
Maude MSOS Tool
Fabricio Chalub and Christiano Braga

frosario@ic.uff.br / cbraga@ic.uff.br

Universidade Federal Fluminense

Maude MSOS Tool – p.1/30

Outline

• Quick introduction to SOS and MSOS

• Overview of MSOS-SL and Maude MSOS Tool

• Rewriting logic

• MSOS-SL

• Example of formal verification with MMT

• Behind the scenes

• Developments and future work

Maude MSOS Tool – p.2/30

Modularity in operational semantics (i)

• SOS = structural operational semantics, also known as

small-step operational semantics

• Some practical problems with SOS: retracting previous

rules.

Semantics of • with an environment (ρ)

ρ ` e0 → e′
0

ρ ` e0 • e1 → e′
0
• e1

Semantics of • with an environment (ρ) and a store (σ, σ′)

ρ ` 〈e0, σ〉 → 〈e′
0
, σ′〉

ρ ` 〈e0 • e1, σ〉 → 〈e′
0
• e1, σ

′〉

Maude MSOS Tool – p.3/30

Modularity in operational semantics (ii)

Mosses’ MSOS solves the modularity problem in structural

operational semantics.

• Transition labels carry the semantic information associated

with the computation.

e0 −x→ e′
0

e0 • e1 −x→ e′
0
• e1

• Record components are environments, stores, etc., and are

access using indices.

e −{ρ = ρ1[ρ0], . . .}→ e′

let ρ0 in e end −{ρ = ρ1, . . .}→ let ρ0 in e′ end

Maude MSOS Tool – p.4/30

Maude MSOS Tool and MSOS-SL

MSOS-SL: the MSOS specification language, a conservative

extension of Maude system modules.

MSOS-Tool: the MSOS-SL executable environment, written in

Maude.

With the Maude MSOS Tool it is possible to give formally

verifiable specifications for programming languages.

Maude MSOS Tool – p.5/30

Maude and Rewriting Logic (RWL)

• A logical framework which can represent in a natural way

many different logics, languages, operational formalisms,

and models of computation;

• Parameterized by an equational logic, membership

equational logic;

• Specifications in rewriting logic are executable with

CafeOBJ, ELAN, and Maude;

• Formal verification tools available in Maude: model

checker, breadth-first search, theorem prover,

Church-Rosser checker, and termination checker;

Maude MSOS Tool – p.6/30

MSOS-SL

The MSOS-SL semantics of a language L has three distinct

parts:

• syntax definition: where we specify the

(abstract/concrete) syntax of L

• label declaration: where we specify the label composition.

• dynamic rules: where the dynamics of the language

constructions are specified.

Maude MSOS Tool – p.7/30

MSOS-SL modules

MSOS-SL modules are written as:

(msos MODULE is [...] sosm)

MSOS-SL modules include other modules by the including

keyword, such as:

(msos A is

including B .

including C .

[...]

sosm)

Maude MSOS Tool – p.8/30

MSOS-SL: syntax definition

Order-sorted logic is able to represent a context-free grammar

(Goguen et al.)

The syntax definition in MSOS-SL is given in the algebraic way:

• Sorts are the counterpart of non-terminals.

• Term constructors are the counterpart of terminals.

(Infinite sets of terminals are, of course, represented by terms of

some sort. For example, the natural numbers in Peano notation

s(s(s(s(0)))), of sort Nat. Maude conveniently converts the

Peano notation into decimal numbers.)

Maude MSOS Tool – p.9/30

MSOS-SL: syntax definition

Syntax definition uses the Maude constructions: sort, subsort,

op (for the declaration of operators).

Let us specify a simple ML-like let-in-end, as in:

let val x = 10 in x end

The let expression has two distinct parts: the declaration of

bindings and the expression to be executed.

Exp ::= let 〈Dec〉 in 〈Exp〉 end

〈Dec〉 and 〈Exp〉 will become sorts, and the let-in-end will

became an operator.

Maude MSOS Tool – p.10/30

MSOS-SL: syntax definition

We create a sort Exp for expressions and Dec for declarations in

general.

sorts Dec Exp .

A let expression is declared as follows:

op let in end : Dec Exp -> Exp [ctor] .

ctor means that this operation is not a function, but a

constructor of terms. prec is the precedence we may assign to

this operator.

Mixfix syntax (underscores).

Maude MSOS Tool – p.11/30

MSOS-SL: syntax definition

Identifiers are terms of the sort Id.

sort Id .

Declarations are defined as bindings from identifiers to

constants, obtained from the evaluation of expressions.

op val : ValueBind -> Dec [ctor] .

Bindings are expressed as:

op = : Id Exp -> ValueBind [ctor] .

Maude MSOS Tool – p.12/30

MSOS-SL: syntax definition

We declare the sort Value of the values expressible in our

language. Since a value is also an expression, we have to

subsort Value to Exp.

subsort Value < Exp .

By subsorting Nat to Value we make the naturals a primitive

value of our programming language.

sort Value .

subsort Nat < Value .

We may now write:

op x : -> Id .

let val x = 100 in x end .

Maude MSOS Tool – p.13/30

MSOS-SL: syntax definition

We may give equational attributes to operators, such as

associativity, commutativity and identity to further enhance our

syntax definition.

op ; : Exp Exp -> Exp [ctor assoc prec 100] .

assoc indicates that this operation is associative

prec indicates the precedence level of this operation

More complex constructions are possible using frozen

arguments, gather patterns (for example to create

left-associative constructions), evaluation strategies (for

example to create lazy-evaluation operations), and so on.

Maude MSOS Tool – p.14/30

MSOS-SL: label declaration

Label indices are declared using the following keywords:

read-only i : τ .

read-write i : τ .

write-only i : τ (e, bop) .

i is the index name, and τ the sort of the values indexed by i,

referred to as components.

For WO indices, we must describe the monoid: identity element

(e) and binary operation (bop).

read-only env : Env .

write-only out : Output (nil, append) .

Maude MSOS Tool – p.15/30

MSOS-SL: components

Components are also specified as algebraic data types. In this

example Env is the sort of environments, and BVal is the sort of

“bindable values”, along with associated operations.

sorts Env BVal .

op _U_ : Env Env -> Env .

op find : Env Ide -> [BVal] .

op _->_ : Ide BVal -> Env [ctor] .

op _//_ : Env Env -> Env .

...

Writing [BVal] as the image sort of find makes this a partial

function.

Maude MSOS Tool – p.16/30

MSOS-SL: transitions

MSOS transitions are declared with syntax ctr, as follows:

ctr γ = α => γ′ if 〈condition〉 .

γ is the value-added syntax tree. α is the label expression.

Unconditional transitions: tr γ = α => γ′ .

Unobservable transitions: γ ==> γ′.

〈condition〉: consists of a conjunction of transitions, written in

the general form γ = α => γ′, together with the usual

conditions from Maude system modules.

Maude MSOS Tool – p.17/30

MSOS-SL: label expressions

Labels are formed by a set of fields of the form (i : C).

The sort IndexSet is defined as a subsort of a Label. This

opens the possibility to create label expressions as in MSOS.

{(env : rho), (st : sigma), (st’ : sigma’), IS},

the variable IS, of sort IndexSet, matches against any

unspecified component.

Unobservable labels are identity labels of the sort ILabel, a

subsort of Label, and their subsets are of the sort IIndexSet,

a subsort of IndexSet.

Maude MSOS Tool – p.18/30

MSOS-SL: transitions

As an example, let us give the semantics of the let expression

defined earlier:

var X : Label . var IS : IndexSet .

var v : Value . vars D D’ : Dec .

vars E1 E’1 E2 E’2 : Exp . vars b rho rho’ : Env .

ctr let D in E2 end = X => let D’ in E2 end

if D = X => D’ .

ctr let b in E end ={(env : rho), IS}=> let b in E’ end

if rho’ := rho // b /\ E ={(env : rho’), IS}=> E’ .

tr let b in v end ==> v .

Maude MSOS Tool – p.19/30

MSOS-SL: concurrency example

Syntax definition

sorts Prog Procs .

op cml_ : Procs -> Prog [ctor] .

op _||_ : Procs Procs -> Procs [ctor comm assoc] .

op proc : PIde Exp -> Procs [ctor] .

ops spawn channel send recv : -> Value [ctor] .

The use of comm and assoc create an equivalent of a multiset.

Label declaration

read-write pides : PIdes .

write-only create : Create (nilc, appendc) .

read-write chans : Channels .

write-only offer : Offers (nilo, appendo) .

Maude MSOS Tool – p.20/30

MSOS-SL: concurrency example

Transition rules

ctr (spawn f) = {(create’ : C), (pides : PDS),

(pides’ : PDS’), IIS} => PI

if PI := newPIde (PDS) /\

PDS’ := addPIde (PDS, PI) /\

C := new-create (proc (PI, (f empty-tuple))) .

ctr proc (PI1, E1) ={(create’ : nilc), IS }=>

proc (PI1, E’1) || P

if E1 ={(create’ : C), IS}=> E’1 /\ P := get1 (C) .

ctr P1 || P2 = X => P’1 || P2

if P1 = X => P’1 .

Maude MSOS Tool – p.21/30

MSOS-SL: concurrency example

Transition rules

ctr channel empty-tuple

={ (chans : chs), (chans’ : chs’), IIS}=> ch

if ch := newChannel (chs) /\

chs’ := addChannel (chs, ch) .

op snd : Channel Value -> Offer [ctor] .

op rcv : Channel -> Offer [ctor] .

ctr send tuple (ch, v) ={(offer’ : O), IIS}=>

empty-tuple

if O := new-offer (snd (ch, v)) .

op recv-ph : Channel -> Value [ctor] .

ctr recv ch ={(offer’ : O), IIS}=> recv-ph (ch)

Maude MSOS Tool – p.22/30

MSOS-SL: concurrency example

Transition rules

ctr P1 || P2 ={(offer’ : nilo), IIS}=>

P’1 || update-recv (P’2, v)

if P1 ={(offer’ : O1), IIS}=> P’1 /\

P2 ={(offer’ : O2), IIS}=> P’2 /\

o1 := get-offer (O1) /\

o2 := get-offer (O2) /\

agree (o1, o2) /\

v := agree-value (o1, o2) .

ctr cml P ={(offer’ : nilo), IS}=> cml P’

if P ={(offer’ : O), IS}=> P’ /\ O == nilo .

Maude MSOS Tool – p.23/30

MSOS-SL: concurrency example

Formal verification. This search must find two final states

(concurrent access to a memory location).

(search exec (let val x "=" (ref $(1))

in spawn (fn y "=>" (x ":=" $(2))) ;

spawn (fn y "=>" (x ":=" $(3)))

end) =>! C:Conf .)

Maude MSOS Tool – p.24/30

MSOS-SL: concurrency example

Solution 1

C:Conf <- < cml(proc(pide(0),pide(2)) ||

proc(pide(1),empty-tuple)||

proc(pide(2),empty-tuple)),

{...(st : <[[loc(1),$(3)]]>)} >

Solution 2

C:Conf <- < cml(proc(pide(0),pide(2))||

proc(pide(1),empty-tuple)||

proc(pide(2),empty-tuple)),

{...(st : <[[loc(1),$(2)]]>)} >

No more solutions.

Maude MSOS Tool – p.25/30

MSOS-SL: concurrency example

Formal verification. Concurrent sending / receiving.

(search exec (let val c "=" channel !()

in (spawn (fn x "=>" send !(c, $(10))) ;

spawn (fn x "=>" send !(c, $(11))) ;

recv c)

end) =>! C:Conf .)

Maude MSOS Tool – p.26/30

MSOS-SL: concurrency example

Again, two final outcomes possible.

Solution 1

C:Conf <- < cml(

proc(pide(0),$(10)) ||

proc(pide(1),empty-tuple) ||

proc(pide(2), let ... in send tuple(chn(1),$(11) end),

{...} >

Solution 2

C:Conf <- < cml(

proc(pide(0),$(11)) ||

proc(pide(1),let ... in send tuple(chn(1),$(10)) end)||

proc(pide(2), empty-tuple)),{...} >

Maude MSOS Tool – p.27/30

Implementing Maude MSOS Tool

Braga and Meseguer created Modular Rewriting Semantics

(MRS), a novel method for the modular specification of

programming language semantics and defined (and proved

correct) a mapping from MSOS to MRS. The work is based on

the joint work of Braga, Hæusler, Meseguer, and Mosses.

The Maude MSOS Tool was implemented based on this

mapping and also by extending Full Maude, a Maude

application that makes heavy use of Maude’s reflective

capabilities to create executable environments for languages,

logics, etc.

Maude MSOS Tool – p.28/30

Developments and future work

• MSOS-SL and MSDF

• Continuations

• Incremental MSOS specification

Maude MSOS Tool – p.29/30

	Outline
	Modularity in operational semantics (i)
	Modularity in operational semantics (ii)
	Maude MSOS Tool and MSOS-SL
	Maude and Rewriting Logic (RWL)
	MSOS-SL
	MSOS-SL modules
	MSOS-SL: syntax definition
	MSOS-SL: syntax definition
	MSOS-SL: syntax definition
	MSOS-SL: syntax definition
	MSOS-SL: syntax definition
	MSOS-SL: syntax definition
	MSOS-SL: label declaration
	MSOS-SL: components
	MSOS-SL: transitions
	MSOS-SL: label expressions
	MSOS-SL: transitions
	MSOS-SL: concurrency example
	MSOS-SL: concurrency example
	MSOS-SL: concurrency example
	MSOS-SL: concurrency example
	MSOS-SL: concurrency example
	MSOS-SL: concurrency example
	MSOS-SL: concurrency example
	MSOS-SL: concurrency example
	Implementing Maude MSOS Tool
	Developments and future work

