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Formal Semantics

A formal semantics for some programming language L provides:

• An unambiguous definition of what L means;

• The ability to formally reason about L and prove desired

properties;

• If the specification is executable, the formal reasoning can

be computer aided;
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Modularity in the context of formal semantics

The specification process (that is, writing down the formal

semantics) is inherently creative and can be extremely complex.

Modularity comes into play:

• Software engineering: a methodology to build complex

systems (specifications in this case).

• Ease of extension: new functionality is “easily” added (no

need to change previous modules). Related to software

engineering.

• Didactic way of formally present something (programming

languages semantics, in this case).
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Rewriting Logic (RWL)

• A logical framework which can represent in a natural way

many different logics, languages, operational formalisms,

and models of computation;

• Specifications in rewriting logic are executable with

CafeOBJ, ELAN, and Maude;

• Formal verification tools available in Maude include:

model checker, breadth-first search, theorem prover, and

Church-Rosser checker;
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Modularity in Rewriting Logic

• Modular Rewriting Semantics (MRS): Braga and

Meseguer defined a technique that brings modularity into

rewriting logic programming languages semantics;

• Is the continuation of the joint work of Braga, Meseguer,

Mosses, and Hermann. It is influenced by Peter Mosses’

Modular Structural Operational Semantics (MSOS) and

shares with MSOS the technique of record inheritance (to

be discussed later);

• There is a bissimulation between MSOS and MRS;

MRS Configuration = 〈 Program, Semantic record 〉
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Modularity in Rewriting Logic

• Record inheritance. “The less we specify, the more

general the record is.”;

• Use of the variable that captures the “rest of the record”

in the context of rewriting modulo ACI;

R:Record

{ (env : e:Env), PR:PreRecord }

• Abstract functions over components in rules. Expose only

the interface and hide the (concrete) implementation.

Abstract functions aren’t tied to a particular

implementation of a component (e.g., a store).

{ (env:[x,loc(1)]), (store:[[loc(1),1]]) }
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Concurrent ML

We specified a modular rewriting logic semantics of (a

significant subset of) CML and proved some properties of CML

programs. Reasons for using CML:

• Formal from the beginning. Milner, et al. gave an

operational semantics for Standard ML.

• Reppy formally defined Concurrent ML, also in operational

semantics style.

• Mosses gave a modular structural operational semantics

(MSOS) for CML.

• Several implementations (SML/NJ, Moscow ML,

Poly/ML, ML Kit) and applications (Isabelle, HOL, older

JAPE versions).
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MRS of SML: declarations

fmod DECLARATIONS-SYNTAX is

extending EXPRESSIONS-SYNTAX .

sorts Decl ValueBind .

subsort ValueBind < Decl .

op _=_ : Ide Exp -> ValueBind .

op let_in_end : Decl Exp -> Exp .

endfm

Example:

let val x = 1 in e(x) end
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MRS of SML: declarations

let val x = 1 in e(x) end

• Semantics of let-in-end

crl { let d in e end, r } =>

[ let d’ in e end, r’ ]

if { d, r } => [ d’, r’ ] .

crl { let b in e end, {(env : rho), pr} } =>

[ let b in e’ end, {(env : rho), pr’} ]

if rho’ := override-env (rho, b) /\

{ e, {(env : rho’), pr} } =>

[ e’, {(env : rho’), pr’} ] .

rl { let b in v end, r } => [ v, r ] .
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MRS of CML: concurrency

• Semantics of concurrency (overview)

sorts Proc Procs Pid .

subsort Proc < Procs .

op _||_ : Procs Procs -> Procs [assoc comm] .

op prc : Pid Exp -> Proc [ctor] .

crl { p1 || PS2, r } => [ PS1 || PS2, r’ ]

if { p1, r } => [ PS1, r’ ] .

• Matching modulo AC guarantees the nondeterministic

choice of which process to step at a given time, giving an

interleaving model of concurrency.
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Formal Verification

• Two processes, P1 and P2 try to access a shared resource

using some sort of mutual exclusion algorithm.

• One of the properties of the solution should be safety, that

is, no race condition should occur.

• Other is freedom from starvation, that is, if one Pi is

competing for the shared resource, it will eventually get

access it.

• We’ll test both safety and a freedom from starvation

properties of Dekker’s solution.
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Model Checker: Dekker’s Algorithm

Proving the freedom of starvation of Dekker’s solution.

Maude’s model checker will return a counterexample for “It is

always true that when both P1 and P2 are competing, the turn

will always be with P1, that is, memory location l7 will always

be 1.”

2(competing → (2turn(1)))

The counterexample:

{< ...,{(env : < mt-env >),(st : < [[loc(1),rat(0)]]

[[loc(2),rat(0)]] [[loc(3),rat(0)]] [[loc(4),rat(0)]]

[[loc(5),rat(1)]] [[loc(6),rat(1)]] [[loc(7),rat(2)]] >),

(val : < mt-val >),(pids : < pval[pid(1)] x pval[pid(2)] x

pval[pid(3)] >),(ac : < mt-ac >),tr : < mt-tr>} >,’step}

A modular rewriting semantics for CML – p. 14



Model Checker: Dekker’s Algorithm

How to prove the safety of Dekker’s solution

• On our CML implementation, the critical section of

process Pi consists of two instructions: li ← 1; li ← 0,

where li is a memory location bound to a variable on

process Pi.

• Let ci be the proposition that is true iff li = 1. Notice that

ci will only be true when Pi is inside its critical section.

• The LTL formula for “race condition will never occur” is

then 2¬(c1 ∧ c2)
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Model Checker: Dekker’s Algorithm

mod CHECK is including CONCURRENCY-TEST .

including MODEL-CHECKER .

subsort Conf < State .

op mutex-violation : -> Prop .

eq < P:Program,{(st : <[[loc(1),rat(1)]]

[[loc(2),rat(1)]] C:CStore>),

PR:PreRecord } > |= mutex-violation = true .

endm

reduce modelCheck(dekker, []~ mutex-violation) .

rewrites: 58380093 in 2315950ms cpu (2362140ms real)

(25207 rewrites/second)

result Bool: ({true).Bool
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Developments and future work

• Although the mapping was applied manually, we are

working on an automatic translator;

• New specification with the following characteristics:

◦ True concurrency;

◦ Reduction semantics + CPS

◦ Mosses’ Definitive Semantics (basic library of semantic

constructors that can be reused);

◦ The use of parser-generators to translate SML

programs into Definitive Semantics constructions;
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