricted neighborhood. This
is accomplished by selecting moves from x that introduce attributes contained in
the guiding solution g. Therefore, path-relinking may be viewed as a strategy that
seeks to incorporate attributes of high-quality solutions (i.e. the guiding solutions),
by favoring these attributes in the selected moves. After evaluating each potential
move, the most common strategy is to select the move resulting in the best-quality
restricted neighbor of x. The restricted neighbors of x are those that incorporate
an attribute of the guiding solution g that is not present in x.
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3.1. Basic implementation strategies for path-relinking. Several strategies
for path-relinking have been considered and combined in recent implementations.
These include forward, backward, back-and-forward, mixed, truncated, greedy ran-
domized adaptive, and evolutionary path-relinking. All these strategies involve
trade-offs between computation time and solution quality.

Suppose that path-relinking is applied to a minimization problem between solu-
tions x1 and x2 such that f(x1) ≤ f(x2), where f(·) denotes the objective function
to be minimized. In forward path-relinking, the initial and guiding solutions are set,
respectively, to x = x2 and g = x1. Conversely, in backward path-relinking, we set
x = x1 and g = x2. In back-and-forward path-relinking, backward path-relinking
is applied first, followed by forward path-relinking. Path-relinking explores the
neighborhood of the initial solution more thoroughly than the neighborhood of the
guiding solution because, as it moves along the path, the size of the restricted neigh-
borhood progressively decreases. Consequently, backward path-relinking tends to
do better than forward path-relinking. Back-and-forward path-relinking does at
least as well as either backward or forward path-relinking, but takes about twice
as long to compute since two paths are traversed. Computational experiments
in Resende and Ribeiro (2003b) and Ribeiro and Rosseti (2009) have shown that
backward path-relinking usually outperforms forward path-relinking, while back-
and-forward path-relinking finds solutions at least as good as forward or backward
path-relinking, but at the expense of longer run times. Figure 4 illustrates this be-
havior on the private virtual circuit routing problem (Resende and Ribeiro, 2003b).

In applying mixed path-relinking (Glover et al., 2004; Resende and Ribeiro,
2010; Ribeiro and Rosseti, 2009) between two feasible solutions x1 and x2, two
paths are started simultaneously: one at x1 leading to x2 and the other at x2

leading to x1. These two paths meet at some feasible solution, thus connect-
ing x1 and x2 with a single path. Figure 5 shows a template for a mixed path-
relinking algorithm between solutions x1 and x2 of a minimization problem. The
set ∆ = {j = 1, . . . , n : x1

j 6= x2
j} of positions in which x1 and x2 differ is computed

in line 2. In the case of combinatorial optimization problems whose solutions are
represented by 0-1 vectors, |∆| is the Hamming distance between x1 and x2. The
best solution, x∗, among x1 and x2 and its cost, f∗ = f(x∗), are determined in lines
3 and 4, respectively. The current path-relinking solution, x, is initialized to x1 in
line 5. The loop in lines 6 to 16 progressively determines the next solution in the
path connecting x1 and x2, until the entire path is traversed. For every position
ℓ ∈ ∆, we define x ⊕ ℓ to be the solution obtained from x by changing its ℓ-th
position by that of x2. Line 7 determines the component ℓ∗ of ∆ for which x ⊕ ℓ
results in the least-cost restricted neighbor. This component is removed from ∆
in line 8 and the current solution is updated in line 9 by changing the value of its
ℓ-th position. If the test in line 10 detects that the new solution x improves the
best solution x∗ in the path, then x∗ and its cost are updated in lines 11 and 12,
respectively. The roles of the starting and target solutions are swapped in lines 14
and 15 to implement the mixed path-relinking strategy and a new iteration starts.
If |∆| = 0, then a local search procedure is applied in line 17 to the best solution
in the path and the resulting locally optimal solution x∗ is returned in line 18.
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Figure 4. Time-to-target plots for pure GRASP and three vari-
ants of GRASP with path-relinking (forward, backward, and back
and forward) on an instance of the private virtual circuit rout-
ing problem in Resende and Ribeiro (2003b). The plot shows
that GRASP with backward path-relinking outperformed the other
path-relinking hybrids as well as the pure GRASP heuristic, which
was the slowest to find the target solution.

Like back-and-forward path-relinking, the mixed variant thoroughly explores
both neighborhoods Nx2(x1) and Nx1(x2). Furthermore, it is faster than back-
and-forward path-relinking and usually takes as long as the backward or forward
variants. Mixed path-relinking was suggested by Glover (1996) and was first im-
plemented and tested in the context of the 2-path network design problem (Re-
sende and Ribeiro, 2010), for which it was shown to outperform forward, back-
ward, and back and forward path-relinking. Figure 6 illustrates the comparison
of a pure GRASP heuristic with four variants combined with path-relinking and
applied to the 2-path network design problem: forward, backward, back and for-
ward, and mixed. The run-time distribution plots show that GRASP with mixed
path-relinking has the best run time profile among the variants compared.

One can expect to see most solutions produced by path-relinking to come from
subpaths close to either the initiating or guiding solutions. Resende et al. (2010b)
showed that this occurs, for example, in instances of the max-min diversity prob-
lem. In that experiment, a back and forward path-relinking scheme was tested.
It was shown experimentally (see Figure 7) that exploring the subpaths near the
extremities may produce solutions about as good as those found by exploring the
entire path, since there is a higher concentration of better solutions close to the
initial solutions explored by path-relinking. It is straightforward to adapt path-
relinking to explore only the neighborhoods close to the extremities. Truncated

path-relinking can be applied to either forward, backward, backward and forward,
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1. Algorithm Path-Relinking(x1, x2)
2. ∆← {j = 1, . . . , n : x1

j 6= x2
j};

3. x∗ ← argmin{f(x1), f(x2)};
4. f∗ ← min{f(x1), f(x2)};
5. x← x1;
6. while |∆| > 1 do

7. ℓ∗ ← argmin{f(x⊕ ℓ) : ℓ ∈ ∆};
8. ∆← ∆ \ {ℓ∗};
9. x← x⊕ ℓ∗;
10. if f(x) < f∗ then do;
11. x∗ ← x;
12. f∗ ← f(x);
13. end;
14. x1 ← x2;
15. x2 ← x2;
16. end;
17. Apply local search to improve best solution x∗;
18. return x∗;
19. end

Figure 5. Template of a mixed path-relinking algorithm for min-
imization problems.

or mixed path-relinking: instead of exploring the entire path, it just explores a frac-
tion of the path and, consequently, takes a fraction of the time to run. Truncated
path-relinking was also applied in Andrade and Resende (2007a).

3.2. Minimum distance required for path-relinking. We assume that we
want to connect two locally optimal solutions x1 and x2 with path-relinking. If
x1 and x2 differ by only one of their components, then the path directly connects
the two solutions and no solution, other than x1 and x2, is visited.

Since x1 and x2 are both local minima, then f(x1) ≤ f(r) for all r ∈ N(x1) and
f(x2) ≤ f(r) for all r ∈ N(x2). If x1 and x2 differ by exactly two components, then
the Hamming distance between them is |∆| = 2 and any path between x1 and x2

visits exactly one intermediary solution r ∈ N(x1)∩N(x2). Consequently r cannot
be better than either x1 or x2. Likewise, if |∆| = 3 then any path between x1 and
x2 visits two intermediary solutions r1 ∈ N(x1) and r2 ∈ N(x2) and, consequently,
neither r1 nor r2 can be better than both x1 and x2.

Therefore, things only get interesting for |∆| ≥ 4 and we may discard the appli-
cation of path-relinking to pairs of solutions differing by less than four components.

3.3. Randomization in path-relinking. All previously described path-relinking
strategies follow a greedy criterion to select the best move at each of their itera-
tions. Therefore, path-relinking is limited to exploring a single path from a set of
exponentially many paths between any pair of solutions. By adding randomization
to path-relinking, greedy randomized adaptive path-relinking is not constrained to
explore a single path. Instead of always selecting the move that results in the best
solution, a restricted candidate list is constructed with the moves that result in
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Figure 6. Time-to-target plots for pure GRASP and four vari-
ants of GRASP with path-relinking (forward, backward, back and
forward, and mixed) on an instance of the 2-path network design
problem. The plot on the bottom compares only the path-relinking
variants.

promising solutions with costs in an interval that depends on the values of the best
and worst moves, as well as on a parameter α. One move is selected at random
from this set to produce the next solution in the path. By applying this strategy
several times to the initial and guiding solutions, several paths can be explored.
This strategy is useful when path-relinking is applied more than once to the same
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Figure 7. Average number of best solutions in paths connect-
ing two solutions as a function of the fraction of the path length
from best to worst of the two solutions in a GRASP with path-
relinking heuristic for the max-min diversity problem (Resende
et al., 2010b). The figure shows that most of the best solutions
obtained by path-relinking are found near the initial and guiding
solutions, and that more are found near the best of these two so-
lutions.

pair of solutions as it may occur in evolutionary path-relinking. Greedy random-
ized adaptive path-relinking has been applied by Andrade and Resende (2007a),
Faria Jr. et al. (2005), and Resende et al. (2010b).

4. Trajectory-based hybridization

Path-relinking is a major enhancement to trajectory-based stochastic local search
algorithms that generate a sequence of locally optimal solutions. They include, but
are not limited to, metaheuristics such as GRASP, VNS, tabu search, and simulated
annealing. To hybridize path-relinking with them, one makes use of an elite set to
collect a diverse pool of high-quality solutions found during the search. The elite
set starts empty and is limited in size. Each new locally optimal solution produced
by the heuristic is relinked with one or more solutions from the elite set.

Each solution resulting from path-relinking is considered as a candidate to be
inserted in the elite set, where it can replace an elite solution of worse value. If
the latter is not full, then the candidate is simply added to the elite set if it differs
from all members. If the pool is full and the candidate is better than the best elite
solution, then it replaces a solution in the pool. In case the candidate is better than
the worst elite solution but not better than the best one, then it replaces a solution
in the pool if it is sufficiently different from every other solution currently in the
elite set. To balance the impact on pool quality and diversity, the solution selected
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to be replaced may be the one that is most similar to the entering solution among
those elite solutions of quality no better than the entering solution (Resende and
Werneck, 2004).

Given a local optimum x1 produced by the stochastic local search heuristic, we
need to select at random from the elite set a solution x2 to be connected with x1 by
path-relinking. In principle, any solution in the elite set could be selected. However,
one should avoid elite solutions that are too similar to x1, because relinking two
similar solutions limits the scope of the path-relinking search. Therefore, one should
privilege pairs of solutions differing by a large number of components. A strategy
introduced in Resende and Werneck (2004) is to select the elite solution x2 at
random with probability proportional to the number of components by which it
differs from the local optimum x1. This strategy also favors pool solutions that
have a large number of paths connecting them with x1.

After determining which solution (x1 or x2) will be designated the initial solution
and which will be the guiding solution, any of the strategies previously described
may be used. As noticed before, this choice involves trade-offs between computation
time and solution quality.

1. Algorithm Trajectory-based Heuristic with Path-Relinking
2. P ← ∅;
3. while stopping criterion not satisfied then do;
4. Build new local optimum x with trajectory heuristic;
5. if P = ∅ then P ← {x};
6. else do;
7. x1 ← x;
8. Choose an elite set solution x2 ∈ P at random;
9. x← Path-Relinking(x1, x2);
10. Update the elite set P with x;
11. end;
12. end;
13. return elite set P and best solution x∗ ∈ P ;
14. end.

Figure 8. Template for the hybridization of path-relinking with
a trajectory-based heuristic that generates locally optimal solu-
tions.

The template of the algorithm in Figure 8 illustrates the pseudo-code of a hybrid
trajectory-based heuristic that uses path-relinking for minimization. In line 2, the
elite set P is initially empty. The loop in lines 3 to 12 makes up an iteration of
the hybrid algorithm, until some stopping criterion is met. In line 4, x is a new
locally optimal solution generated by the trajectory-based heuristic. If the elite
set is empty, then x is inserted into the pool in line 5. Otherwise, x becomes the
initial solution x1 in line 7 and a guiding solution x2 is selected at random from
the pool in line 8. The initiating and guiding solutions are relinked in line 9 and
the resulting solution is tested for inclusion into the elite set in line 10. The hybrid
procedure returns the set of elite solutions and the best solution found during the
search in line 11.



PATH-RELINKING INTENSIFICATION METHODS 13

4.1. Tabu search. Most of the original formulations and developments in path-
relinking were proposed in the context of tabu search, as already described in Sec-
tion 3. In common with strategic oscillation (Glover and Laguna, 1997), path-
relinking provides a natural basis for implementing diversification and intensifica-
tion strategies in tabu search based on adaptive memory (see, e.g., Bastos and
Ribeiro (2002), Ho and Gendreau (2006), and Armentano et al. (2010)). In the
case of intensification strategies, elite solutions to be combined by path-relinking
are those that lie in a common region of the solution space or that share similar
features. Contrarily, diversification strategies using path-relinking will place more
emphasis on paths that go beyond the reference set formed by the elite solutions.
To summarize, path-relinking provides a very flexible framework to implement so-
phisticated and more complex tabu search procedures based on long-term memory,
that can find better solutions than simpler short-term forms that are often found
in the literature. in spite of the lower quality of the solutions they may obtain.

4.2. GRASP and VNS. GRASP (Greedy Randomized Adaptive Search Pro-
cedure) is a multi-start metaheuristic for combinatorial optimization problems,
in which each iteration consists basically of two phases: construction and local
search (Resende and Ribeiro, 2003a; 2010; 2011). The construction phase builds
a feasible solution following a greedy randomized criterion, whose neighborhood
is investigated until a local minimum is found during the local search phase. Its
basic implementation is memoryless, because it does not make use of information
collected in previous iterations.

The use of path-relinking as an intensification strategy applied to each locally
optimal solution obtained by a GRASP heuristic may lead to significant improve-
ments in both solution times and running times. It was first proposed by Laguna
and Mart́ı (1999) and followed by several extensions, improvements, and successful
applications (Resende and Ribeiro, 2005). In this context, path-relinking is applied
to each local minimum produced by the heuristic with a randomly selected elite
solution. The resulting solution is a candidate for inclusion into the elite set, as in
the template presented in Figure 8.

Enhancing GRASP with path-relinking almost always improves the performance
of the heuristic. As an illustration, Figure 9 shows time-to-target plots (or run time
distributions) for GRASP with and without path-relinking implementations corre-
sponding to four different applications. These plots show the empirical cumulative
probability distributions of the time-to-target random variable, i.e., the time needed
to find a solution at least as good as a given target value. For all problems, the
plots show that GRASP with path-relinking is able to find target solutions faster
than the memoryless basic algorithm.

VNS (Variable Neighborhood Search) is based on the investigation of progres-
sively more complex neighborhoods, in which each iteration consists basically of
two phases: shaking (random selection of a solution in the current neighborhood of
the current solution) and local search (Mladenović and Hansen, 1997; Hansen and
Mladenović, 2002). Path-relinking may be embedded as an intensification strategy
into a VNS heuristic following the same strategies above described, see e.g. Festa
et al. (2002) for an application to the max-cut problem.

Path-relinking may also be used as a post-optimization procedure, applied to
every pair of elite solutions produced by the GRASP or VNS heuristic. Aiex
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Figure 9. Time to target plots comparing running times of
GRASP with and without path-relinking on distinct problems:
three-index assignment (Aiex et al., 2005), maximum satisfiabil-
ity (Festa et al., 2006), bandwidth packing (Resende and Ribeiro,
2003b), and quadratic assignment (Oliveira et al., 2004).
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et al. (2005) applied path-relinking to all pairs of elite solutions as an intensifi-
cation scheme to improve pool quality and as a post-optimization step. The post-
optimization phase may also submit the elite set to an evolutionary process, as
described next.

4.3. Evolutionary path-relinking. Path-relinking can also be applied to pairs
of elite set solutions to search for new high-quality solutions and to improve the
quality of the elite set. This can be done in a post-optimization phase, after the
main heuristic stops, or periodically, when the main heuristic is still being applied
(Resende and Werneck, 2004; Aiex et al., 2005; Resende et al., 2010b). Evolutionary
path-relinking take as input the elite set and returns either the same elite set or a
renewed one with an improved average cost.

Resende and Werneck (2004; 2006) described an evolutionary path-relinking
scheme applied to pairs of elite solutions and used as a post-optimization step.
It works with a population that evolves over a number of generations. The initial
population is the input elite set. Population k+1 is initially empty. Path-relinking
is applied to all pairs of solutions in population k. Each solution output from the
path-relinking operation is a candidate for inclusion in population k+1. The usual
rules for inclusion into the elite set are also adopted in evolutionary path-relinking.
If population k+1 is not yet full, then the solution is accepted if it differs from all
solutions in the population. After population k + 1 is full, the solution is accepted
if either it is better than the best solution in the population or it is better than
the worst and is sufficiently different from all solutions in the population. Once a
solution is accepted for inclusion into population k + 1, it replaces the solution in
population k+1 that does not have a better cost and that is most similar to it. The
procedure halts when the best solution in population k+ 1 does not improve upon
the best solution in population k. Andrade and Resende (2007b) used this evolu-
tionary scheme as an intensification process every 100 GRASP iterations. During
the intensification phase, every solution in the pool is relinked with the two best
ones. Since two elite solutions might be relinked more than once in different calls
to the intensification process, greedy randomized adaptive path-relinking was used.

A variation of the above scheme is described by Resende et al. (2010b). In that
scheme, while there exists a pair of solutions in the elite set for which path-relinking
has not yet been applied, the two solutions are combined with path-relinking and
the resulting solution is tested for membership in the elite set. If it is accepted,
it then replaces the elite solution most similar to it among all solutions having
worse cost. This variant outperformed several other heuristics using GRASP with
path-relinking, simulated annealing, a multi-start strategy, and tabu search for the
max-min diversity problem. Figure 10 shows the evolution of the best solution
found by GRASP with evolutionary path-relinking and several other heuristics on
a 500-element max-min diversity instance.

Since some elite solutions may remain in the elite set over several applications
of evolutionary path-relinking, greedy randomized adaptive path-relinking can be
used in evolutionary path-relinking to avoid repeated explorations of the same paths
in the solution space in different applications of the procedure.

5. Population-based hybridization

Path-relinking can also be applied to population-based stochastic local search as
an advanced crossover or combination operator.
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Figure 10. Percent deviation from best known solution for
GRASP with evolutionary path-relinking (Resende et al., 2010b),
GRASP (Resende et al., 2010b), the multi-start algorithm of Ghosh
(1996), and simulated annealing (Kincaid, 1992) on a 500-element
instance of a max-min diversity problem with a limit of 60 minutes.

5.1. Progressive crossover in genetic algorithms. Path-relinking was first hy-
bridized with a genetic algorithm by Ribeiro and Vianna (2003) to implement a
progressive crossover operator in the context of its application to the phylogeny
problem. The original proposal was extended and improved in Ribeiro and Vianna
(2009), where a back and forward path-relinking strategy was used and the best
solution along the two paths is returned as the offspring resulting from crossover.
This mechanism is an extension of the traditional crossover operator: instead of
producing only one offspring, defined by one single combination of two parents,
it investigates many solutions that share characteristics of the selected parents.
The solution found by path-relinking corresponds to the best offspring that can be
obtained by applying the standard crossover to the parents.

The experiments reported in (Ribeiro and Vianna, 2009) made use of the results
obtained for a randomly generated instance (TST17) of the phylogeny problem to
assess the evolution of the solutions found by three different genetic algorithms
in one hour (3,600 seconds) of computations: the random-keys genetic algorithm
RKGA (Ribeiro and Vianna, 2003), the proposed genetic algorithm GA+PR using
path-relinking to implement the progressive crossover operator, and the simpler
genetic algorithm GAUni using uniform crossover. Figure 11 presents the solution
value at the end of each generation for each of the 100 individuals in the population.
Since the original random-keys genetic algorithm RKGA made use of elitism, the
solution values are restricted to a smaller interval ranging between 2500 and 2620.
The solution values obtained by the two other algorithms show more variability.
The solutions found by algorithm GA+PR are better than those obtained by RKGA
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and GAUni, illustrating the contribution of the strategy based on path-relinking to
implement the crossover operator.
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Figure 11. Solutions obtained by genetic algorithms for random
instance TST17 for 3,600 seconds of computations.

Path-relinking was also applied by Zhang and Lai (2006) following the strategy
proposed by Ribeiro and Vianna (2003) in the implementation of a genetic algo-
rithm for the multiple-level warehouse layout problem. Their approach also makes
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use of path-relinking when the genetic algorithm seems to be trapped in a locally
optimal solution. Once again, path-relinking was used by Vallada and Ruiz (2010)
as a progressive crossover operator within a genetic algorithm for the minimum
tardiness permutation flowshop problem. It was also applied as an intensification
strategy after a number of generations without improvement to the best solution.
The selected individuals are marked in order to not be selected again during the
application of path-relinking. Path-relinking was also hybridized with a genetic al-
gorithm as a post-optimization procedure (Ranjbar et al., 2008). In that paper, the
solutions in the final population produced by the genetic algorithm are progressively
combined and refined.

5.2. Scatter Search. Scatter search is a metaheuristic that explores solution spaces
by evolving a set of reference points. It can be viewed as an evolutionary method
that operates on a small set of solutions and makes only limited use of randomiza-
tion. The scatter search framework is flexible, allowing the development of alter-
native implementations with varying degrees of sophistication.

The fundamental concepts and principles of the method were first proposed in
the 1970s (Glover, 1977). In contrast to other evolutionary methods like genetic
algorithms, scatter search is founded on the premise that systematic designs and
methods for creating new solutions afford significant benefits beyond those derived
from recourse to randomization.

Scatter search orients its explorations systematically relative to a set of reference
points that typically consist of good solutions obtained by prior problem solving
efforts. The scatter search template (Glover, 1998) has served as the main reference
for most of the scatter search implementations to date.

From an algorithmic point of view we can consider that scatter search basically
performs iterations over a set of good solutions called the Reference Set (RefSet).
Once the initial RefSet is created, a global iteration of the method consists of three
steps: combine, improve, and update the solutions in the RefSet. We describe next
the five elements in the template:

(1) A Diversification Generation Method to generate a collection of diverse trial
solutions, using one or more arbitrary trial solutions (or seed solutions) as
an input.

(2) An Improvement Method to transform a trial solution into one or more
enhanced trial solutions: neither the input nor the output solutions are
required to be feasible, though the output solutions are typically feasible.
If the input trial solution is not improved as a result of the application of
this method, the “enhanced” solution is considered to be the same as the
input solution.

(3) A Reference Set Update Method to build and maintain a reference set con-
sisting of the b “best” solutions found (where the value of b is typically
small, e.g., no more than 20), organized to provide efficient access by other
parts of the solution procedure. Several alternative criteria may be used to
add solutions to (and to delete solutions from) the reference set.

(4) A Subset Generation Method to operate on the reference set, to produce
a subset of its solutions as a basis for creating combined solutions. The
most common subset generation method is to generate all pairs of reference
solutions (i.e., all subsets of size 2).
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(5) A Solution Combination Method to transform a given subset of solutions
produced by the Subset Generation Method into one or more combined
solutions.

Scatter search performs iterations over a set of good solutions identified as the
reference set. In this context, path-relinking is used as an effective solution com-
bination method to transform a given subset of solutions produced by the subset
generation method. We refer the reader to Laguna and Mart́ı (2003), Mart́ı (2006),
and Resende et al. (2010a), where a number of successful applications of scatter
search and path-relinking to problems in different domains can be found. These
applications include neural networks, multi- and single-objective routing problems,
graph drawing, scheduling, coloring, prediction, clustering, and nonlinear optimiza-
tion.

6. Concluding remarks

Path-relinking is a very effective strategy to improve solution quality and to
reduce computation times of stochastic local search algorithms for combinatorial
optimization problems, leading to more robust implementations. Any available
knowledge about the problem structure should be used in the development of effi-
cient algorithms to explore the most attractive strategy for path-relinking.

Path-relinking may also be viewed as a constrained local search strategy applied
to the initial solution, in which only a limited set of moves can be performed and
non-improving moves are allowed. Several implementation strategies have been ap-
plied and combined in successful implementations of path-relinking in conjunction
with different metaheuristics such as greedy randomized adaptive search proce-
dures, variable neighborhood search, genetic algorithms, and scatter search. Some
of these successful applications may be found in references such as (Aiex et al.,
2003; 2005; Andrade and Resende, 2007a; Canuto et al., 2001; Festa et al., 2006;
Oliveira et al., 2004; Reghioui et al., 2007; Resende and Ribeiro, 2003b; Resende
and Werneck, 2004; 2006; Ribeiro and Rosseti, 2007; Ribeiro et al., 2002; Scaparra
and Church, 2005; Resende and Ribeiro, 2005; 2010; Festa et al., 2002; Ribeiro and
Vianna, 2009), among many others.

Parallel implementations of stochastic local search algorithms are quite robust
and lead to linear speedups both in independent and cooperative strategies. Coop-
erative strategies are based on the collaboration between processors through path-
relinking and a global pool of elite solutions. This allows the use of more processors
to find better solutions in less computation time. Therefore, path-relinking offers
a very practical strategy to improve the speedups of parallel implementations in
clusters and grids (Aiex and Resende, 2005; Resende and Ribeiro, 2010; Ribeiro
and Rosseti, 2007).
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