
Universidade Federal Fluminense

FABRICIO CHALUB BARBOSA DO ROSÁRIO

An Implementation of Modular Structural

Operational Semantics in Maude

NITERÓI

2005

Universidade Federal Fluminense

FABRICIO CHALUB BARBOSA DO ROSÁRIO

An Implementation of Modular Structural

Operational Semantics in Maude

M. Sc. dissertation submitted to the Grad-
uate School of Computation of the Flumi-
nense Federal University as a partial require-
ment for the title of Master in Science. Area:
Distributed and Parallel Processing/Formal
Methods

Advisor:

Christiano de Oliveira Braga

NITERÓI

2005

An Implementation of Modular Structural Operational Semantics in
Maude

Fabricio Chalub Barbosa do Rosário

M. Sc. dissertation submitted to the Gradu-
ate School of Computation of the Fluminense
Federal University as a partial requirement
for the title of Master in Science.

Committee:

Prof. Christiano de Oliveira Braga, D. Sc. / IC-UFF
(Advisor)

Prof. Edward Hermann Haeusler, D. Sc. / PUC-Rio

Prof. Peter D. Mosses, Ph. D. / Univ. of Wales Swansea

Niterói, May 27, 2005.

Abstract

This dissertation presents a formal tool for Modular Structural Operational Semantics
(MSOS), based on the conversion from MSOS to Rewriting Logic recently developed by
Braga and Meseguer. The implementation, named Maude MSOS Tool (MMT), was writ-
ten in Maude, a high-performance implementation of Rewriting Logic. The development
of MMT attempts not only to provide an MSOS interpreter that uses a specification lan-
guage that is closer to the domain of MSOS specifications than to Maude specifications,
but also to demonstrate what can be accomplished when one develops a formal tool in
the Maude environment, since it allows the use of other formal tools already available
with MSDF specifications. We have demonstrated this by simulating and model checking
concurrent programs and distributed algorithms. Another aim is to provide an example
of a non-trivial extension of Full Maude and to create a tool that is itself extensible.

Contents

1 Introduction 1

2 Background 3

2.1 Structural Operational Semantics and Modular Structural Operational Se-
mantics . 3

2.1.1 Structural Operational Semantics 3

2.1.2 Modular SOS . 6

2.2 Rewriting Logic . 9

2.3 Maude . 13

2.3.1 Tools . 19

2.3.1.1 Reducing and rewriting terms 19

2.3.1.2 Searching for states . 20

2.3.1.3 Model checking specifications 22

2.3.2 Metalevel programming . 25

2.3.2.1 Maude as meta-tool . 29

2.3.3 Input and output facilities . 30

2.3.4 Full Maude . 33

2.3.4.1 System and functional modules 33

2.3.4.2 Theories, views, and parameterized modules. 34

2.3.4.3 Extending Full Maude . 36

2.4 Modular Rewriting Semantics . 38

2.4.1 Modular Rewriting Semantics and MSOS 44

3 Related work 48

4 Maude MSOS Tool 52

4.1 Notational conventions . 53

4.2 MSDF syntax . 53

Contents iv

4.2.1 Modules . 54

4.2.2 Datatype definitions . 55

4.2.3 Labels . 57

4.2.4 Semantic transitions . 58

4.3 Built-in operations on derived and parameterized sets 61

4.3.1 Sequences . 62

4.3.2 Lists . 62

4.3.3 Maps . 62

4.3.4 Sets . 63

4.4 User interface . 63

4.5 A simple example . 63

5 The implementation of MMT 66

5.1 MMT as an extension of Full Maude . 66

5.2 Modules . 68

5.3 Datatypes . 69

5.3.1 Compilation of type declarations 69

5.3.2 Compilation of typed syntactic trees 70

5.3.3 Compilation of functions . 71

5.3.4 Compilation of module inclusion . 71

5.3.5 Parameterized and derived types 73

5.3.5.1 View forwarding problem 74

5.3.5.2 Derived Sets . 75

5.4 Processing label declarations . 77

5.5 Processing MSOS transitions . 79

6 Case studies 86

6.1 Constructive MSOS . 86

6.1.1 The CMSOS constructions . 86

6.1.1.1 Expressions . 87

6.1.1.2 Declarations . 88

6.1.1.3 Abstractions . 89

6.1.1.4 Commands . 91

Contents v

6.1.1.5 Concurrency . 92

6.1.2 ML . 92

6.1.2.1 Expressions . 93

6.1.2.2 Declarations . 94

6.1.2.3 Imperatives . 95

6.1.2.4 Abstractions . 96

6.1.2.5 Concurrency . 97

6.1.2.6 Example . 98

6.1.3 MiniJava . 100

6.1.3.1 Expressions . 101

6.1.3.2 Statements . 103

6.1.3.3 Classes . 103

6.1.3.4 Example . 104

6.2 Mini-Freja . 108

6.2.1 Abstract Syntax . 108

6.2.2 Semantics . 109

6.2.3 Example: sieve of Eratosthenes . 113

6.3 Distributed algorithms . 114

6.3.1 Process execution model . 115

6.3.1.1 Process communication models 116

6.3.1.2 Justice . 117

6.3.2 Examples . 117

6.3.2.1 Another thread game . 117

6.3.2.2 Dining Philosophers . 119

7 Conclusion 123

7.1 Design decisions and limitations . 123

7.1.1 Typed syntactic trees in conditions 123

7.1.2 Limitations of the MSDF syntax in MMT 123

7.1.3 Loading of modules . 125

7.1.4 Limitations on the generality of MSDF in MMT 126

7.1.5 Automatic variables . 127

7.2 Enhancements to the tool — future work 128

Contents vi

7.3 Contributions . 130

Bibliography 131

Appendix A -- Constructive MSOS 137

A.1 Expressions . 137

A.2 Declarations . 138

A.3 Commands . 139

A.4 Abstractions . 143

A.5 Concurrency . 145

Appendix B -- ML specification 150

B.1 Expressions . 150

B.2 Declarations . 153

B.3 Imperatives . 154

B.4 Abstractions . 156

B.5 Concurrency . 157

Appendix C -- MiniJava specification 159

C.1 Expressions . 159

C.2 Statements . 160

C.3 Classes . 162

Appendix D -- Mini-Freja specification 166

Appendix E -- Distributed algorithms 170

E.1 Mutual exclusion using semaphores . 170

E.2 Dining Philosophers . 173

E.2.1 Remainder of the rules . 173

E.2.2 Dining Philosophers, terminating specification 174

E.2.3 Fair scheduling . 176

E.2.4 An incorrect specification . 177

E.3 Bakery algorithm . 179

E.4 Leader election on an asynchronous ring 185

Contents vii

Appendix F -- Combinatory Logic in Maude 188

Chapter 1

Introduction

Structural Operational Semantics (SOS), developed by Plotkin [58], is a well known frame-
work commonly used on the formal specification of programming languages [61, 49] and
concurrent systems [50, 51]. It is also widely used in formal semantics textbooks and
lecture notes [29, 54, 62, 57, 58, 52]. From a software engineering perspective, however,
SOS lacks an essential characteristic for the specification of complex systems: modularity.
This has been solved by Mosses with the creation of Modular Structural Operational Se-
mantics (MSOS) [53]. Recently, Mosses also developed a specification language for MSOS,
the Modular SOS Specification Formalism (MSDF) [52].

Recent years have shown us a great deal of development of algebraic methods and
especially their use as specification formalisms. Rewriting Logic [40] and Membership
Equational Logic [41] are two notable examples that have been used to specify a wide
variety of topics [17, 7, 18, 55, 6, 64, 44, 20, 59].

The relationship between Rewriting Logic and SOS [38, 6, 68, 44, 8], and in particular
Modular SOS [8, 44] have been studied before.

This dissertation aims to close this loop by providing a formal environment for MSDF
specifications, using the developed conversion from MSOS to Rewriting Logic. The imple-
mentation, named Maude MSOS Tool (MMT), was written in Maude 2.1.1 [14], a high-
performance implementation of Rewriting Logic. The development of MMT attempts not
only to provide an MSOS interpreter that uses a specification language that is closer to
the domain of MSOS specifications than to Maude specifications, but also to demonstrate
what can be accomplished when one develops a formal tool in the Maude environment,
since it allows the use of other formal tools already available with MSDF specifications.
We have demonstrated this by simulating and model checking concurrent programs and
distributed algorithms. Another aim is to provide an example of a non-trivial extension
of Full Maude and to create a tool that is itself extensible.

This dissertation is organized as follows. Chapter 2 gives the necessary background
on all the frameworks used on the translation and implementation process; Chapter 3
shows other implementations of SOS and Modular SOS; Chapter 4 describes the syntax
of MSDF, the specification language used by Maude MSOS Tool; Chapter 5 describes
the implementation of Maude MSOS Tool; Chapter 6 shows several applications of MMT
in the specification and verification of programming languages and distributed systems.
Chapter 7 concludes this dissertation with some final remarks. The appendices have

2

additional material that were omitted from certain sections, specially in Chapter 6 for the
sake of brevity.

Chapter 2

Background

This Chapter provides the background material about Structural Operational Seman-
tics [58] and Modular SOS [53] (Section 2.1), Rewriting Logic [40] (Section 2.2), and its
implementation engine Maude [14] (Section 2.3); the relationship between Modular SOS
and Rewriting Logic is given by first introducing Modular Rewriting Semantics [8, 44]
(Section 2.4) and then showing how to formalize Modular SOS with Modular Rewriting
Semantics.

2.1 Structural Operational Semantics and Modular

Structural Operational Semantics

2.1.1 Structural Operational Semantics

The Structural Operational Semantics (SOS) framework, defined by Plotkin in [58], is
a commonly used framework for the definition of formal programming languages seman-
tics [49] and concurrent systems [50, 51].

The operational semantics of a programming language in SOS is given by a labelled
terminal transition system (Γ, A,→, T), where Γ is a set (of configurations γ ∈ Γ), A a set of
labels, →⊆ Γ×A×Γ is a ternary relation, and T ⊆ Γ is the set of terminal configurations.
SOS specifications are pairs (S, T), where S is the abstract syntax definition and T is the

set of transitions. A transition t ∈ T is specified using the notation γ
a
→ γ ′ which

stands for (γ, a, γ ′) ∈→, that is, there is a transition from the configuration γ to the
configuration γ ′, with label a. Conditional transitions are usually written as:

c1, . . . , cn

c

where the conclusion c is a transition, and each condition ci is either a transition or other
type of conditions such as equations, set memberships, etc.

Configurations γ ∈ Γ are tuples consisting of value-added syntactic trees, that is,
syntactic trees in which branches may be final values, and any additional semantic com-

4

cond

< y z

x 1

Figure 2.1: The value-added syntactic tree for cond(x < 1, y, z)

ponents, such as the bindings environment, stores, etc. We also use “term” to mean a
value-added syntactic tree; figure 2.1 shows the tree for the term cond(x < 1, y, z),
according to some hypothetical grammar that specifies the syntax of a conditional con-
struction in prefix format. The ‘1’ should be seen as a final, computed, value. The use of
abstract syntactic trees follows traditional practice of avoiding the complexity of concrete
syntax that adds nothing to the precise understanding of the semantics of a programming
language. Components are used to give semantics to (abstract) language constructs and
are general auxiliary mathematical entities. For example, the bindings environment is
usually modeled as a function that maps identifiers to values, for example, ρ : I → N so
that we write m = ρ(i), i ∈ I, to access the value m ∈ N bound to the identifier i in the
environment ρ. Other types of functions (or relations) may be defined as components.

Plotkin left open the problem of modularity in SOS specifications. For example,
Rules 2.1 and 2.2 define the SOS of simple mathematical expressions. Let us introduce
first the abstract syntax.

m ∈ N

e ∈ Exp

e ::= m | e0 + e1

The transition rules give the meaning of the mathematical operation e0 + e1. First, e0

is evaluated until it reaches a final value, a natural number (m0), then the same for e1

(m1). Rule 2.2 rewrites m0 +m1 to the natural sum of m0 and m1.

e0−→ e ′0

e0 + e1−→ e ′0 + e1

e1−→ e ′1

m0 + e1−→m0 + e
′
1

(2.1)

m0 +m1−→ m0 +m1 (2.2)

The addition of bindings, for example, by the introduction of an ML-like ‘let’ con-
struct, requires the use of an environment component (ρ ∈ Env) added to the configura-
tion. In this simple specification, environments are finite functions from variables to final
values Var → N.

We use here an example adapted from Plotkin’s notes, which is a simpler form of the
‘let’ construct from Standard ML [49]. Rule 2.3 specifies that, first, the expression e0 is
evaluated until a final value m is found. Rule 2.4 specifies that e1 should be evaluated
into e ′1 in the context of a new environment, obtained by replacing all instances of the

5

variable x in the environment ρ by m and placing back the evaluated e ′1 into the ‘let’
body. Finally, Rule 2.5 specifies that when e1 is evaluated to a final value n, the entire
expression should be replaced by n.

e ::= let x=e0 in e1 end x ∈ Var = {x1, x2, . . .}

ρ ` e0−→ e ′0

ρ ` let x=e0 in e1 end −→ let x=e ′0 in e1 end
(2.3)

ρ[m/x] `V∪{x} e1−→ e ′1

ρ ` let x=m in e1 end −→ let x=m in e ′1 end
(2.4)

ρ ` let x=m in n end −→ n (2.5)

Rule 2.6 locates the value of the variable x in the environment ρ

ρ ` m = ρ(x)

ρ ` x−→ m
(2.6)

Since now expressions are evaluated in the presence of an environment, the rules for
mathematical expressions must be rewritten.

ρ ` e0−→ e ′0

ρ ` e0+e1−→ e ′0+e1

ρ ` e1−→ e ′1

ρ `m0+e1−→m0+e
′
1

(2.7)

ρ `m0+m1−→m0 +m1 (2.8)

Incidentally, the rules for arithmetic operations and the ‘let’ construction are in
the so-called “small-step” operational semantics, since the evaluation of the value-added
syntax tree is made one step at a time, substituting branches of the tree during the
transition until a final value is (possibly) reached. An alternative to small-step semantics
is the “big-step” semantics, in which the entire syntax tree is computed directly to a
final value. The semantics of Standard ML is given in big-step style, for example [49].
Optionally, the big-step relation may use the symbol ⇒ to distinguish from the “small-
step” style. Let us exemplify by reinstating rules 2.1 and 2.2 together in rule 2.9 in
big-step style:

e0 ⇒m0 e1 ⇒m1

e0 + e1 ⇒m0 +m1

(2.9)

The following rule is also necessary in big-step semantics.

n ⇒ n (2.10)

SOS also has the concept of operational conservative extensions [1]. An extension of a
set of rules is operationally conservative if provable transitions in the original system are
the same as those in the extended system. It has been shown ([1]) that source-dependent

6

rules are a necessary condition for operational conservative extensions. A rule is source-
dependent if all its variables are source-dependent. The source-dependent variables in a
transition rule r are defined inductively as follows: (i) all variables in the source of r are
source-dependent; if t → t ′ is a premise of r and all variables in t are source-dependent,
then all variables in t ′ are source-dependent. To illustrate this, consider the following
example, taken from [1, 27]. Consider two constants a and b, and a metavariable x. With
the following rule alone, it is not possible to prove that a→ a.

x → x

a → a

However, if we extend the system by adding the following rule, it becomes possible to
prove a→ a, by instantiating the metavariable x to the constant b. The problem is that
the variable x is not source-dependent.

b → b

2.1.2 Modular SOS

To solve the modularity problem in SOS, Mosses developed a framework called Modular
SOS (MSOS) [53].1 The key modularity point in MSOS lies on the generalized transition
systems where the semantic components, such as the environment, are moved from the
configurations to the transition label. The configurations rewritten by the transition rules
consist only of value-added abstract syntax trees. Transition labels are understood as
arrows of a category and adjacent labels in computations are required to be composable.
Semantic components, now on the label, are referenced through indices. The idea is
that a label may contain an unspecified number of components, but only the components
that are needed in a particular transition must be made explicit. Formally a generalized
transition system is a quadruple (Γ,A,→, T) where A is a category with arrows A, such
that (Γ, A,→, T) is a labelled terminal transition system. Computation requires that
whenever a transition with label α is followed by a transition labelled α ′, it is required
that α and α ′ are composable in A [53].

Since labels are now arrows of a category, let us discuss how label categories are used
to model information that is processed in MSOS transitions. First, let us recall briefly
that a category consists of: (i) a set of objects O; (ii) a set of arrows A; (iii) functions
source and target from A to O; a partial function from A×A to A for composing arrows;
and (iv) a function from O to A giving an identity arrow for each object. Labels which are
identity arrows stand for unobservable transitions, which we discuss later in this Section.
Normally three different types of label categories are used on MSOS specifications:

• the discrete category, with a single, identity, arrow for each object. These labels
represent information that can be read by a transition but not written to, as is the
case of environments (read-only information);

• the cartesian product of the sets of objects O and the set of arrowsO×O, with arrow
(o, o ′) going from o to o ′. Composition in this category eliminates intermediate

1The description of MSOS in this Section follows the description given by Mosses in [53, 52].

7

objects and identity arrows are of the form (o, o); usually this category is used to
model information that may be read and changed by a transition, as is the case of
stores (read-write information);

• the 1-object category where the set of arrows is O∗, the monoid of sequences gen-
erated by O. The identity arrow is the empty sequence (ε), and composition of
arrows is sequence concatenation (given by the binary operation ·); it is used to
model information that is emitted or produced by a transition, such as signaling an
exception or outputting a value (write-only information).

The same considerations for operational conservative extensions are also applicable to
MSOS with the notion of source-dependability extended to metavariables appearing on
labels.

Now let us describe MSOS specifications, which are triples (S, L, T), where S is, as in
SOS, the abstract syntax, L is the label composition specified as a product of the three
categories described above, and T the usual set of transitions. Let us proceed now with
the intuitive understanding of label expressions in MSOS, described at the beginning of
this Section (the complete categorical aspects of MSOS is given in [53]). In MSOS, as we
mentioned, components are accessed in labels through indices and can be of three different
types, which ultimately reflects their categorical formalization: read-only, read-write, and
write-only components.

MSOS defines a notation for the indices of each different type of component: a single,
unprimed index i is associated with a read-only component, which is the same at the start
and at the end of the transition; a pair of unprimed and primed indices i, i ′ is associated
with a read-write component: the unprimed index refers to information present at the
start of the transition and the primed index refers to information present at the end of
the transition; a single, primed, index is associated with a write-only components and
refers to information that is present at the end of the transition.

The different type of components have different requirement for the composability of
adjacent labels. Two labels (L1, L2) are composable if and only if L1 and L2 have the same
set of indices, and for each index i:

• if i indexes a read-only component, L1.i = L2.i;

• if i, i ′ indexes a read-write components, L1.i
′ = L2.i.

Write-only components do not affect the composability of labels.

The result of the composition of labels L1; L2, is determined by the composition of
each pair index-component (i, c) in a label L (also called a field) pairwise joined by their
respective indices, as follows:

• for read-only indices (i, c); (i, c) = (i, c), the components are the same;

• for read-write indices (i, c, i ′, c ′); (i, c ′, i ′, c ′′) = (i, c, i ′, c ′′), that is, the composition
eliminates intermediate components;

8

• for write-only indices (i ′, c); (i ′, c ′) = (i ′, c · c ′), that is, composition is given in
terms of the binary operation of the monoid generated by i ′.

Labels in MSOS may be classified as unobservable when read-write components do
not change, and no new information is produced by write-only components. That is L is
an unobservable label if and only if, for each index i:

• if i and i ′ index a read-write component, L.i = L.i ′;

• if i ′ indexes a write-only component, L.i ′ = ε.

A transition rule, in its unconditional case, is written as t −α→ t ′ and specifies a
triple relation between the terms t, and t ′, and the label α. Conditional transitions are
written as in SOS:

c1, . . . , cn

c

where it specifies that, if the conditions c1, . . . , cn hold, then the conclusion c also holds.

The label expression α uses a notation that is reminiscent of Standard ML notation
for record patterns. Each field is written as i = c, with i the index and c the component,
and the “rest of the label,” is written with the notation ‘. . .’. For example, a label α and
an index ρ such that α.ρ = ρ0 is written as {ρ = ρ0, . . .}; a label α with indices σ and
σ ′ such that α.σ = σ0 and α.σ ′ = σ1 is written as {σ = σ0, σ

′ = σ1, . . .}; and a label
α with an index τ ′ such that α.τ ′ = τ0 is written as {τ ′ = τ0, . . .}. The metavariable
X ranges over arbitrary labels, and the metavariable U ranges over unobservable labels.
Optionally, instead of writing t−U→ t ′, one may write t−→ t ′.

Let us illustrate MSOS revisiting the specifications for arithmetic expressions and
introducing the rules for ‘let’ expressions. Rules 2.11 and 2.12 specify the evaluation of
expressions in MSOS.

e0 −X→ e ′0

e0+e1 −X→ e ′0+e1

e1 −X→ e ′1

m0+e1 −X→ m0+e
′
1

(2.11)

m0+m1−→m0 +m1 (2.12)

To give semantics to a ‘let’ expression, we add an environment to the specification
by means of an index declaration in the labels. Rules 2.13, 2.14, and 2.15 specify in
MSOS the meaning of ‘let’ expressions. The informal description of Rule 2.14 is: to
evaluate the e1 expression inside the ‘let’, evaluate one step of e1 in the context of a
new env-indexed component (ρ[m/x]) into e ′1; any changes to read-write components
and any produced information by write-only components (represented by the notation
“. . .”) should be carried onto the conclusion.

e0 −X→ e ′0

let x = e0 in e1 end −X→ let x = e ′0 in e1 end
(2.13)

9

e1 −{env = ρ[m/x], . . .}→ e ′1

let x =m in e1 end −{env = ρ, . . .}→ let x=m in e ′1 end
(2.14)

let x=m in n end −U→ n (2.15)

Finally, rule 2.16 is analogous to rule 2.6. We use an unobservable label, represented
by the metavariable U, and accessing the environment indexed by ρ with the notation
U.ρ.

n = U.ρ(x)

x−U→ n
(2.16)

The transitions in MSOS may optionally operate on typed value-added syntactic trees.
The type of the right-hand side is assumed to be the same as the type of the left-hand
side. This kind of syntactic tree has one additional constraint that it specifies, of course,
the type of the term to be matched against. Recall that, with a subset inclusion relation
between sets, a term may be part of several different sets—an obvious example is the term
‘100’, which is part of, say, the sets N, Z, R, and Q. With this additional constraint, one
may create specific rules for each particular type that a term may have. For example:
on a hypothetical specification in which there are distinct components for the bindings of
values and the bindings of closures, one may create a rule that specifies that an identifier,
when being evaluated on the context of a ‘MathExpression’, should lookup its value on
the environment that maps identifiers to values, but when being evaluated on the context
of a ‘FunctionCall’, should lookup the function body on the environment that maps
identifiers to closures, and so on.

2.2 Rewriting Logic

Rewriting logic (rwl) [40] is a logic of change in which both static and dynamic aspects
of a system may be specified. It is also a logical framework which can represent many
different logics, languages, operational formalisms and models of computation [17, 7, 18,
55, 6, 64, 44, 20, 59]. The dynamic aspects are specified in rewriting logic itself, using
labelled conditional rewrite rules and the static aspects are specified in an underlying
equational logic. Rewriting logic has several high-performance implementations [5, 14, 22].

This Section describes formally Rewriting Logic along with its equational sub-logic,
the Membership Equational Logic (mel) [41]. Practical examples are shown in Section 2.3,
where we describe our chosen rwl implementation, Maude [14].

The underlying equational logic that rewriting logic commonly uses is the membership
equational logic. mel is a generalization of order-sorted equational logic where each term
belongs to a kind, and each kind k has an associated poset (Sk,≤) of sorts. This allows
the representation of partiality by defining error terms as terms with kinds, but with no
associated sort. A detailed example is given, using Maude syntax, in Section 2.3.

Formally,2 a signature in mel is a triple Ω = (K, Σ, S) where K is a set of kinds,

2The following description follows the presentation of mel in [16] and [41].

10

Σ is a K-kinded signature {Σw,k}(w,k)∈K∗×K, and S is a pairwise disjoint family of sorts
S = {Sk}k∈K. Following usual notation, we write TΣ the K-kinded algebra of ground Σ-
terms, and by TΣ(X) the K-kinded algebra of Σ-terms on the K-kinded set of variables
X.

The atomic formulae of mel are either equations t = t ′, where t and t ′ are Σ-terms
of the same kinds, or membership axioms of the form t : s, where t has kind k and s ∈ Sk.
Sentences in mel are Horn clauses on these atomic formulae:

(∀X)A0 ⇐ A1 ∧ · · ·∧An

where Ai is either an equation or a membership axiom, and each xj ∈ X is a K-kinded
variable. A theory in mel is a pair (Ω,E) where E is the set of sentences composed of
conditional Church-Rosser, terminating, and sort-decreasing equations and conditional
membership axioms over the signature Ω.

Given a mel theory T = (Ω,E) we say that T entails a sentence ϕ, and write T ` ϕ,
if and only if ϕ is obtained by finite application of the following rules of deduction.

• Reflexivity.

E ` (∀X) t = t

• Symmetry.

E ` (∀X) t = t ′

E ` (∀X) t ′ = t

• Transitivity.

E ` (∀X) t = t ′ E ` (∀X) t ′ = t ′′

E ` (∀X) t = t ′′

• Congruence.

E ` (∀X) t1 = t ′1 · · · E ` (∀X) tn = t ′n
E ` (∀X) f(t1, . . . , tn) = f(t ′1, . . . , t

′
n)

• Membership.

E ` (∀X) t = t ′ E ` (∀X) t : s

E ` (∀X) t ′ : s

• Modus ponens for equations.3 Given a sentence:

(∀X) t = t ′ ⇐ u1 = v1 ∧ · · ·∧ un = vn ∧w1 : s1 ∧ · · ·∧wm : sm

3Usually the rules for modus ponens for equations and membership axioms are shown together; we
opted for the separation into two different rules to avoid an unnecessarily complex rule.

11

in the set E of axioms, and given a K-kinded assignment θ : X → TΣ(Y) then, for
1 ≤ i ≤ n and 1 ≤ j ≤ m, where from θ we may obtain its unique extension to a
Σ-homomorphism θ : TΣ(X) → TΣ(Y) (see [41, Section 2] for more details on this).

E ` (∀Y)θ(ui) = θ(vi) E ` (∀Y) θ(wj) : sj

E ` (∀X)θ(t) = θ(t ′)

• Modus ponens for membership axioms. Given a sentence:

(∀X) t : s ⇐ u1 = v1 ∧ · · ·∧ un = vn ∧w1 : s1 ∧ · · ·∧wm : sm

in the set E of axioms, and given a K-kinded assignment θ : X → TΣ(Y) then, for
1 ≤ i ≤ n and 1 ≤ j ≤ m.

E ` (∀Y)θ(ui) = θ(vi) E ` (∀Y) θ(wj) : sj

E ` (∀X)θ(t) : s

As mentioned before, practical examples on the use of mel are given in Section 2.3.

A rewrite theory4 is a tuple R = (Ω,E, R) where (Ω,E) is a mel theory, as described
above; R is a set of universally quantified labelled conditional rewrite rules of the form
([10, Section 1.1])

l : t→ t ′ ⇐ (
∧

i

ui = u ′i) ∧ (
∧

j

vj : sj) ∧ (
∧

k

wk → w ′
k)

with the following deduction rules:

• Reflexivity.

(∀X) t→ t

• Transitivity.

(∀X) t1 → t2 (∀X) t2 → t3

(∀X) t1 → t3

• Equality.

(∀X)u → v E ` (∀X)u = u ′ E ` (∀X) v = v ′

(∀X)u ′ = v ′

• Congruence. For each f : k1 · · ·kn → k in Σ

4We use the original presentation of rewrite theories in rewriting logic and not the generalized rewrite
theories defined by Bruni and Meseguer in [10] since the more general construction of frozen operators is
not explored by Maude MSOS Tool.

12

(∀X) tj1 → t ′j1 · · · (∀X) tjm → t ′jm

(∀X) f(t1, . . . , tj1, . . . , tjm, . . . , tn) → f(t1, . . . , t
′
j1
, . . . , t ′jm, . . . , tn)

• Nested replacement5. For finite substitutions θ, θ ′ : X → TΣ(Y). Given a rewrite
rule, with 1 ≤ i ≤ n.

(∀X) l : t→ t ′ ⇐
∧

i

ti → t ′i

For 1 ≤ i ≤ n and x ∈ X:

(∀Y)θ(ti) → θ(t ′i) (∀Y)θ(x) → θ ′(x)

(∀Y) θ(t) → θ ′(t) ′

This rule means that, given a rule r ∈ R and two substitutions θ, θ ′ for its variables
such that for each x ∈ X we have θ(x) → θ ′(x), then r can be concurrently applied
to the rewrites of its arguments, once that the conditions of r can be satisfied in the
initial state defined by θ.

Rewriting logic has a computational reading of its inference rules that allows the speci-
fication of concurrent systems:6 reflexivity means that a system may have idle transitions;
equality means that states of a concurrent system are equal modulo the set of equations
E; congruence is a general form of sideways parallelism in the sense that the arguments of
the operator f may evolve in parallel; nested replacement combines an atomic transition at
the top using a rule with nested concurrency in the substitution; transitivity is sequential
composition.

It is important to discuss how such rewrite theory could be efficiently executable by
some implementation. For this to happen, some requirements should be met [48]: the
set of equations E should be decomposable into an union E = E0 ∪ A, with A a set of
equational axioms such as associativity, commutativity, identity, for which an effective
matching algorithm modulo A exists. Additionally, E0 should be ground confluent and
terminating (that is, applying the equations E0 modulo A to a term t, we arrive in a finite
number of rewrites into a single form). As for the rules R, they should be coherent [69]
with E0 modulo A, which means that, in order to rewrite in equivalence classes modulo
E, we can always simplify a term with equations to its canonical form, and then rewrite
with a rule in R. Finally, rules in R should be admissible ([13]), which intuitively means
that there should be no free metavariables.

Finally, rewriting logic is reflective in the sense that its metatheory can be represented
at the object level in a consistent way, so that the object-level correctly simulates the
relevant metatheoretic aspects [37]. That is, there is a finite rewrite theory U that can
simulate any other finitely representable rewrite theory R in the following sense: given
any two terms t, t ′ in R, there are corresponding terms (R, t) and (R, t ′) in U such that
we have:

R ` t→ t ′ ⇔ U ` (R, t) → (R, t ′)

5We follow here the rule as defined in [10], considering only conditional rewrites; in fact a general
version of this rule also considers conditional equations and membership axioms.

6Based on [42].

13

With U being itself representable, giving rise to the so-called “reflective tower.”

R ` t→ t ′ ⇔ U ` (R, t) → (R, t ′) ⇔ U ` (U , (R, t)) → (U , (R, t ′)) · · ·

This characteristic of rewriting logic and its relation with the Maude interpreter is
discussed on Section 2.3.2.

2.3 Maude

Maude names both the language and its implementation engine [14], a high-performance
C++ implementation of rewriting logic that is capable of rewrites at the order of millions
per second (see Appendix F for an example). As of Maude 2.1.1, only an interpreter is
available, but a compiler is under development that promises to bring this number up
to dozens of millions of rewrites per second. To keep this Section simple we opted to
describe the aspects of Maude relevant to the implementation of Maude MSOS Tool. The
complete description of its language is available in [14].

Maude implements rewriting logic theories and membership equational theories with
system modules and functional modules, respectively. System modules are created with
the keywords ‘mod n is D endm’ and functional modules are created with the keywords
‘fmod n is D endfm’, where n is the module name and D are the module declarations.

Module importation in Maude is made using one of the following keywords ‘including’
(or ‘inc’), ‘extending’ (‘ex’), and ‘protecting’ (‘pr’). The difference between the three
types of inclusion is whether junk or confusion is allowed in the importation. Informally
speaking, in algebraic specifications, no confusion is the requirement that different terms
denote different things and no junk means that the algebra is minimal, since it has only
the necessary elements. By including a module in ‘protecting’ mode, no junk and no
confusion are allowed. For example, if we import ‘BOOL’ into a module ‘FOO’ in protecting
mode, we are assuming that neither new constants of the sort ‘Bool’ will be created (no
junk) nor any new meaning is added to the module ‘BOOL’, such as making the constants
‘true’ and ‘false’ equal (no confusion). The weaker form of inclusion ‘extending’ allows
junk but does not allow confusion. (It is useful in our case when the data of an importing
module is being extended with new constants, such as the signature of a programming
language being divided in several modules.) The most general form of inclusion is by us-
ing the ‘including’ keyword, where junk and confusion may be introduced. Maude does
not check whether to see if the requirements of the different forms of inclusion are being
respected, since it would require theorem proving capabilities (but indeed some particular
case could be verified).

The signature Σ in Maude is created by declaring sorts with the ‘sort’ keyword,
subsorting relations with the ‘subsort’ keyword, operators with the ‘op’ keyword, and
membership axioms with the ‘mb’ and ‘cmb’ keywords.

Let us exemplify these concepts by modeling words and letters in a language. We
begin with the simple concept of letters, vowels, and consonants, represented by the sorts
‘Letter’, ‘Vowel’, ‘Consonant’, respectively.

14

sort Letter .

sort Vowel .

sort Consonant .

In order to give the order of the sorts on the poset (Sk,≤), one uses the ‘subsort’
keyword. In this example, vowels and consonants are all letters, hence the subsorting
relation that follows:

subsort Vowel < Letter .

subsort Consonant < Letter .

Let us add some operators to this signature. The operators that are part of the
signature {Σw,k}(w,k)∈K∗×K are defined using the ‘op’ keyword with the following syntax:

op o : w̄ -> k [A] .

where o is the operator name, w̄ = w1 · · ·wn are the domain sorts (or kinds), k the image
sort (or kind), and A are the equational attributes: ‘assoc’ defines associative operations,
‘comm’ defines commutative operations, and ‘id:t’ defines the term t as the identity of
the operation being defined. Formally, as discussed on Section 2.2, this means that the
rewrites and reductions will happen modulo these attributes. The ‘ops’ keyword is a
variant of ‘op’ in which several operators may be defined at once, if they have the same
domain and image sorts. In the following example, there is no domain sort—they are all
constants. The ‘constructor’ (or ‘ctor’) attribute is not an equational attribute, but an
indication that this operator is a constructor of terms. Constructors define the structure
of the terms in the specification, while regular operators compute new terms from their
arguments.

ops a e i o u : -> Vowel [constructor] .

ops b c d f g h j k l m n

p q r s t v w x y z : -> Consonant [constructor] .

If we use the built-in command ‘reduce’—that essentially applies the equations in E
to a Σ-term and is described in detail on Section 2.3.1—we may check that the vowel ‘a’
is also a letter, as expected. The ‘_::_’ operator is a built-in predicate in Maude: t :: s
checks if t has sort s.

Maude> reduce a :: Letter .

reduce in WORDS : a :: Letter .

result Bool: true

As expected, ‘a’ is not a consonant, as the following ‘reduce’ shows.

Maude> reduce a :: Consonant .

reduce in WORDS : a :: Consonant .

result Bool: false

15

Since the sorts ‘Letter’, ‘Vowel’, and ‘Consonant’ are all related, they form a single
connected component and belong all to the same kind. This kind is not named explicitly,
but one can use any sort name that is part of the connected component surrounded by
brackets, such as ‘[Vowel]’, as the kind name. By default Maude chooses the kind named
by the topmost sort on the poset. In this case, it is ‘[Letter]’.

Let us add the concept of a word to our simple specification. We begin by defining
a new sort ‘Word’. To simplify this exposition, in this specification a single letter is a
“trivial word.”

sort Word .

subsort Letter < Word .

We now make use of Maude’s capability of creating an operator with no name, usually
called the “juxtaposition” operator, where the new term is constructed by putting each
argument side by side.

op __ : [Word] [Word] -> [Word] [assoc] .

The use of the equational attribute ‘assoc’ means that this operator is associative.
Intuitively this means that one may write ‘a b c’ instead of ‘(a b) c’ and so on. We
may now write something like ‘c b v n’ and it will be identified as a ‘[Word]’. The
juxtaposition operator was declared over the kind ‘[Word]’ with a purpose: recall that in
mel a term with a kind but not a sort is an error term. This fits well with our purpose,
since we want some sequences of letters to be words, but not all.

We now add the capability of identifying actual words to our specification. We make
use of Maude’s ‘mb’ declaration to create a membership axiom that defines certain se-
quences of letters as words in our language. Its syntax is:

mb t : s .

where t is a term and s is a sort. For example:

mb a b e t t e d : Word .

mb a b e t t e r : Word .

mb a b e t t i n g : Word .

mb a b e y a n c e : Word .

mb a b h o r : Word .

...

Now, if we ask Maude to reduce ‘a x q’ we will see that it tells us that it is of the
kind ‘[Word]’ (no sort), while the reduction of ‘a b h o r’ gives the correct sort ‘Word’.
The topmost sort is now ‘Word’.

16

reduce in WORDS : a x q .

result [Word]: a x q

reduce in WORDS : a b h o r .

result Word: a b h o r

We have thus exemplified the concept of sorts, kinds, and operators with equational
attributes. We now exemplify the use of equations and rewrite rules. Let us assume the
existence of a built-in module ‘INT’ that defines the integers with sort ‘Int’. We begin by
defining a set of integers (‘IntSet’), which is represented by an associative-commutative
operator. This set of integers has the identity ‘null’.

sort IntSet .

subsort Int < IntSet .

op null : -> IntSet .

op __ : IntSet IntSet -> IntSet [assoc comm id: null] .

As it was defined, the set of integers ‘IntSet’ is actually a multi-set, since it allows
the repetition of elements; let us add an equation that eliminates duplicated elements
from an ‘IntSet’.

Metavariables in Maude specifications must be explicitly declared before they are used
with the following syntax:

var v : s .

where v is the variable name and s its sort. An alternative form that avoids the predec-
laration of metavariables is to use them explicitly in equations and rules using the syntax
‘v:s’.

Unconditional equations in Maude are written with the following syntax:

eq [L] : t = t ′ .

where t and t ′ are terms that belong to the same kind and [L] is an optional label.

In the example below we declared the metavariable ‘I’ to range over ‘Int’. Next we
created an unconditional equation that specifies that any two repeated integers should be
removed and a single copy should be kept. We could have written the equation as ‘eq
I:Int I:Int = I:Int .’, this way we would not have to declare the ‘I’ metavariable.

var I : Int .

eq I I = I .

This single equation is sufficient, since Maude rewrites modulo equivalence classes—in
this case, the associative-commutative equivalence class of the operator (‘__’). Also, due
to the Congruence deduction rule of mel, the equation is applicable as many times as
possible inside a term. For example a term such as ‘1 2 1 2’ will match twice against ‘I
I’: the first match will be ‘1 1’ and the second will be ‘2 2’.

17

reduce in INTEGER : 1 2 1 6 2 1 2 1 2 1 2 .

rewrites: 8 in 0ms cpu (0ms real) (~ rewrites/second)

result IntSet: 1 2 6

The identity attribute of the ‘__’ operator can be demonstrated with the following
reduction example, where the identity ‘null’ is, as expected, removed from the set of
integers.

reduce in INTEGER : 1 2 3 null 4 3 1 null 1 3 .

rewrites: 4 in 0ms cpu (0ms real) (~ rewrites/second)

result IntSet: 1 2 3 4

In order to demonstrate rewrite rules, let us create an operation that selects, non-
deterministically, an integer out of an integer set. We begin by creating the operator:

op select : IntSet -> Int .

We now add the desired rule. In Maude, unconditional rules are written with the
following syntax:

rl [L] : t => t ′ .

where t and t ′ are terms that belong to the same kind, and L is an optional label.

The rule ‘select’ below will non-deterministically select an integer out of an integer
set due to the associative-commutative matching of the pattern ‘I S’.

rl [select] : select(I S) => I .

The ‘rewrite’ command (also detailed in Section 2.3.1) attempts to rewrite a given
term t until no further rewrite rules apply. In the example below it will only apply once
to the term ‘select(...)’, since it will rewrite this to an integer, to which no rewrite
rule applies. (As a side note, the reason that the sort of ‘1’ is ‘NzNat’ is because Maude
attempts to show the least sort applicable to a term in the output of the ‘rewrite’ com-
mand. The module ‘INT’ actually imports other modules (such as ‘NAT’, the naturals) that
defines a hierarchy of sorts involving ‘NzNat’, the non-zero naturals, ‘Nat’, the naturals,
‘NzInt’, the non-zero integers, and ‘Int’ itself. The least sort of ‘1’ is ‘NzNat’ in this
case.)

rewrite in INTEGER : select(1 2 1 6 2 1 2 1 2 1 2) .

rewrites: 9 in 0ms cpu (0ms real) (~ rewrites/second)

result NzNat: 1

18

The chance of the rule selecting ‘1’, ‘2’, or ‘6’ are exactly the same. This is because
equations are applied before the rules are applied, due to the coherence requirement. This
would reduce the term ‘1 2 1 6 2 1 2 1 2 1 2’ to ‘1 2 6’ and the rule would apply
over this final term. In Section 2.3.1 we will see how built-in tools in the Maude interpreter
can be used to search through all possible outcomes of non-deterministic specifications.

Now, let us conclude this Section with a word on conditions. We opted to make
the examples so far very simple for ease of exposition, however, Maude also supports
conditional membership axioms, equations, and rewrite rules, as we outlined formally in
Section 2.2. They are specified using the following syntax:

For conditional membership axioms:

cmb t : s if C .

For conditional equations:

ceq t = t ′ if C .

For conditional rewrite rules:

crl t => t ′ if C .

The condition C is either a conjunction of conditions combined with the ‘_/_’ oper-
ator, or one of the following:

• Ordinary equations ‘t = t’’, which are satisfied if and only if the canonical forms
of ‘t’ and ‘t’’ are equal modulo the equational attributes specified in the operators
in ‘t’ and ‘t’’, such as associativity, commutativity, and identity.

• Abbreviated boolean equations such as ‘t’, abbreviating the equation ‘t = true’.
There are a number of built-in predicates, such as: equality (_==_), inequality
(_=/=_), membership predicates (_:: S, with ‘S’ a sort, which returns true if the
parameter is of sort ‘S’), together with a combination of the connectives not_, _and_,
and _or_.

• Matching equations [14], written as ‘t := t’’, which are also ordinary equations,
but with additional requirements at the operational level. In essence, matching
equations are used to instantiate new variables by matching the left-hand side of
the matching equation against the right-hand side.

• Rewrites, such as ‘t => t’’, where ‘t’ and ‘t’’ are terms of any sort, which means
that there is a rewrite of the term ‘t’ to the term ‘t’’ with zero or more rewriting
steps.

Conditional rewrites must only be used in conditional rewrite rules, of course; other-
wise all types of conditions may be used on membership axioms, equations, and rules.

19

2.3.1 Tools

We have already seen examples of some of the tools available on the Maude interpreter,
namely the ability of reducing and rewriting terms. This Section will describe those
commands in more detail, while also describing the breadth first search and model checking
capabilities of Maude.

2.3.1.1 Reducing and rewriting terms

We begin by the ‘reduce’ command, abbreviated with ‘red’. It receives an argument
a term t and attempts to reduce this term to a normal form by selectively applying all
applicable equations to it until no further equation is applicable.

The syntax is ‘reduce t’, where t is a term to be reduced. Optionally, we may specify
that the reduction should be made in module M by writing: ‘reduce in M : t’. For
example:

Maude> red in NAT : 100 + 50 .

reduce in NAT : 50 + 100 .

rewrites: 1 in 0ms cpu (0ms real)

result NzNat: 150

A similar command is ‘rewrite t’, abbreviated with ‘rew’. It attempts also to reduce
a term t by first reducing it into a normal form t ′, according to the equations, and then
applying all applicable rewrite rules to it until no further rule is applicable. As opposed
to equations, assumed Church-Rosser and terminating, rewrite rules may lead to non-
termination; to cope with this, one may use an argument to this command that establishes
an upper limit n on the number of rewrites performed, ‘rewrite [n] t’.

As an example, consider the following simple system module that increments the
argument of the operator ‘counter’ of sort ‘Counter’ that takes as argument a natural
(sort ‘Nat’). This module also shows an example of a conditional rewrite rule: the rule
labelled ‘inc’ is only applicable to ‘counter(n)’ if n is less than 1000.

mod COUNTER is protecting NAT .

sort Counter .

op counter : Nat -> Counter .

var n : Nat .

crl [inc] : counter (n) => counter (n + 1)

if n < 1000 .

endm

Issuing an unbounded ‘rewrite’ command we arrive at the final possible value,
‘counter(1000)’.

20

Maude> rew counter(0) .

rewrite in COUNTER : counter(0) .

rewrites: 3001 in 10ms cpu (10ms real) (300100 rewrites/second)

result Counter: counter(1000)

However, if we use a bounded rewrite, we arrive at the upper bound given as parameter
to the ‘rew’ command, since, in this particular module, a single rewrite step increments
by one the value of the counter.

Maude> rew [100] counter(0) .

rewrite [100] in COUNTER : counter(0) .

rewrites: 300 in 0ms cpu (0ms real) (~ rewrites/second)

result Counter: counter(100)

2.3.1.2 Searching for states

Another tool available is the breadth first search that is performed by the command
‘search’. Essentially, it attempts to find a rewrite proof from a term to a final pattern
by applying the deduction rules of the rewriting calculus. The syntax of the command is
(everything between { and } is optional):

search {[b]} {in m :} t R p {such that C}

where b is an upper bound on the number of solutions returned by the command, default
is unbounded; m is the module in which the search will be made, default is the current
module; t is the initial state in which the search will begin and p is the pattern of the
final state; R is the relation between t and p and can be one of the following:

• ‘=>1’: one step proof;

• ‘=>+’: one or more steps proof;

• ‘=>*’: zero or more steps proof;

• ‘=>!’: only canonical final states are allowed.

An optional condition C may be specified to be satisfied by the rewrite proof.

To exemplify, let us return to our first example in which a number is selected non-
deterministically from a set of integers.

mod INTEGER is protecting INT .

sort IntSet .

subsort Int < IntSet .

op null : -> IntSet .

op __ : IntSet IntSet -> IntSet [assoc comm id: null] .

21

var S : IntSet .

var I : Int .

eq I I = I .

op select : IntSet -> Int .

rl select(I S) => I .

endm

If we search for all possible terms that are reachable beginning with the term ‘select(1
2 1 6 2 1 2 1 2 1 2)’ we must use the pattern ‘S:IntSet’. If we want a proof that in-
cludes zero or more steps, we use the ‘=>*’ relation. The pattern ‘S:IntSet’ gets matched
against each possible state reachable with zero or more steps beginning with ‘select(1
2 1 6 2 1 2 1 2 1 2)’. Also recall that rewrite rules in Maude are coherent and all
terms are reduced to a normal form before the rewrite rules are applied, hence the term
‘select(1 2 1 6 2 1 2 1 2 1 2)’ is first reduced to ‘select(1 2 6)’ before the search
begins.

search in INTEGER : select(1 2 1 6 2 1 2 1 2 1 2) =>* S .

Solution 1 (state 0)

states: 1 rewrites: 8 in 0ms cpu (0ms real)

S --> select(1 2 6)

Solution 2 (state 1)

states: 2 rewrites: 9 in 0ms cpu (0ms real)

S --> 1

Solution 3 (state 2)

states: 3 rewrites: 10 in 0ms cpu (0ms real)

S --> 2

Solution 4 (state 3)

states: 4 rewrites: 11 in 0ms cpu (0ms real)

S --> 6

No more solutions.

states: 4 rewrites: 11 in 0ms cpu (10ms real)

If we want only final states, that is, states in which no more rewrite rules are appli-
cable, we use the ‘=>!’ relation:

search in INTEGER : select(1 2 1 6 2 1 2 1 2 1 2) =>! S .

Solution 1 (state 1)

22

states: 4 rewrites: 11 in 0ms cpu (0ms real)

S --> 1

Solution 2 (state 2)

states: 4 rewrites: 11 in 0ms cpu (0ms real)

S --> 2

Solution 3 (state 3)

states: 4 rewrites: 11 in 0ms cpu (0ms real)

S --> 6

No more solutions.

states: 4 rewrites: 11 in 0ms cpu (0ms real)

2.3.1.3 Model checking specifications

Maude comes with a model checker that supports linear temporal logic (LTL) formulae.
This Section gives a brief overview of its model checking capabilities and how LTL formulae
are encoded in Maude. The information present in this Section is based on [14, Chapter
9].

Let us describe inductively the set of formulae of the propositional linear temporal
logic LTL(AP) over a set AP of atomic propositions. We also give their concrete signature
defined by the module ‘MODEL-CHECKER’.

• > ∈ LTL(AP) always satisfiable, written as ‘True’;

• if ϕ ∈ LTL(AP), then ©ϕ ∈ LTL(AP) is the next operator, which holds if ϕ is
satisfiable at the next step of computation, written as ‘O ϕ’;

• if ϕ,ψ ∈ LTL(AP), then ϕU ψ ∈ LTL(AP) is the strong until operator, which holds
if, during the computation, ϕ is valid, until ψ becomes valid, written as ‘ϕ U ψ’;

• atomic propositions, if p ∈ AP then p ∈ LTL(AP), and are defined by operators in
Maude whose image sort is ‘Prop’;

• boolean connectives, if ϕ,ψ ∈ LTL(AP) then ¬ϕ and ϕ∨ψ are in LTL(AP), written
as ‘~_’ and ‘_or_’.

Some useful syntactic sugar may be defined over this minimal set of formulae, as
Table 2.1 shows.

Kripke structures are the natural models for propositional temporal logic. Essentially,
a Kripke structure is a total unlabeled transition system to which a set of unary state
predicates have been added on its set of states. Formally, it is a triple A = (A,→A, L),
where A is a set of states, →A is a total binary relation on A, called the transition relation,
and L : A → P(AP) is a function, called the labeling function, associating to each state
a ∈ A the set L(a) of those atomic propositions in AP that hold in the state a. In a
rewriting logic system module that specifies a rewrite theory R = (Ω,E, R), the Krikpe

23

Name Formula Equivalent formula Maude formula

false ⊥ ¬> False

conjunction ϕ∧ ψ ¬((¬ϕ) ∨ (¬ψ)) ϕ /\ ψ

implication ϕ → ψ (¬ϕ) ∨ψ ϕ |-> ψ

eventually 3ϕ >U ϕ <>ϕ

henceforth 2ϕ ¬3¬ϕ []ϕ

release ϕRψ ¬((¬ϕ)U (¬ψ)) ϕ R ψ

unless ϕW ψ (ϕU ψ) ∨ (2ϕ) ϕ W ψ

leads-to ϕ ; ψ 2(ϕ → (3ψ)) ϕ |-> ψ

strong implication ϕ ⇒ ψ 2(ϕ → ψ) ϕ => ψ

strong equivalence ϕ ⇔ ψ 2(ϕ ↔ ψ) ϕ <=> ψ

Table 2.1: LTL formulae derived from the minimal set

structure has as a set of states A the set TΩ/E,k which is the set of canonical terms of the
kind k, the transition relation →A is the one-step rewriting transitions of terms of kind k
and the labeling function L(a) is the set of atomic propositions defined equationally over
terms of kind k that hold for state a ∈ A.

Let us give a very simple example, a simple state machine with elements ‘a’, ‘b’, ‘c’,
‘d’, and ‘f’, of sort ‘Elt’. States are created with the operator ‘st_’ that receives as
single argument an ‘Elt’. The transitions of this state machine are given by the labelled
rewrite rules in the module ‘STATE-MACHINE’ below. The two equations are there only to
demonstrate that the state space is indeed formed by canonical terms generated by the
specification, that is, ‘a’–‘f’. (Section 6.3 and Appendix E contain several examples of
the use of Maude’s model checker for a variety of specifications.)

mod STATE-MACHINE is

sorts St Elt .

op st_ : Elt -> St .

ops a b c d e f BB CC : -> Elt .

eq BB = b .

eq CC = c .

rl [a->b] : st a => st BB .

rl [a->c] : st a => st CC .

rl [b->a] : st b => st a .

rl [c->d] : st c => st d .

rl [c->e] : st c => st e .

rl [d->f] : st d => st f .

rl [f->a] : st f => st a .

endm

In order to use the model checker, we first need to define what is the state space of our
specification. In this case it is clearly the space defined by the sort ‘St’ with the operator

24

‘st_’. In module ‘CHECK-STATE-MACHINE’ below, after including the ‘MODEL-CHECKER’
module, we create the subsort relation between ‘St’ and ‘State’, which is a built-in sort
in the ‘MODEL-CHECKER’ module that represents the state space that will be explored by
the model checking algorithm.

mod CHECK-STATE-MACHINE is

protecting STATE-MACHINE .

including MODEL-CHECKER .

subsort St < State .

...

endm

We are now ready to implement a simple proposition to be checked. It must be an
operator whose image sort is ‘Prop’. We must define when this predicate holds, and it is
done by creating an equation involving the following operator:

:= : State× Formula ⇀ Bool

where ‘Formula’ is either a proposition, one of the formulae present in LTL(AP), described
at the beginning of this Section, or one of the formulae shown in Table 2.1.

In the example below we created a proposition ‘in s’ that will hold only when the
current state is s. Since the operator ‘ := ’ is partial, there is no need to specify when a
predicate is false.

var n : Elt .

op in_ : Elt -> Prop .

eq st n |= in n = true .

Figure 2.2 shows the Kripke structure associated with the ‘STATE-MACHINE’ system
module. The states are the canonical terms ‘a’–‘f’, the arrows represent the one-step tran-
sitions between each state. Although we did not make it explicit in the figure, each state
s has an associated propositional formula ‘in s’. For example, in state a the proposition
‘in a’ is true, while ‘in b’, ‘in c’, ‘in d’, and ‘in f’ are false.

In order to verify a LTL formula, we need to use the following operator:

modelCheck : State × Formula ⇀ ModelCheckResult

where the first parameter is the initial state, and the second the LTL formula to be
verified. The image ‘ModelCheckResult’ is either ‘true’ or a counterexample to the LTL
formula.

As an example of model checking an LTL formula, let us verify that, given the spec-
ification ‘STATE-MACHINE’ above, if state ‘b’ never occurs (‘~ <> in b’), then eventually
the current state will be ‘f’ (‘<> in f’).

25

a

b

c

d e

f

Figure 2.2: (Simplified) Kripke structure for ‘STATE-MACHINE’

reduce in CHECK-STATE-MACHINE :

modelCheck(st a, ~ <> in b -> <> in f) .

rewrites: 21 in 0ms cpu (0ms real) (~ rewrites/second)

result ModelCheckResult:

counterexample({st a,’a->c} {st c,’c->e}, {st e, deadlock})

The verification fails, giving us a counterexample, a pair of lists of transitions ‘counterexample(t, t ′)’,
where t corresponds to a finite path beginning at the initial state (‘st a’), and t ′ describes
a loop (state ‘st e’ is a dead end and can only rewrite to itself through the Reflexivity
rule of rewriting logic, see Section 2.2). The counterexamples in the model checker have
this form because if an LTL formula ϕ is not satisfied by a finite Kripke structure, it is
always possible to find a counterexample for ϕ having the form of a path of transitions
followed by a cycle (see [14, Chapter 9]).

2.3.2 Metalevel programming

The universal and reflective aspects of rewriting logic discussed at the end of Section 2.2 is
realized as the ‘META-LEVEL’ module in Maude’s prelude. This module defines a metarep-
resentation of all Maude constructions, such as sorts, constants, variables, terms, modules,
equations, rules, etc. Let us describe some of the most relevant functions in this module
that will be important in the implementation of the Maude MSOS Tool.

The so-called “up” functions convert terms in their object form to the metarepre-
sentation. The function ‘upModule(q)’ returns the metarepresentation, a term of sort
‘Module’, of the module named by its first argument q, a quoted-identifier such as ‘’NAT’.
The second argument instructs ‘upModule’ to return (or not) a flattened metamodule:
‘true’ means to include all dependent modules on the metarepresentation. The function
is partial, since the given module may not exist in Maude’s internal database of loaded
modules.

26

upModule : Qid× Bool ⇀ Module

As an example let us obtain by metarepresentation of the internal module ‘TRUTH-VALUE’.
The omitted contents of the ‘special’ attributes is of no importance here and are related
to the actual implementation of the Maude engine.

Maude> red in META-LEVEL : upModule(’TRUTH-VALUE, false) .

reduce in META-LEVEL : upModule(’TRUTH-VALUE, false) .

rewrites: 1 in 0ms cpu (0ms real) (~ rewrites/second)

result FModule: fmod ’TRUTH-VALUE is

nil

sorts ’Bool .

none

op ’false : nil -> ’Bool [ctor special(...)] .

op ’true : nil -> ’Bool [ctor special(...)] .

none

none

endfm

The function ‘upTerm(u)’ converts a term u from its object form (represented here
by a term of the built-in sort ‘Universal’) into its metarepresentation.

upTerm : Universal → Term

For example, ‘upTerm(true)’ gives the metarepresentation of the constant ‘true’.

Maude> red in META-LEVEL : upTerm(true) .

reduce in META-LEVEL : upTerm(true) .

rewrites: 1 in 0ms cpu (0ms real) (~ rewrites/second)

result Constant: ’true.Bool

The example of the ‘TRUTH-VALUE’ module above shows that the metarepresentation of
functional and system modules in Maude is very close to the object level. Let us also briefly
discuss the notation for metaterms. Constants are represented by a quoted-identifier that
consists of the constant name, a period, and the sort name. For example, as the example
at the beginning of this paragraph shows, the metarepresentation of the constant ‘true’
of the sort ‘Bool’ is ‘’true.Bool’. The metarepresentation of metavariables follows the
same pattern, but uses a colon to separate the metavariable name and its sort, such as:
‘’b:Bool’. Non-constant operators are represented by the operator name, including the
underscores used in the mixfix notation, with the arguments surrounded by brackets. For
example, in a module that defines the sort ‘Foo’, with constants ‘a’ and ‘b’, and a binary
mixfix operation ‘_._’, the metarepresentation of ‘a . b’ is ‘’_._[’a.Foo,’b.Foo]’.

Functions that move from the metalevel to the object level are the “down” functions.
As of Maude 2.1.1, there is no counterpart of ‘upModule’, that is, a function that moves
from a metamodule to a module. The opposite of ‘upTerm’ is the function that moves

27

from a metarepresentation into an object form, ‘downTerm’. It receives as first argument
the metaterm that will be converted into the term. The second argument is a term that
will act as an “error term” in case the function does not succeed in the conversion.

downTerm : Term× Universal → Universal

As an example, let us convert back from ‘’true.Bool’ into an object form by call-
ing ‘downTerm(’true.Bool, error-bool)’. Here, ‘error-bool’ is a previously created
constant that will be returned as value if the conversion is unsuccessful. The result is,
as expected, ‘true’, a term of sort ‘Bool’. If we try to convert a bogus term, such as
‘’a.Bool’, Maude will generate a warning and the resulting term will be ‘error-bool’,
as follows:

reduce in BOOL-META : downTerm(’a.Bool, error-bool) .

Advisory: could not find a constant a of sort Bool in

meta-module BOOL-TEST.

rewrites: 1 in 0ms cpu (0ms real) (~ rewrites/second)

result Bool: error-bool

Finally, let us finalize this description with four functions that further enhance Maude’s
metaprogramming capabilities. The function ‘metaParse’ constructs a metaterm out of
a sequence of quoted-identifiers (the second argument), using the signature defined by
the first argument, a metamodule. The expected type to be parsed is given as third
argument—or ‘anyType’, if the type is not known a priori. The function is partial and
results in a term of sort ‘ResultPair?’ that contains either a tuple with the metaterm
and its type or an error message.

metaParse : Module × QidList × Type? ⇀ ResultPair?

The sequence of quoted-identifiers is used because as we shall see in Section 2.3.4, the
‘LOOP-MODE’ facility in Maude converts all user input into a sequence of quoted-identifiers.
If the user enters, say, ‘(mod F is sort A . endm)’, the ‘LOOP-MODE’ converts this into
‘’mod ’F ’is ’sort ’A ’. ’endm’.

As an example, let us use the signature defined by the built-in module ‘BOOL’ to
parse the string ‘true and false’. We must pass this string to the ‘metaParse’ function
as ‘’true ’and ’false’. The result is a ‘ResultPair’ containing the parsed term and
its type, as follows. We used the function ‘upModule(’BOOL, false)’ to obtain the
metarepresentation of the built-in module ‘BOOL’.

reduce in META-LEVEL : metaParse(upModule(’BOOL, false),

’true ’and ’false, ’Bool) .

rewrites: 2 in 0ms cpu (0ms real) (~ rewrites/second)

result ResultPair: {’_and_[’true.Bool,’false.Bool],’Bool}

Giving a bogus input to the ‘metaParse’, the result is ‘noParse(n)’ where n is the
position of the problematic qid. In the example below, the function could not parse the
third qid.

28

reduce in META-LEVEL : metaParse(upModule(’BOOL, false),

’true ’and ’3, ’Bool) .

rewrites: 2 in 0ms cpu (0ms real) (~ rewrites/second)

result ResultPair?: noParse(2)

The counterpart of ‘metaParse’ is ‘metaPrettyPrint’, whose function is to take a
signature, a term, and to return its quoted-identifier representation.

metaPrettyPrint : Module × Term → QidList

By passing the term ‘’_and_[’true.Bool,’false.Bool]’ to this function, along with
the signature provided by the functional module ‘BOOL’, we obtain back the qid list ‘’true
’and ’false’.

reduce in META-LEVEL : metaPrettyPrint(upModule(’BOOL, false),

’_and_[’true.Bool,’false.Bool]) .

rewrites: 2 in 0ms cpu (0ms real) (~ rewrites/second)

result TypeList: ’true ’and ’false

(The reason why Maude gives the sort of ‘’true ’and ’false’ as ‘TypeList’ is because
this sort is a subsort of ‘QidList’, and, as we mentioned on Section 2.3, Maude attempts
to print the least sort applicable to a term.)

In order to effectively execute rewriting logic modules at the metalevel, we need
functions that reduce and rewrite metaterms. The first is ‘metaReduce’, which takes
as input a metamodule, a metaterm and returns a ‘ResultPair’ containing the term and
its type resulting from metareducing the metaterm against the metamodule.

metaReduce : Module × Term ⇀ ResultPair

The ‘metaRewrite’ is the equivalent of the ‘rewrite’ command and, like ‘metaReduce’,
receives as arguments a metamodule, a metaterm, and an upper bound on the number of
rewrites. The result is also a ‘ResultPair’ with a term and its sort.

metaRewrite : Module× Term× Bound ⇀ ResultPair

Let us give an example of the application of the ‘metaReduce’ function. Consider the
following metamodule, ‘FOO’, that contains two constants and a function ‘f’, whose value
is defined by the single equation present on the module.

fmod ’FOO is

protecting ’BOOL .

sorts ’Foo .

none

op ’a : nil -> ’Foo [none] .

op ’b : nil -> ’Foo [none] .

29

op ’f : ’Foo -> ’Foo [none] .

none

eq ’f[’a.Foo] = ’b.Foo [none] .

endfm

Let us execute an instance of the ‘metaReduce’ function as follows:

reduce in META-LEVEL :

metaReduce(fmod ’FOO ... endfm, ’f[’a.Foo]) .

rewrites: 2 in 0ms cpu (0ms real) (~ rewrites/second)

result ResultPair: {’b.Foo,’Foo}

The result of the ‘metaReduce’ operation is a ‘ResultPair’ with the metarepresenta-
tion of the constant ‘b’ along with its sort, ‘Foo’.

The functionality of ‘metaRewrite’ is similar. We exemplify its use by creating the
metarepresentation of the the ‘COUNTER’ module, used as an example on Section 2.3.1. The
numbers are in Peano notation, with a constant ‘0’ and the successor function ‘s_’. The
notation ‘s_^1000 (0)’, metarepresented by ‘s_^1000[’0.Zero]’ uses Maude’s iterated
operator syntax, which n applications of an operator f to an argument x may be written
as ‘f^n (x)’ if the operator f was defined with the ‘iter’ attribute.

result SModule: mod ’COUNTER is

protecting ’BOOL .

protecting ’NAT .

sorts ’Counter .

none

op ’counter : ’Nat -> ’Counter [none] .

none

none

crl ’counter[’n:Nat] => ’counter[’_+_[’n:Nat,’s_[’0.Zero]]]

if ’_<_[’n:Nat, ’s_^1000[’0.Zero]] = ’true.Bool [label(’inc)] .

endm

Let us execute an instance of the ‘metaRewrite’ function, with an upper bound on the
limit of rewrites of 20. The result is the metarepresentation of the term ‘counter(20)’,
with sort ‘Counter’, as expected.

reduce in META-LEVEL : metaRewrite(mod ’COUNTER ... endm,

’counter[’0.Zero], 20) .

rewrites: 61 in 0ms cpu (0ms real) (~ rewrites/second)

result ResultPair: {’counter[’s_^20[’0.Zero]],’Counter}

2.3.2.1 Maude as meta-tool

The reflective capabilities of the Maude system enables the possibility of using it as a for-
mal meta-tool [15, 12]. In order to be formal, a tool must support a precise axiomatization

30

of the language it is implementing. This is different from writing tools in conventional
languages such as C, or Java, since the implementation is not a formal axiomatization.

The point is that, as mentioned in Section 2.2, rwl is a logical framework which can
represent in a natural way many different logics, languages, operational formalisms and
models of computation. This natural representation is the result of using mel together
with equational attributes such as associativity, commutativity, providing a very general
representation framework with a simple calculus. The formal aspect regards, of course,
all the logical aspects of rwl and mel discussed in Section 2.2, together with their
executability in Maude.

The representation of a logic L in rewriting logic is given by a representation map:

Ψ : L → R

Combining the flexible syntax given by its equational logic together with the reflective
capabilities outlined in this Section this map can be implemented as an executable function
Φ with the following signature:

Φ : ModuleL → Module

in a module that extends ‘META-LEVEL’. Here, ModuleL is an abstract data type that
represents theories in the logic L. By using the descent functions such as ‘metaReduce’,
‘metaRewrite’, it is possible to execute L in Maude.

2.3.3 Input and output facilities

Input and Output in Maude is made using the ‘LOOP-MODE’ facility. This module provides
a built-in mechanism for accepting user input and printing text back to the user. The
basic construction of the ‘LOOP-MODE’ is the loop object, of sort ‘System’, whose signature
is as follows:

mod LOOP-MODE is

protecting QID-LIST .

sorts State System .

op [_,_,_] : QidList State QidList ->

System [ctor special (...)] .

endm

The loop object, ‘[_,_,_]’ consists of three arguments: the first is the input stream,
which is the representation of the user input; the second is an abstract term of sort ‘State’
that is to be concretely defined by the user and is application dependent; the third is the
output stream.

This object functions in a read-eval-print loop as follows. First, one creates an initial
loop object by using the ‘[_,_,_]’ operator and passes this object to the ‘loop’ command.

31

Next the user must input all text between parentheses. Everything sent this way will be
converted into a sequence of tokens (which is another name for quoted-identifiers). From
this point on, the system must have rules that make all possible types of user input and
process it (possibly modifying the ‘State’ of the loop object), and then prints the result
of the operation by putting a sequence of tokens back on the third argument of the loop
object.

Let us exemplify this by creating a simple read-eval-print loop that accepts as input
a simple arithmetic expression and prints back its value. We begin by creating an initial
loop object that greets the user and asks for input. The state of this read-eval-print loop
records the last value computed.

op last-value : Int -> State .

op init : -> System .

eq init = [nil, last-value (0),

’Hello! ’Please ’type ’an ’expression.] .

We begin with a simple rule: typing ‘(*)’ at the prompt will print the last computed
value. On the rule below ‘QIL’ will match against any token list that is going to be printed
on the output stream and it appends the message to this list. The built-in function
‘string’ converts a number to a string according to the given base (10, in this case). The
function ‘qid’ converts a string into a quoted-identifier to be put on the output stream.

rl [’*, last-value (n), QIL] =>

[nil, last-value (n), QIL

’Last ’computed ’value: qid(string(n,10))] .

Let us define the signature of our simple language for arithmetic expressions, together
with an operator used to calculate its final value. The module ‘SIMPLE-LANGUAGE’ below
defines two sorts, ‘Op’ and ‘Exp’, that represent, respectively, the arithmetic operations
and expressions in this language. Expressions are formed by the operator ‘___’ that
receives two expressions and an operator. We also make our expressions range over the
integers by subsorting ‘Int’ to ‘Exp’.

fmod SIMPLE-LANGUAGE is

protecting INT .

sort Op .

ops plus minus times div : -> Op .

sort Exp .

subsort Int < Exp .

op ___ : Exp Op Exp -> Exp .

The operator ‘[[_]]’ below receives as input an expression and returns its value by
recursively calculating the values of each expression of the ‘___’ operator. The value of
an integer is the end of the recursion.

32

vars E1 E2 : Exp .

var I : Int .

op [[_]] : Exp -> Int .

eq [[E1 times E2]] = [[E1]] * [[E2]] .

eq [[E1 plus E2]] = [[E1]] + [[E2]] .

eq [[E1 minus E2]] = [[E1]] - [[E2]] .

eq [[E1 div E2]] = [[E1]] quo [[E2]] .

eq [[I]] = I .

endfm

For the rules that actually receive an expression and calculate its value, we need to
parse the user input using the signature from the ‘SIMPLE-LANGUAGE’ module. If the
parsing is successful the rule does the following: the parsing of the user input (‘QIL’)
will generate a metaterm ‘t’; this metaterm ‘t’ is converted back into object form (an
expression) by ‘downTerm’ and bound to the metavariable ‘exp’; we use the ‘[[_]]’ op-
erator to obtain the value of ‘exp’ and bind it to the metavariable ‘n’’; we then use
‘metaPrettyPrint’ to convert (the metarepresentation of) ‘n’’ into the sequence of to-
kens that will be printed to the user. The rule also updates the ‘last-value’ state with
this value.

crl [QIL, last-value(n), QIL’] =>

[nil, last-value (n’), QIL’

’Result: metaPrettyPrint (SIMPLE-LANGUAGE, upTerm(n’))]

if QIL =/= nil /\

t := getTerm (metaParse (SIMPLE-LANGUAGE, QIL, ’Exp)) /\

exp := downTerm (t, error-exp) /\

n’ := [[exp]] .

If we are unable to parse the user input, we must generate a “syntax error.” The
following rule will only be applied when the result of ‘metaParse’ is not of the sort
‘ResultPair’, which means that the parsing has failed:

crl [QIL, last-value(n), QIL’] =>

[nil, last-value (n), QIL’ ’Syntax ’error!]

if QIL =/= nil /\

not (metaParse (SIMPLE-LANGUAGE, QIL, ’Exp) :: ResultPair) .

We may now show a transcription of a complete session using our little interpreter.

Hello! Please type an expression.

Maude> (10 plus 30 minus 30)

Result: 10

Maude> (hello)

Syntax error!

Maude> (20 plus 30)

33

Result: 50

Maude> (50 times 200)

Result: 10000

Maude> (*)

Last computed value: 10000

2.3.4 Full Maude

Full Maude is a Maude application that makes extensive use of the reflective power of
rewriting logic and Maude. Full Maude defines a rich module algebra which includes
module hierarchies, parameterization, views, theories, modules expressions, and object-
oriented modules. It builds upon the capabilities described on Sections 2.3.2 and 2.3.3 to
implement this functionality.

This Section describes some of the features of Full Maude that are used on the con-
version process detailed in Chapter 5. Full Maude uses the ‘LOOP-MODE’ facility, so all
user input must be made between parentheses.

2.3.4.1 System and functional modules

Full Maude implements standard system and functional modules. All modules given to the
Full Maude interpreter are stored in an internal database of modules. It also supports the
standard Maude commands, such as ‘reduce’, ‘rewrite’, and ‘search’. This is possible
because these commands are available at the meta-level as ‘metaReduce’, ‘metaRewrite’,
and ‘metaSearch’.

As an introductory example, let us show a complete Maude session, starting by the
loading of the Full Maude interpreter, inputting some module ‘FOO’, and a rewrite example:

\||||||||||||||||||/

--- Welcome to Maude ---

/||||||||||||||||||\

Maude 2.1.1 built: Jun 15 2004 12:55:31

Copyright 1997-2004 SRI International

Mon Apr 11 11:35:13 2005

Maude> load full-maude

Full Maude 2.1.1 (July 20th, 2004)

Maude> (mod FOO is

sort Foo .

ops a b : -> Foo .

rl a => b .

endm)

rewrites: 717 in 119ms cpu (119ms real) (5975 rewrites/second)

Introduced module FOO

34

Maude> (rew a .)

rewrites: 123 in 6ms cpu (6ms real) (17576 rewrites/second)

rewrite in FOO :

a

result Foo :

b

2.3.4.2 Theories, views, and parameterized modules.

Full Maude implements parameterized modules and views that enables a parameterized
style of programming, in the OBJ [23] fashion. Parameterized programming in Full Maude
combines three elements: the parameterized modules themselves that are defined over
a set of parameters, theories define the structure and properties required of an actual
parameter, and views map the formal interface theory to the corresponding actual module.
In other words, views provide the interpretation of the actual parameters. To simplify
the explanation we will avoid defining these concepts formally. See [23, 25] for more
information.

Theories are used to declare module interfaces and are created with the syntax ‘fth
n is D endfth’ for functional theories, and ‘th n is D endth’ for system theories,
where n is the theory name and D its declarations. The most basic theory is ‘TRIV’,
predefined by Full Maude, which has a single sort, ‘Elt’, as a requirement.

fth TRIV is

sort Elt .

endfth

More complex theories can be created such as the following theory of monoids, which
requires a constant ‘1’ and a monoid binary operator, with identity ‘1’.

fth MONOID is including TRIV .

op 1 : -> Elt .

op __ : Elt Elt -> Elt [assoc id: 1]

endth

We only require the use of ‘TRIV’ in the implementation of the Maude MSOS Tool,
so we will refrain from discussing these more complex theories and their implication for
parameterized programming. We invite the interested reader to see [14, Chapter 15] for
more details.

As for views, we will discuss the more trivial mapping, since this is the one needed
by the implementation of Maude MSOS Tool. Essentially, we need a view that maps
the requirement of the sort ‘Elt’ to a concrete sort, defined in some other module. The
syntax of this type of view is:

view v from TRIV to M is

35

sort Elt to s .

endv

where v is the view name, and s is a sort defined in M. It is common practice to make
the view name the same as the sort name. For example, the following view maps the sort
‘Elt’ to the sort ‘Exp’, defined in the module ‘EXP’.

view Exp from TRIV to EXP is

sort Elt to Exp .

endv

Parameterized modules can be parameterized by one or more theories. In the case of
the implementation of Maude MSOS Tool, only the ‘TRIV’ theory is used as a parameter.
One declares a parameterized module with the following syntax for the module name:
‘M(X1::T1 | · · · | Xn::Tn)’, where X1, . . . , Xn are the labels and T1, . . . , Tn are the
parameter theories. In Full Maude 2.1.1, all the sorts coming from theories in the interface
must be qualified by their labels. If Z is the label of a parameter theory T , then each sort
s in T has to be qualified as ‘Z@s’. As a concrete example, let us consider a parameterized
module that defines sets:

fmod SET(X :: TRIV) is

sorts Set(X) .

subsort X@Elt < Set(X) .

op null : -> Set(X) .

op __ : Set(X) Set(X) -> Set(X) [assoc comm id: null] .

var E : X@Elt .

eq E E = E .

endfm

The name of the module ‘SET(X :: TRIV)’ indicates that it has a single parameter
labelled ‘X’, with associated theory ‘TRIV’; the sort ‘Set(X)’ is a parameterized sort name
that uses as parameter the label ‘X’. In general, given a parameterized module ‘M(X1::T1

| · · · | Xn::Tn)’, any sort s can be written in the form ‘s(X1 | · · · | Xn)’. Finally,
as we mentioned, we used ‘X@Elt’ to refer to the sort coming from the ‘TRIV’ theory.

The actual instantiation of a parameterized module is through the importation of a
specific module expression with the following syntax: ‘M(v1 | · · · | vn)’, where M is a
parameterized module name and v1, . . . , vn are the views that maps the theories to sorts.
For example, by defining a view from ‘Elt’ to ‘Int’ such as:

view Int from TRIV to INT is

sort Elt to Int .

endv

36

we may use this view to create the module expression ‘SET(Int)’ that has the effect of
importing a module that defines the set of integers.

fmod TEST is

including SET(Int) .

endfm

After importing all these modules, and views into Full Maude, we may issue a ‘reduce’
command such as:

Maude> (red 1 2 3 4 .)

reduce in TEST :

1 2 3 4

result Set‘(Int‘) :

1 2 3 4

2.3.4.3 Extending Full Maude

User input in Full Maude is handled by the module ‘FULL-MAUDE’, which contains the
main input loop, using Maude’s built-in ‘LOOP-MODE’ facility. This module contains a
series of rewrite rules that matches against specific Full Maude commands, and calls the
appropriate functions to handle that input. Recall from Section 2.3.4 that user input that
is entered between parentheses is converted by ‘LOOP-MODE’ into a sequence of tokens. By
passing this sequence of tokens along with the appropriate signature to the ‘metaParse’
function, we obtain a metarepresentation of the input. Initially, Full Maude parses all
user input using its own signature module, named ‘GRAMMAR’.

Once this metaparsing is completed, Full Maude must call the appropriate function to
handle the command/module given by the user. For that to work the ‘FULL-MAUDE’ module
includes a number of modules, among them ‘DATABASE-HANDLING’. It is this module that
handles user input after it is parsed by ‘metaParse’ by calling the appropriate function.
Which function to call is dependent to the term parsed by ‘metaParse’.

The entire cycle of reading user input and executing it is managed through an object
of type ‘Database’. This object contains several attributes, including the input tokens,
output tokens, the current module name, and the database of modules, which contains
the metarepresentation of all modules that have been loaded by the user. This object has
the following signature.

sort DatabaseClass .

subsort DatabaseClass < Cid .

op db :_ : Database -> Attribute .

op input :_ : TermList -> Attribute .

op output :_ : QidList -> Attribute .

op default :_ : ModName -> Attribute .

37

The module ‘DATABASE-HANDLING’ defines a class named ‘DatabaseClass’, subsort
of ‘Cid’, which is the built-in sort that represents “class identifiers.” The ‘db’ attribute
holds the database of modules, which is the main construction of Full Maude. It contains
the metarepresentation of all user inputted modules. The ‘input’ attribute holds the user
input after the metaparsing is completed. The ‘output’ attribute is a ‘QidList’—anything
that is put into this attribute will be displayed to the user. Finally, the attribute ‘default’
holds the current module being used. This is necessary so that Full Maude knows which
module to use when a ‘reduce’, ‘rewrite’, or ‘search’ command is called.

In order to extend Full Maude to add support for a language L one needs to create a
signature for this language using a functional module. This module (say GRAMMARL) defines
a data type DL that represents user input of programs in the language L. It is usually
desirable that this extension to be conservative one, that is, the “original” Full Maude
language is still available, with the same semantics as usual. This is done by combining
both signatures, GRAMMAR and GRAMMARL into a single signature, say, GRAMMAR+FM+L. The
rules for parsing user input must be changed to handle this new signature. For example
the following rule receives user input and puts it into the ‘input’ attribute of the object.

crl [in] :

[QIL,

< O : X@Database |

db : DB, input : nilTermList, output : nil,

default : MN, Atts >,

QIL’]

=> [nil,

< O : X@Database | db : DB,

input : getTerm(metaParse(GRAMMAR, QIL, ’Input)),

output : nil, default : MN, Atts >,

QIL’]

if QIL =/= nil /\

metaParse(GRAMMAR, QIL, ’Input) : ResultPair .

Rule ‘[in]’ must be changed to:

crl [in] :

[QIL,

< O : X@Database |

db : DB, input : nilTermList, output : nil,

default : MN, Atts >,

QIL’]

=> [nil,

< O : X@Database | db : DB,

input : getTerm(metaParse(GRAMMAR+FM+L, QIL, ’Input)),

output : nil, default : MN, Atts >,

QIL’]

if QIL =/= nil /\

metaParse(GRAMMAR+FM+L, QIL, ’Input) : ResultPair .

38

Next the ‘DATABASE-HANDLING’ module must be extended with the user-defined func-
tions that handle theDL terms. As an example, consider the following rule in ‘DATABASE-HANDLING’.
It “detects” that Full Maude module was inserted by the user and correctly parsed
by the ‘GRAMMAR’ signature into a term that begins—by matching against the pattern
‘F[T, T’]’—with either ‘fmod_is_endfm’ (a functional module), ‘obj_is_endo’ (another
name for functional modules that comes from OBJ3 origins), ‘obj_is_jbo’ (yet an-
other name for functional modules), ‘mod_is_endm’ (system modules), or omod_is_endom
(object-oriented modules, not discussed here). It then proceeds to call the internal func-
tion ‘procUnit’ with the parsed term and the current database as arguments. Any user
defined syntax must provide a rule similar to this one, that “detects” the successful parsing
of terms of sort DL.

crl [module] :

< O : X@Database | db : DB, input : (F[T, T’]),

output : nil, default : MN, Atts >

=> < O : X@Database |

db : procUnit(F[T, T’], DB), input : nilTermList,

output :

(’Introduced ’module

modNameToQid(parseModName(T)) ’\n),

default : parseModName(T), Atts >

if (F == ’fmod_is_endfm) or-else

((F == ’obj_is_endo) or-else

((F == ’obj_is_jbo) or-else

((F == ’mod_is_endm) or-else

(F == ’omod_is_endom)))) .

Chapter 5 describes how Full Maude was extended to support Maude MSOS Tool.

2.4 Modular Rewriting Semantics

In this Section we summarize the presentation of Modular Rewriting Semantics (MRS)
as in [8, 44].

Modular rewriting semantics (MRS) [8, 44] is a technique for the modular specification
of programming languages semantics in rewriting logic. An MRS specification is a rewrite
theory developed according to some techniques that supports modular definitions. MRS
specifications use a syntax-directed style of semantics, with program syntax being sepa-
rated from semantic components, such as the environment, memory or synchronization
signals.

Let us define more formally what does it mean for a specification to be modular [8].
When L1 is a language extension of L0, the first modularity requirement is monotonicity :
there is a theory inclusion RL0

⊆ RL1
. Monotonicity means that we do not need to

retract earlier semantic definitions in a language extension.

A second modularity requirement is ground conservativity : for any ground Σ0-terms
t, t ′ ∈ TΣi

(the set of K-kinded ground Σi terms) we have, (i) E0 ` t = t ′ ⇔ E1 `

39

t = t ′, (ii) RL0
` t → t ′ ⇔ RL1

` t → t ′. Ground conservativity means that new
semantic definitions do not alter the semantics of previous features on the previously
defined language fragments. MRS defines then two techniques for the modular definition
of programming language semantics, satisfying these two requirements.

The first modularity technique is record inheritance, which is accomplished through
pattern matching modulo associativity, commutativity, and identity. Features added later
to a language may necessitate adding new semantic components to the record; but the
axioms of older features can be given once and for all: they will apply just the same with
new components in the record (note that this technique is shared with MSOS: records in
MRS are essentially labels in MSOS). The Maude specification of the equational theory
of records is as follows.

fmod RECORD is

sorts Index Component Field PreRecord Record .

subsort Field < PreRecord .

op null : -> PreRecord [ctor] .

op _,_ : PreRecord PreRecord

-> PreRecord [ctor assoc comm id: null] .

op _=_ : [Index] [Component] -> Field [ctor] .

op {_} : [PreRecord] -> [Record] [ctor] .

op duplicated : [PreRecord] -> [Bool] .

var I : Index .

vars C C’ : Component .

var PR : PreRecord .

eq duplicated((I = C), (I = C’), PR) = true .

cmb { PR } : Record if duplicated (PR) =/= true .

endfm

A ‘Field’ is defined as a pair of ‘Index’ and a ‘Component’; illegal pairs will be of
kind ‘[Field]’. A ‘PreRecord’ is a possibly empty (‘null’) multiset of fields, formed
with the union operator ‘ , ’ which is declared to be associative, commutative, and to
have ‘null’ as its identity. Note the conditional membership defining a ‘Record’ as an
“encapsulated” ‘PreRecord’ with no duplicated fields.

Record inheritance means that we can always consider a record with more fields as a
special case of one with fewer fields. For example, a record with an environment compo-
nent indexed by ‘env’ and a store component indexed by ‘st’ can be viewed as a special
case of a record with just the environment component. Matching modulo associativity,
commutativity, and identity supports record inheritance, because we can always use an
extra variable ‘PR’ of sort ‘PreRecord’ to match any extra fields the record may have. For
example, the function ‘get-env’ extracting the environment component can be defined
by ‘eq get-env(env = E:Env, PR:PreRecord) = E .’ and will apply to a record with
any extra fields that are matched by ‘PR’.

40

The second modularity technique is the systematic use of abstract interfaces. That is,
the sorts specifying key syntactic and semantic entities are abstract sorts such that: (i)
they only specify the abstract functions manipulating them, that is, a given signature, or
interface, of abstract sorts and functions; no axioms are specified about such functions at
the level of abstract sorts; (ii) in a language specification no concrete syntactic or semantic
sorts are ever identified with abstract sorts: they are always either specified as subsorts
of corresponding abstract sorts, or are mapped to abstract sorts by coercions; it is only
at the level of such concrete sorts that axioms about abstract or auxiliary functions are
specified.

Systematic use of the above two new techniques seems to ensure that the rewriting
semantics of any language extension L0 ⊆ L1 is always modular provided that: (i) the
only rewrite rules in the theories RL0

and RL1
are semantic rules

〈f(t1, · · · , tn), u〉 → 〈t ′, u ′〉 ⇐ C,

where C is the condition of the rule, f, is a language feature, e.g., ‘if-then-else’, u
and u ′ are record expressions and u contains a variable ‘PR’ of sort ‘PreRecord’ standing
for unspecified additional fields and allowing the rule to match by record inheritance; (ii)
the following information hiding discipline should be followed in u, u ′, and any record
expression appearing in C: besides any record syntax, only function symbols appearing in
the abstract interfaces of some of the fields in the record can appear in record expressions;
any auxiliary functions defined in concrete sorts of those field’s components should never
be mentioned; and (iii) the semantic rules of each programming language feature f should
all be defined in the same theory, that is, either all are in RL0

or all in RL1
.

MRS uses pairs, called configurations; the first component is the program text, and the
second the record whose fields are the different semantic entities associated to a program’s
computation. We can specify configurations in Maude with the following membership
equational theory:

fmod CONF

is protecting RECORD .

sorts Program Conf .

op <_,_> : Program Record -> Conf [ctor] .

endfm

“Restricted configurations” are defined by the module ‘RCONF’, below. They are a
means of controlling the rewrites at the conditions of MRS rules and are necessary to give
the correct semantics for operational semantics transitions, as discussed on Section 2.4.1.

mod RCONF

is extending CONF .

op {_,_} : [Program] [Record] -> [Conf] [ctor] .

op [_,_] : [Program] [Record] -> [Conf] [ctor] .

41

vars P P’ : Program .

vars R R’ : Record .

crl [step] : < P , R > => < P’ , R’ >

if { P , R } => [P’ , R’] .

endm

As an example, let us specify the MRS of a very simple programming language that
contains only an ML-like ‘let-in-end’ construction and the ‘sum’ function. The same
language will be used on Section 4.5 to demonstrate the use of Maude MSOS Tool. We
begin by defining its syntax using a functional module ‘SIMPLE-LANGUAGE-SYNTAX’. It
imports modules ‘EXP’ and ‘ID’ that define respectively, sorts ‘Exp’ (the expressions in
the language) and ‘Id’ (the identifiers). The two constructions of the language are defined
as operators ‘let_=_in_end’ and ‘_sum_’.

fmod EXP is

sort Exp .

endfm

fmod ID is

sort Id .

endfm

fmod SIMPLE-LANGUAGE-SYNTAX is

protecting INT .

protecting EXP .

protecting ID .

subsort Int < Exp .

subsort Id < Exp .

op let_=_in_end : Id Int Exp -> Exp .

op _sum_ : Exp Exp -> Exp .

endfm

The specification of the ‘let-in-end’ construction requires an environment for bind-
ings. Following the modularity technique of using abstract functions to define components,
we define the module ‘BASIC-ENVIRONMENT’ with the abstract sort ‘Env’, for environments.
Furthermore, the following abstract functions are defined: ‘find(ρ,i)’, which returns the
value bound to identifier i in environment ρ, and ‘override(ρ,i,n)’, which overrides
environment ρ with the binding defined by the identifier i and the integer n. ‘Env’ is
declared as a component by being a subsort of ‘Component’ and ‘env’ is declared an index
by being a constant of sort ‘Index’. The membership axiom at the end of the module
defines the field formed by ‘env’ and terms of sort ‘Env’.

fmod BASIC-ENVIRONMENT is

42

extending RECORD .

protecting INT .

including ID .

sorts Env .

subsort Env < Component .

op env : -> Index [ctor] .

op find : Env Id -> [Int] .

op override : Env Id Int -> Env .

mb env = E:Env : Field .

endfm

The following module, ‘SIMPLE-LANGUAGE-SEMANTICS’, gives meaning to the ‘let_=_in_end’
and ‘_sum_’ operators using a small-step operational semantics style similar to the rules
specified in Section 4.5 and Section 2.1. In order to appear in configurations, we must
subsort ‘Exp’ to ‘Program’. Then, rules ‘sum1’, ‘sum2’, and ‘sum3’ work by evaluating first
the left expression of the ‘sum’ operator, then the right, and, when both expressions were
reduced to integers, evaluates to the “integer sum” of the values. Rule ‘let1’ evaluates
the expression ‘E’ using an environment overridden, with the function ‘override’, with
the binding defined by the ‘X’ and ‘I’. Rule ‘let2’ tells that, when the expression reaches
a final value, the entire expression is replaced by this value. Finally, rule ‘find’ specifies
that the evaluation of an identifier ‘X’ is made first looking up its value bound to the
environment ‘Env’.

mod SIMPLE-LANGUAGE-SEMANTICS is

protecting BASIC-ENVIRONMENT .

protecting SIMPLE-LANGUAGE-SYNTAX .

protecting RCONF .

subsort Exp < Program .

vars E1 E2 E’1 E’2 E E’ : Exp .

vars I1 I2 I I’ : Int .

vars Env Env’ : Env .

vars PR PR’ : PreRecord .

var X : Id .

vars R R’ : Record .

crl [sum1] : { E1 sum E2, R } => [E’1 sum E2, R’]

if { E1, R } => [E’1, R’] .

crl [sum2] : { I sum E2, R } => [I sum E’2, R’]

if { E2, R } => [E’2, R’] .

crl [sum3] : { I1 sum I2, R } => [I, R]

if I := I1 + I2 .

43

crl [let1] : { let X = I in E end, { (env = Env), PR } }

=> [let X = I in E’ end, { (env = Env), PR’ }]

if Env’ := override (Env, X, I) /\

{ E, { (env = Env’), PR } }

=> [E’, { (env = Env’), PR’ }] .

rl [let2] : { let X = I in I’ end, R }

=> [I’, R] .

crl [find] : { X, { (env = Env), PR } }

=> [I, { (env = Env), PR }]

if I := find (Env, X) .

endm

At this point the specification is not executable since we must provide a concrete
implementation for the abstract functions defined in the module ‘BASIC-ENVIRONMENT’.
Let us show a possible implementation of the module ‘CONCRETE-ENVIRONMENT’ in which
the actual bindings are constructed with the operator ‘_|->_’ and the environment is an
associative-commutative juxtaposition operator of sort ‘CEnv’. The coercion function ‘<_>’
moves the terms of sort ‘CEnv’ to ‘Env’, provided that there are no duplicated bindings in
its argument.

fmod CONCRETE-ENVIRONMENT is

including BASIC-ENVIRONMENT .

protecting INT .

sort Bind CEnv .

subsort Bind < CEnv .

op void : -> CEnv [ctor] .

op _|->_ : Id Int -> Bind [ctor] .

op __ : CEnv CEnv -> CEnv [ctor assoc comm id: void] .

op <_> : [CEnv] -> [Env] .

op dupl : [CEnv] -> [Bool] .

var X : Id .

vars I I’ I1 : Int .

var CE : CEnv .

eq dupl((X |-> I) (X |-> I1) CE) = true .

cmb < CE > : Env if dupl(CE) =/= true .

eq find(< (X |-> I) CE >, X) = I .

eq override(< (X |-> I) CE >,X,I’) =

< (X |-> I’) CE > .

eq override(< CE >, X, I’) =

44

< (X |-> I’) CE > [owise] .

endfm

The module ‘SIMPLE-LANGUAGE’ gathers all modules into a single specification.

mod SIMPLE-LANGUAGE is

including SIMPLE-LANGUAGE-SYNTAX .

including SIMPLE-LANGUAGE-SEMANTICS .

including CONCRETE-ENVIRONMENT .

endm

To execute a program in our language, we create constants ‘x’ and ‘y’, of sort ‘Id’,
and execute the configuration with the program text and the record, containing an empty
environment, using Maude’s ‘rewrite’ command.

rewrite in SIMPLE-LANGUAGE :

< let x = 10 in

let y = 10 in x sum y end

end,{env = < void >} > .

rewrites: 108 in 1ms cpu (10ms real) (108000 rewrites/second)

result Conf: < 20,{env = < void >} >

Bye.

2.4.1 Modular Rewriting Semantics and MSOS

Modular Rewriting Semantics has a close relation with Mosses’s Modular Structural Op-
erational Semantics (MSOS) [53]. This is due to the fact that structural operational
semantics has a direct representation in rewriting logic [38, 6, 68, 44, 8] and that Modular
Rewriting Semantics and MSOS share a technique to achieve modularity based on the
encapsulation of the semantic information, called record inheritance in MRS. In [43, 44]
Braga and Meseguer propose a semantics-preserving transformation from MSOS to Mod-
ular Rewriting Semantics with a formal proof of the bisimulation between the models of
MSOS and Modular Rewriting Semantics, which we discuss in this section.

The use of label expressions in MSOS such as {ρ = ρ0, τ
′ = τ0, . . .}, as we mentioned

on Section 2.1 is similar to Standard ML’s pattern matching for records. This has a close
relationship to the record inheritance technique of Modular Rewriting Semantics where
the notation “. . .” is equivalent to the use of a metavariable ‘PR’ of sort ‘PreRecord’ that
matches against any unspecified components.

Recalling the general form of MSOS rules from Section 2.1:

c1, . . . , cn

c

45

where each condition ci is either a conditional transition vi −αi→ v ′i or a predicate pi,
and αi is label. The conclusion is a transition t −α→ t ′, where t, t ′, vi, v

′
i are value-

added syntax trees that belong to a sorts that are subsorts of ‘Program’. Labels in MSOS
are easily represented by records of the sort ‘Record’ in Modular Rewriting Semantics
using a metavariable of the sort ‘PreRecord’ to represent unspecified components on the
label. We also need a sort ‘IRecord’ to represent unobservable labels and ‘IPreRecord’
to represent unspecified components of unobservable labels, where ‘IRecord’ < ‘Record’
and ‘IPreRecord’ < ‘PreRecord’ and a partial composition operator ‘_;_’ over ‘Record’.
In the remainder of this Section let us use metavariables X, X ′ of sort ‘Record’, variables
U, U ′ of sort ‘IRecord’, variables PR, PR ′ of sort ‘PreRecord’, and variables UPR, UPR ′

of sort ‘IPreRecord’.

Furthermore, it is necessary to understand the semantics of transitions at the condi-
tions of MSOS rules. Unlike rewriting logic, MSOS transitions at the conditions are one
step conditions, whereas, rewrites at the conditions in rewriting logic are zero or more
steps conditions due to the deduction rules shown in Section 2.2. In order to correctly
simulate transitions at the MSOS conditions we need a way of controlling rewrites at the
conditions. One way of doing this is using a “restricted configuration,” as defined by the
module ‘RCONF’ in Section 2.4.

An MSOS specificationM also defines the abstract syntax of a programming language
L. We shall assume, in this Section, that this syntax, and any semantic components
needed, are specified as described in Section 2.4, that is, using a membership equational
theory (ΩL, EL). We further assume that MSOS transitions have a representable notation
(by defining a normal form, see below) defined by a signature (ΩM, EM). Let (Ω,E) be
a membership equational theory that includes both (ΩL, EL) and (ΩM, EM). An MSOS
specification M is, then, a rewriting logic theory R = (Ω,E, R) where each transition rule
is represented by a rewrite rule in R. The transition from MSOS to Modular Rewriting
Semantics is then a mapping between rewrite theories:

τ : (Ω,E, R) → (Ω ′, E ′, R ′)

where (Ω ′, E ′, R ′) includes the ‘RECORD’ (with the extra sorts ‘IRecord’ and ‘IPreRecord’)
and ‘RCONF’ and the transition rules R ′ are obtained from R as follows. First we assume
that the rules in R are in a normal form, that is:

• predicates in the conditions do not involve record, field, or index expressions in their
arguments;

• a record expression appearing in the conditions or in the conclusion is either: vari-
ables X or U; a constructor term of the general form {i1 = w1, . . . , in = wn, PR}

or {i1 = w1, . . . , in = wn, UPR}, with n ≥ 0, where indices ii are constants of the
sort ‘Index’ and may be primed and wi are components whose sort is a subsort of
‘Component’ and there is a membership assertion ii = wi : Field.

As an example, consider rule 2.14, on Section 2.1. The rule could be rewritten as:

α = {env = ρ[m/x], . . .} e1 −α→ e ′1

let x=m in e1 end −{env = ρ, . . .}→ let x=m in e ′1 end
(2.17)

46

Rule 2.17 is not in the normal form since it has a condition involving a record.
Rule 2.14 is in the desired normal form. Even though there is no formal proof that
the normal form requirement is not too restrictive, our experience shows that indeed it is
not.

The mapping τ is defined as follows (taken from [44]):

• (Ω ′, E ′) is obtained from (Ω,E) by:

– omitting all the primed indices and their related equation and membership
axioms from the record subspecification, and adding the unprimed version of
each write-only index;

– defining sorts ‘ROPreRecord’, ‘RWPreRecord’, ‘WOPreRecord’ (all containing
the constant ‘null’) of the sort ‘PreRecord’, corresponding to those parts of
the record involving read-only, read-write, and write-only fields. Let us use
metavariables A, B, and C to range over those respective sorts, with their
primed variants A ′, B ′, C ′;

– in ‘WOPreRecord’ we also axiomatize a prefix predicate v, where C v C ′ means
that for each write-only field k the string C.k is a prefix of the string C ′.k;

– adding the signature of the module ‘RCONF’

• R ′ contains the ‘step’ rule in ‘RCONF’, and for each MSOS rule in R (in the normal
form), the corresponding rewrite rule of the form:

{t, upre} → [t ′, upost] ⇐ {v1, u
pre
1 } → [v ′1, u

post
1] ∧ · · ·

· · ·∧ {vn, u
pre
n } → [v ′n, u

post
n]

where for each record expression u in the MSOS rule, upre and upost are defined as
follows:

– for u a record expression of the general form X or {PR}, upre is a record expres-
sion of the form {A,B,C}, and upost has the form {A,B ′, C ′};

– for u a record expression of the general form U or {UPR}, upre is a record
expression of the general form R or {PR} and upost = upre;

– for u a record expression of the general form {i1 = w1, . . . , in = wn, PR}, with
n ≥ 1, upre and upost are record expressions similar to u where: (i) if a read-
only field expression i = w appears in u, then it appears in upre and upost; (ii)
if a write-only field expression i ′ = w appears in u, then upre contains a field
expression of the form i = l, with l a new list variable in the corresponding
data type, and upost contains a field expression of the form i = l ·w (if u labels
a condition, upre contains i = ε, where ε is the identity of the list data type,
and upost contains i = w0; (iii) if a read-write pair of field expressions i = w,
i ′ = w ′ appear in u then upre contains i = w and upost contains i = w ′; (iv)
PR is translated in upre as A,B,C, and in upost as A,B ′, C ′;

– for u a record expression of the general form {i1 = w1, . . . , in = wn, UPR},
with n ≥ 1, then cases (i)–(iii) also apply here and (iv) UPR is translated in
both upre and upost as PR;

47

• any conditions that are not transitions are moved unaltered to the rule

• the condition is augmented with C v C ′ if expressions of the form A,B,C and
A,B ′, C ′ were introduced in the terms upre and upost in the conclusion.

As an example rule 2.14 is translated into the following:

{ let x =m in e1 end, {env = ρ, PR}}

→ [let x =m in e ′1 end, {env = ρ, PR}]

⇐ {e1, {env = ρ[m/x], PR}} → [e ′1, {env = ρ[m/x], PR}]

Chapter 3

Related work

Although operational-style specifications of programming languages may be defined using
conventional programming languages and other formal tools, we opted to describe here
tools that have the specific purpose of supporting operational semantics specifications.
In light of this, we opted to analyze in this chapter Hartel’s LETOS [27], Pettersson’s
RML [56] and Mosses’s MSOS Tool [52], as three significant examples of operational
semantics tools.

We begin by describing LETOS, “A Lightweight Execution Tool for Operational Se-
mantics.” The tool is written in C with a lex and yacc parser and uses a superset of
Miranda [66] to specify operational and denotational semantics specifications, that are
converted into Miranda scripts (although the author mentions that, with minor changes,
the output could be changed instead to Haskell [32]). An additional feature of LETOS
is its support for pretty-printing specifications in LATEX and to provide execution trac-
ing using HTML pages. LETOS has partial support for non-deterministic specifications,
simulated by functions returning lists, and the final result of a non-deterministic speci-
fication will be always only one of the several possible final values. Abstract syntax is
specified using Miranda’s user-defined data type syntax. As is usual in operational seman-
tics specifications [54], LETOS allows the definition of several different relations between
configurations.

Let us exemplify all these characteristics using a simple example, based on the seman-
tics of the Mini-Freja [56] language. A LETOS specification is actually a LATEX document
in which the operational semantics is separated from normal text by markers ‘.MS’ and
‘.ME’. For example, the following fragment specifies the abstract syntax of expressions in
the Mini-Freja language. Even though the abstract syntax is expressed in prefix format,
infix functions may also be specified.

\[

\begin{array}{@{}l@{}ll}

.MS

macro_Exp ::=

CONSTexp macro_Const |

VARexp macro_Var |

CONSexp (macro_Exp, macro_Exp) |

LAMexp (macro_Var, macro_Exp) |

PRIMONEexp (macro_Primone, macro_Exp) |

49

PRIMTWOexp (macro_Primtwo, macro_Exp, macro_Exp) |

IFexp (macro_Exp, macro_Exp, macro_Exp) |

APPexp (macro_Exp, macro_Exp) |

CASEexp (macro_Exp, [macro_Rule]) |

RECexp ([(macro_Var, macro_Exp)], macro_Exp) ;

.ME

\end{array}

\]

which is typeset into the following:

Exp≡ CONSTexp Const |

VARexp Var |

CONSexp(Exp, Exp) |

LAMexp(Var, Exp) |

PRIM1exp(Prim1, Exp) |

PRIM2exp(Prim2, Exp, Exp) |

IFexp(Exp, Exp, Exp) |

APPexp(Exp, Exp) |

CASEexp(Exp, [Rule]) |

RECexp([(Var, Exp)], Exp);

The following fragment (already typeset) specifies a particular type of relation, ‘ifchoose’
that selects either expression, based on the boolean value of its first argument. It is used
on the semantics of the “if” construction of Mini-Freja that follows.

ifchoose
⇒ :: ((bool, Exp, Exp)↔Exp);

[ifchoosetrue] (True, e2, e3)
ifchoose

⇒ e2;

[ifchoosefalse] (False, e2, e3)
ifchoose

⇒ e3;

As an example of using a different relation in a transition, consider the semantics of
the “if” statement of the Mini-Freja language, given using an eval relation that uses the
ifchoose relation.

eval
⇒ :: ((Env, Exp)↔Val);

(rho, e1)
eval
⇒ CONSTval(BOOLcnst flag),

(flag, e2, e3)
ifchoose

⇒ e,

(rho, e)
eval
⇒ v

[evalif] (rho, IFexp(e1, e2, e3))
eval
⇒ v;

The next system analyzed is Pettersson’s Relational Meta-Language (RML), which
provides support for natural semantics [33] specifications. The RML system is a compiler
written in Standard ML that compiles RML into efficient low-level C code. Like LETOS,

50

RML supports creating different relations to be used on transitions. Unlike LETOS, RML
does not have support for pretty-printing of specifications or tracing executions. As an
example of RML specifications, let us see the equivalent fragment of Mini-Freja that was
shown above. We begin with the abstract syntax of expressions. RML does not allow the
definition of infix functions, so the syntax is given only in a prefix-style notation.

datatype exp = CONSTexp of const

| VARexp of var

| CONSexp of exp * exp

| LAMexp of var * exp

| PRIM1exp of prim1 * exp

| PRIM2exp of prim2 * exp * exp

| IFexp of exp * exp * exp

| APPexp of exp * exp

| CASEexp of exp * crule list

| RECexp of (var * exp) list * exp

The relation ‘if_choose’ below has the same meaning as ifchoose on the LETOS
specification:

relation if_choose: (bool, Absyn.exp, Absyn.exp) => Absyn.exp =

axiom if_choose(true, e2, _) => e2

axiom if_choose(false, _, e3) => e3

end

Finally, we show the transition rule for the “if” construction.

rule eval(rho, e1) => CONSTval(Absyn.BOOLcnst flag) &

if_choose(flag, e2, e3) => e &

eval(rho, e) => v

eval(rho, Absyn.IFexp(e1,e2,e3)) => v

The final tool analyzed is Mosses’s MSOS Tool, written in Prolog, which converts
MSOS specifications to Prolog. The MSOS Tool supports both small-step and big-step
styles of operational specification and its input language is MSDF, the Modular SOS
Definition Formalism. The language described in Chapter 4 is actually based on MSOS
Tool’s MSDF specification language. The version of the MSOS Tool described here is
based on [52].

Unlike LETOS and RML, MSDF does not allow the definition of different relations.
Only two predefined relations are available: ‘--->’, used in small-step dynamic semantics,
and ‘===>’, used in static semantics and big-step dynamic semantics. Abstract syntax is
given using a BNF-like notation similar to LETOS, but only prefixed functions may be
defined. The MSOS Tool is tightly bound to the Constructive MSOS (see Section 6.1) style
of specifying programming languages semantics and the tool comes with a vast library of
reusable modules providing the semantics of several different basic constructions. Mosses’s

51

notes ([52]) defines the mapping from the concrete syntax of languages such as bc and
ML using Prolog’s Definite Clause Grammars (DCG).

Let us demonstrate the MSOS Tool by showing as example one of the modules present
in the tool library. Each module is specified using three different files, organized on a
directory structure. The directory ‘Cons’ contains the abstract syntax and semantics of
several basic programming languages constructs. Inside this directory, ‘Cmd’ contains the
constructions related the imperative facet of programming languages. We selected the
directory ‘cond-nz’ which contains a conditional command. We begin by presenting the
abstract syntax, given on a file named ‘ABS.msdf’. Module dependencies are automatically
provided by the tool: in this example, the user does not have to worry about having to
include the modules that define the sets ‘Cmd’, and ‘Exp’.

Cmd ::= cond-nz(Exp,Cmd)

Static semantics for the function is specified in a module named ‘CHK.msdf’:

ValueType ::= int

E ===> int, C ===> void

cond-nz(E,C):Cmd ===> void

Dynamic semantics is specified in a module named ‘RUN.msdf’:

Value ::= Integer

E --{...}-> E’

--

cond-nz(E,C):Cmd --{...}-> cond-nz(E’,C)

cond-nz(0,C):Cmd ---> skip

N \= 0

cond-nz(N,C):Cmd ---> C

The semantics of several programming languages are provided as examples in the
directory ‘Lang’. For example, the following Prolog code demonstrate the use of DCG to
define the translation from bc to ‘cond-nz’:

stmt(cond_nz(E,C)) -->

"if", i, "(", i, expr(E), i, ")", i, stmt(C).

Unlike LETOS, and like RML, MSOS Tool does not have support for the pretty-
printing of specifications, but does have trace capabilities.

Chapter 4

Maude MSOS Tool

This Chapter describes the Maude MSOS Tool (MMT), a programming environment for
Modular SOS specifications. MMT is a formal tool in the sense of [15], implemented as a
conservative extension of Full Maude, that compiles MSOS specifications into rewriting
logic. The implementation is based on a mapping that was first described in [6] and later
developed in [8]. The compilation into rewriting logic modules enables the use of Maude’s
execution and formal verification tools in MSOS specifications.

The syntax of modules accepted by MMT is based on the Modular SOS Definition
Formalism (MSDF) described by Mosses in [52]. Both languages are similar enough to
warrant the designation of the specification language of the MMT also as “MSDF.” The
minor differences, described in Chapter 7, that exist between the two are restricted to
idiosyncrasies of the Maude parser. The “MSDF” designation henceforth refers to the
version currently accepted by the MMT, except otherwise noted.

While MMT was designed with the primary objective of being a formal environment
for the specification of programming languages, operational semantics, including MSOS, is
an environment applicable on a wide variety of topics. For example, operational semantics
was used in the development of several concurrency calculi, such as CCS [50] and the π-
calculus [51]. However, given its main purpose, we opted for the exposition of the different
MSDF constructions by motivating their use on the formal definition of some programming
language L.

To give the definition of L is, in fact, to give the definition for each one of its L
c

constructions. It consists of the formal description of the syntax and semantics of L
c
.

For the syntax we follow the traditional approach and avoid the complications of concrete
syntax by adopting an abstract version of L

c
(see, for example, [58, Section 1.4.1] and [52,

Section 1.2.3] for a discussion on this). Let us call this abstract construction Lc. Also
following usual practices, we describe the context-free grammar of Lc using Backus Naur
Form (BNF) notation.1 The specification of a programming language abstract syntax is
the subject of Section 4.2.2.

The semantics of the Lc construction is defined by transition rules, with labels con-
taining the necessary semantic components, as discussed on Section 2.1. We discuss how
labels and transitions are specified in MSDF in Sections 4.2.3 and 4.2.4, respectively.

1An interesting historical perspective on the name Backus Naur Form versus Backus Normal Form
appears on Donald Knuth’s collection of programming language papers [35].

53

Specifications may be organized into modules to allow the modular construction of
a specification, something desirable not only for didactic purposes, but also as a sound
engineering practice to cope with the complexity inherent on any large scale specification
project. The use of modules is described on Section 4.2.1.

4.1 Notational conventions

On the following sections the grammar of MSDF constructions is specified using an ex-
tended BNF grammar, with terminals ‘in teletype font and between single quotes’
and non-terminals specified in 〈 sans-serif font and between angle brackets 〉. Extended BNF
notation is always used on an expression within meta-parentheses: ‘(E)∗’ and ‘(E)+’ de-
note, respectively, zero or more, and one or more, repetitions of E; ‘(E)?’ denotes an
optional expression.

Before we explain the grammar of MSDF’s constructions we must discuss some lexical
aspects. As an extension of Full Maude, we also make use of Maude’s LOOP-MODE (see
Section 2.3), and are restricted to its lexical analysis capabilities. In order to insulate
this description from the technical details of Maude’s own current lexical analysis, we use
some predefined non-terminals in an abstract way: the first is 〈 id 〉, for identifiers, that
follows Maude’s definition of identifiers. As of Maude version 2.1.1 the lexical rules for
identifiers are as follows (taken from [14]):

Any finite string of ASCII characters such that:

• it does not contain any white space;

• the characters ‘{’, ‘}’, ‘(’, ‘)’, ‘[’, ‘]’, and ‘,’ break a sequence of char-
acters into several identifiers;

• the back-quote character ‘‘’ is used as an escape character to indicate
that a blank space or the special characters following it do not break the
sequence.

Identifiers with the initial letter in uppercase are represented by 〈 upper-id 〉, while
those with the opposite constraint—the initial letter in lowercase—are represented by
〈 lower-id 〉. With the current version of Maude it is not possible to specify this and other
(e.g., that an identifier may consists only of letters) restrictions, usually stated as regular
expressions, so they must be checked after the parsing is done.

Another predefined non-terminal is 〈 term 〉 which represents value added syntax trees
that appear in transition rules.

In Full Maude, all user input must be made between parentheses.

4.2 MSDF syntax

These Sections describe the elements of the MSDF specification language. Each Section
begins with a formal exposition of the constructions, followed by an illustrative example,
and ends with the details on usage.

54

4.2.1 Modules

〈module 〉→ ‘msos’ 〈 id 〉 ‘is’ (〈 see 〉)∗ (〈 declaration 〉)∗ ‘sosm’
〈 see 〉→ ‘see’ 〈 name 〉 (‘,’ 〈 name 〉)∗ ‘.’

All modules in MSDF begin with the string ‘msos’ and end with ‘sosm’. An MSDF
module name is any identifier (〈 id 〉) accepted by Maude (Section 4.1). To include other
modules, one uses the 〈 see 〉 constructions, which is the keyword ‘see’, followed by a
list of modules identifiers, separated by commas; multiple 〈 see 〉 lines are permitted for
flexibility of the specification text, but they are only sugar for a single line of module
importations.

The remainder of the module consists of a sequence of MSDF declarations, represented
by the non-terminal 〈 declaration 〉. In order to allow a flexible specification, the order does
not matter, since all declarations are first collected before the compilation begins.

As an example of module inclusion, consider the following MSDF module, that defines
a module ‘PL-SYNTAX’ that, in turn, includes the modules that define the several different
components of some fictitious language PL.

msos PL-SYNTAX is

see PL-EXPRESSIONS, PL-DECLARATIONS .

see PL-IMPERATIVES, PL-ABSTRACTIONS .

see PL-CONCURRENCY .

sosm

As a general rule, in order to be used in a module an MSDF declaration must be pre-
viously defined in some other module (or in the module itself) and its declaring module
must be explicitly included. However, it so happens that some inclusions may be better
omitted not only for brevity, but also for clarity of MSDF specifications. It is not uncom-
mon in programming language definitions for a basic set of modules to be needed in most
of the other modules, since primitive constructions, such as commands and expressions
are probably used by even the most advanced features; it would be tedious and error
prone to force the user to explicitly declare these inclusions on each module that they are
needed, specially when they are obviously needed.

The concept of “obvious need” is subjective and, to avoid confusion, the MMT has
a simple rule for the omission of a module inclusion: all defining modules of sets that
are used in a module are included by default. This includes not only sets used on the
datatype definition part, but also the label declaration part.

For example, consider the following MSDF module that defines an abstract syntax of
conditional expressions:

msos COND is

Exp ::= if Exp then Exp else Exp .

sosm

55

The system automatically includes the module that contains the declaration of the
set ‘Exp’. If this module is, say, ‘EXP’, then the expanded module, without any implicit
inclusions, would be:

msos COND is

see EXP .

Exp ::= if Exp then Exp else Exp .

sosm

It is important to emphasize that this rule is restricted to sets only; if a module
defines a construction that uses other constructions, the defining modules must be ex-
plicitly included. Consider the following example, where a ‘while’ is defined in terms of
conditionals (‘if then else’), and command sequencing (‘;’). The modules that define
these constructions (‘COND’, and ‘SEQ’, respectively) had to be explicitly included, while
the modules that define the sets ‘Exp’ and ‘Cmd’ were omitted.

msos WHILE is

see COND, SEQ .

Cmd ::= while Exp do Cmd .

(while Exp do Cmd) : Cmd -->

if Exp then (Cmd ; while Exp do Cmd) else skip .

sosm

4.2.2 Datatype definitions

〈 setid 〉→ 〈 upper-id 〉
〈 opid 〉→ 〈 lower-id 〉
〈 dsetid 〉→ 〈 setid 〉 | 〈 setid 〉‘*’ | 〈 setid 〉‘+’
〈mixfix-fun 〉→ 〈 opid 〉 | 〈 dsetid 〉
〈 dec 〉→ 〈 setid 〉 ‘.’ | 〈 setid 〉 ‘::=’ 〈 dec-rhs 〉 (‘|’ 〈 dec-rhs 〉)∗ ‘.’
〈 dec-rhs 〉→ 〈 dsetid 〉 | 〈mixfix-fun 〉+ (‘[’〈 attr 〉‘]’)?

〈 param 〉→ 〈 dsetid 〉 | ‘(’〈 dsetid 〉‘)List’ | ‘(’〈 dsetid 〉‘)Set’
| ‘(’〈 dsetid 〉‘,’〈 dsetid 〉‘)Map’

〈 equiv 〉→ 〈 setid 〉 ‘=’ 〈 param 〉 ‘.’
〈 declaration 〉→ 〈 dec 〉 | 〈 equiv 〉

Although specified using BNF notation, the abstract syntax definition of a program-
ming language in MSDF is in fact an algebraic datatype definition. This is also true
in other operational semantics tools, including Mosses’s own MSOS Tool, in Prolog and
Hartel’s LETOS, in Miranda. In this sense, non-terminals are sets, and sequences of
non-terminals and terminals (〈mixfix-fun 〉+) are n-ary functions specified in the so-called

56

mixfix form with the non-terminals representing the arguments and the terminals repre-
senting the function name in mixfix form. A function that contains only a single terminal
is called a constant.

In MSDF, a 〈 setid 〉 is a primitive set name, an uppercase identifier (〈 upper-id 〉), such
as ‘Integer’. This identifier must contain only letters, due to restrictions related to the
formation of metavariables (see Section 4.2.4); a 〈 dsetid 〉 is a derived set name, since it
represents a set automatically derived from the primitive sets. There are two possible
derived sets: the set of possible-empty sequence of elements and the set of non-empty
sequence of elements. For some set s, the former is written as s* while the later as s+.

The non-terminal 〈 dec 〉 declares either a new set, a subset inclusion declaration, or
a function declaration, depending on the right-hand side (〈 dec-rhs 〉). If the right-hand
side is a single 〈 dsetid 〉, then it is a subset inclusion (e.g., ‘Exp ::= Value .’). On the
other hand, if the right-hand side is a sequence of lowercase and uppercase identifiers, it
is interpreted as a mixfix function, as described above, e.g., ‘Exp ::= if Exp then Exp

else Exp .’. A prefix form is, of course, a particular case of a mixfix function, e.g., ‘Sys
::= parallel (Cmd, Cmd)’. The optional attributes that may be specified to a mixfix
function (the non-terminal 〈 attr 〉 enclosed between bracket parentheses) are discussed at
the end of this Section.

Currently, MMT predefines two built-in sets: integers (‘Int’), and booleans (‘Boolean’),
and their respective sequences ‘Int*’, ‘Int+’, ‘Boolean*’, and ‘Boolean+’. The set
‘Boolean’ contains two constants ‘tt’ and ‘ff’ that represents the values true and false,
respectively.

Parameterized sets, defined by the non-terminal ‘param’, are obtained using a modifier
over one or two sets: given a set s, ‘(s)List’ is the set of lists of elements of s; ‘(s)Set’
is the set of finite sets of elements of s; given a second set k, ‘(s,k)Map’ is the set of finite
mappings from elements of set s to elements of k. Parameterized sets are not to be used
directly, but by defining equivalent sets using the syntax of the non-terminal ‘equiv’.

The following fragment exemplifies the use of datatype definitions. Four sets are de-
clared: ‘Exp’, ‘Value’, ‘Cmd’, and ‘Id’. These sets represent, respectively, the expressions,
values, commands, and identifiers of some programming language. Next, a subset inclu-
sion is defined between ‘Value’, and the built-in sets ‘Int’ and ‘Boolean’, that is, the
set of values is augmented with elements from the sets of integers and booleans. Fol-
lowing, the abstract syntax of two constructions is defined in mixfix form: a conditional
expression, and a looping command, which expects to receive a non-empty sequence of
commands as its body. Finally, an equivalence between the set ‘Env’ and the set ‘(Id,
Value)Map’—a mapping between identifiers and values, traditionally used as an environ-
ment for bindings—is defined.

Exp . Value .

Cmd . Id .

Value ::= Int | Boolean .

Exp ::= if Exp then Exp else Exp .

Cmd ::= while Exp do Cmd+ .

Env = (Id, Value)Map .

57

Finally, mixfix functions in MSDF may have attributes to simplify notation. They
are currently the attributes supported by the Maude system: ‘associative’ (abbrevi-
ated ‘assoc’), used to define an associative binary function; ‘commutative’ (abbreviated
‘comm’), used to define a commutative binary function; ‘precedence n’ (abbreviated ‘prec
n’) that gives the precedence value of that function, where n is an integer between zero
and 231 − 1, where a lower value indicates a tighter binding; and ‘identity:t’ (abbrevi-
ated ‘id:t’) that establishes the term t as the identity to the specified function. As in
Maude, these attributes may be combined.

Attributes in MSDF datatype definitions permit the creation of a more flexible ab-
stract syntax notation, while keeping its simplicity. The use of precedence values, for
example, permits the specification of arithmetic functions with the right grouping on
the abstract syntax, something that is usually done on the concrete syntax and then
moved on to the abstract syntax explicitly. The Java Language Specification [26],
for example, defines non-terminals ‘UnaryExpression’, ‘MultiplicativeExpression’,
‘AdditiveExpression’, and ‘RelationalExpression’ to cope with the several levels of
precedence of these different expressions. Using MSDF, one may specify the same require-
ments using precedence and associative attributes as follows:

Exp .

Exp ::= Exp + Exp [assoc prec 10] .

Exp ::= Exp - Exp [assoc prec 30] .

Exp ::= Exp * Exp [assoc prec 20] .

Exp ::= Exp / Exp [assoc prec 20] .

Exp ::= Exp < Exp [assoc prec 10] .

Exp ::= Exp > Exp [assoc prec 10] .

Exp ::= Exp == Exp [assoc prec 10] .

By asking Maude to parse the expression ‘e1 + e2 * e3 * e4 * e5 - e6’ using the
declarations above, we obtain the following term, shown with parentheses to explicit the
grouping order: ‘(((e1 + e2) * (e3 * (e4 * e5))) - e6)’.

4.2.3 Labels

〈 label 〉→ ‘Label={’ 〈 field 〉 (‘,’ 〈 field 〉)∗ ‘, ...} .’
〈 field 〉→ 〈 index 〉 ‘:’ 〈 derived 〉
〈 index 〉→ 〈 lower-id 〉
〈 declaration 〉→ 〈 label 〉

Each MSDF module may contain at most one label declaration using the syntax of
the non-terminal 〈 label 〉. A label consists of a sequence of type declarations of 〈 field 〉.
Each field consists of an 〈 index 〉 (which is a lowercase identifier, 〈 lower-id 〉) and the type
of its component (〈 derived 〉).

The indices of the components defines a field to be read-only, read-write, or write-
only: if there is a single, unprimed index, then the field defines a read-only component,
as in:

58

Label = { env : Env, ... }

An index that appears both unprimed and primed defines a read-write component. Both
components must be of the same type.

Label = { st : Store, st’ : Store, ... }

Finally, a single, primed, index defines a write-only component. The only admissible type
of write-only components are sequences of primitive sets, as in:

Label = { output’ : Value*, ... }

If there are multiple label declarations in a single module, the last declaration is taken
into account, while the others are ignored. Of course, a single label declaration may define
several fields:

Label = { env : Env, st : Store, st’ : Store,

output’ : Value*, ... }

4.2.4 Semantic transitions

〈 transition 〉→ 〈 cond-transition 〉 | 〈 uncond-transition 〉
〈 cond-transition 〉→ 〈 cond 〉 (‘,’ 〈 cond 〉)∗ (‘[’ 〈 label 〉 ‘]’)?

quad ‘--’ 〈 step 〉 ‘.’
〈 uncond-transition 〉→ (‘[’ 〈 label 〉 ‘]’)? 〈 step 〉 ‘.’
〈 label 〉→ 〈 id 〉
〈 typed-term 〉→ 〈 term 〉 ‘:’ 〈 dsetid 〉
〈 step 〉→ 〈 typed-term 〉 〈 relation 〉 〈 term 〉
〈 cond-step 〉→ 〈 term 〉 〈 relation 〉 〈 term 〉
〈 relation 〉→ ‘-->’ | ‘==>’ | ‘-’ 〈 label-exp 〉 ‘->’ | ‘=’ 〈 label-exp 〉 ‘=>’
〈 label-exp 〉→ ‘{’ 〈 field-exp 〉 (‘,’ 〈 field-exp 〉)∗ ‘}’
〈 field-exp 〉→ 〈 index 〉 ‘=’ 〈 term 〉 | 〈 composition 〉 | 〈 rest 〉
〈 rest 〉→ ‘...’ | ‘-’ | ‘X’ | ‘U’
〈 composition 〉→ 〈 rest 〉 ‘;’ 〈 rest 〉
〈 cond 〉→ 〈 eq 〉 | 〈 pred 〉 | 〈 inst 〉 | 〈 cond-step 〉
〈 eq 〉→ 〈 term 〉 ‘=’ 〈 term 〉
〈 pred 〉→ 〈 term 〉
〈 inst 〉→ 〈 term 〉 ‘:=’ 〈 term 〉
〈 declaration 〉→ 〈 transition 〉

The 〈 transition 〉 non-terminal specifies how MSOS transitions are written in MSDF.
Let us begin our description with unconditional transitions (〈 uncond-trans 〉), described
by the non-terminal 〈 step 〉, with an optional label 〈 label 〉.2 An unconditional tran-
sition establishes three possible relations between terms: “big-step” semantics (‘==>’),

2Which is only decorative and should not to be confused with the MSOS label.

59

“small-step” semantics (‘-->’), and static semantics (also ‘==>’, overloaded), following the
traditional notation of operational semantics literature [52, 58, 54]. All three relations,
described by the non-terminal 〈 relation 〉, are ternary with the following components:
the typed value-added syntactic tree to be matched against, the MSOS label expression
(〈 label-exp 〉) enclosed between braces, and the resulting value-added syntactic tree.

A label expression is a non-empty list of field expressions (〈 field-exp 〉) separated by
commas and enclosed between braces, where each field expression is either an index and
its component or the “rest of the label.” There are special metavariables for the rest of
the label (〈 rest 〉): if it is unobservable, the metavariable ‘-’ should be used, otherwise
‘...’ should be used. As usual on MSOS specifications, we use --> and ==> as sugar for
-{-}-> and ={-}=>, respectively. Instead of ‘...’ and ‘-’, one may uses the metavariables
‘X’ and ‘U’ respectively. These metavariables may optionally be postfixed with a number,
such as ‘X1’.

Label composition is specified using the syntax of the non-terminal 〈 composition 〉. It
is recommended that numbered metavariables (‘X1’, ‘X2’, etc.) be used on the composition
to ease the understanding and to follow traditional MSOS notation. Of course, label
composition only makes sense on conditional transitions.

Metavariables over sets are not declared explicitly in MSDF, but instead declared
implicitly: all non-terminals of the form 〈 dsetid 〉 that appear in transitions are considered
metavariables for their corresponding sets using this simple formation rule: given that
all set identifiers are assumed to have only letters (Section 4.2.2), all characters that are
neither letters nor the symbols ‘*’ and ‘+’ are stripped from the 〈 dsetid 〉 and the remaining
is assumed to be the intended type of the metavariable.

For example: ‘Exp’, ‘Exp1’, and ‘Exp’’ are all metavariables that range over ‘Exp’,
obtained by removing the characters ‘1’ and ‘’’, respectively, while ‘Exp*1’ is a metavari-
able over ‘Exp*’, obtained by removing the character ‘1’. The rationale for this is that,
in programming language definitions, it is often the case in which a set is used on most
transition rules. For example, the set of expressions, or the set of values. As in the case
of module inclusions, it would probably be tedious and error prone to declare the same
variables over the same modules.

As an example of unconditional transitions, label expressions and implicit metavari-
ables let us consider the following fragment that defines the semantics of a construction
that prints a computed value. It defines an unconditional transition between the typed
syntactic tree ‘(print Value) : Cmd’ to ‘skip’, the “do-nothing” command. The se-
mantics of the ‘print’ command is defined with a write-only component by the label
expression ‘out’ = Value’ that models the produced information ‘Value’. The rest of
the record is unobservable, that is, any read-write component remains unchanged, no other
produced information occurs on other write-only components, and read-only components
will always remain the same, of course.

(print Value) : Cmd -{out’ = Value, -}-> skip .

Conditional transitions have four different types of conditions, ruled by the non-
terminal 〈 cond 〉: equality conditions, predicates, variable instantiations, and conditional
transitions. Equality conditions (〈 eq 〉) assert the equality of two terms, such as ‘first

60

(Pids’) = Int’. A single term ‘P’ is used as a predicate (〈 pred 〉), such as ‘odd(n)’,
to abbreviate the equational condition ‘P = true’. The 〈 inst 〉 non-terminal defines the
syntax used to instantiate new metavariables. The free metavariable must be on the
left-hand side of the ‘:=’, as in ‘Value := lookup (Id, Env)’. Finally, 〈 cond-step 〉 is
a conditional transition that has the same syntax as of unconditional transitions, with
the exception that the type of the syntactic tree to be matched against is necessarily the
least set that applies to the left-hand side term, that is, the smallest set in a set inclusion
relation.

Let us exemplify conditional transitions with a small-step specification for the se-
mantics of an abstract conditional construction, with syntax ‘cond Exp Exp Exp’. The
semantics is the usual: the first expression is to be evaluated into a boolean value; if it
is true, the second expression is evaluated, otherwise the third is. The semantics for this
needs three transitions: the first states that the condition—the metavariable ‘Exp’ rang-
ing over the set ‘Exp’—must be evaluated. The term ‘(cond Exp Exp1 Exp2) : Exp’
is a typed syntactic tree with the explicit type ‘Exp’, while on the condition, the typed
syntactic tree ‘Exp’ has as implicit type the least set applicable to the metavariable, which
is also ‘Exp’. The condition states that, if ‘Exp’ is evaluated into ‘Exp’’, then the left-hand
side of the main transition evaluates to ‘cond Exp’ Exp1 Exp’. The label ‘...’ on the
condition is the same as the main transition, meaning that any changes to read-write
components are propagated to the main transition, and any produced information by
write-only components is also produced by the main transition. Read-only components
must always remain the same.

Exp -{...}-> Exp’

-- --

(cond Exp Exp1 Exp2) : Exp -{...}-> cond Exp’ Exp1 Exp2 .

In the example above, we used the fact that, in Maude, three dashes (‘---’) initiate
a comment line.

Finally, two additional rules are needed for each possible outcome of ‘Exp’: if it is
‘tt’, the whole left-hand side evaluates to ‘Exp1’, otherwise into ‘Exp2’. These transitions
are unobservable.

(cond tt Exp1 Exp2) : Exp --> Exp1 .

(cond ff Exp1 Exp2) : Exp --> Exp2 .

Let us further exemplify conditional transitions by defining the same conditional con-
struction in a big-step style, which also uses three rules, but with an additional construc-
tion, as follows:

The internal construction (not part of the main syntax of the language) ‘if-choose’
has three arguments: one value and two expressions. If the value is ‘tt’, then it evaluates
to ‘Exp2’, otherwise to ‘Exp3’. The example also shows each transition rule with a rule
label.

Exp ::= if-choose (Value, Exp2, Exp3) .

61

[if-choose-tt] if-choose (tt, Exp2, Exp3) : Exp ==> Exp2 .

[if-choose-ff] if-choose (ff, Exp2, Exp3) : Exp ==> Exp3 .

There is a single transition for the conditional construction itself, but with three con-
ditional transitions. The first expects the expression ‘Exp’ to be evaluated into ‘Value’,
with label expression ‘X1’. This value, when used as a parameter in ‘if-choose (Value,

Exp2, Exp3)’, is expected to be evaluated, in turn, into ‘Exp’’, in an unobservable man-
ner. Finally, ‘Exp’’ is expected to be evaluated into ‘Value’’, with label expression ‘X2’.
If those three conditions are satisfied and label expressions ‘X1’ and ‘X2’ are composable—
recalling Section 2.1, the read-only components remain the same, the initial value of a
read-write component on ‘X2’ is the final value of the same read-write component on ‘X1’,
while produced information does not affect composability of labels—, then the whole left-
hand side is evaluated into ‘Value’’. The label ‘X1 ; X2’ on the main transition specifies
that the resulting label is the composition of labels ‘X1’ and ‘X2’.

Exp ={X1}=> Value,

if-choose (Value, Exp1, Exp2) ==> Exp’,

Exp’ ={X2}=> Value’

[if] -- ---

(cond Exp Exp1 Exp2) : Exp ={X1 ; X2}=> Value’ .

MMT checks for source-dependent variables (see Section 2.1) and reports when it
finds transitions that contain variables without this property, as the following example
shows:

(msos TEST is

Foo .

Bar .

Foo ::= f (Bar, Bar) .

Bar --> Bar’

-- -------------------------

f(Bar, Bar) : Foo --> Bar’’ .

sosm)

Upon reading module ‘TEST’, the following error is displayed:

rewrites: 19081 in 96ms cpu (101ms real) (196741 rewrites/second)

ERROR: non source-dependent variables found: Bar’’ in module TEST

4.3 Built-in operations on derived and parameterized

sets

The parameterized and derived sets in MSDF have several associated operations, which
we describe in this Section. Each function is presented as f : S → S ′: a function f with

62

domain S and codomain S ′. If the function f is in mixfix format, it is converted to prefix
format, where the arguments are replaced by underscores (‘_’).

Let s, and s ′ be any two primitive sets (that is, neither derived nor parameterized
sets). Recall that, from a set s, the sets s∗ and s+ are automatically derived. Furthermore,
the user may create the following parameterized sets: (s)List, (s)Set, and (s, s ′)Map.

4.3.1 Sequences

, : s∗ × s∗ → s∗

The monoid binary function (with optional surrounding parentheses), with identity is
‘()’. A single element s is also a sequence.

4.3.2 Lists

[_] : s∗ → (s)List

Constructs a list out of a sequence of elements.

in : s× (s)List → Bool

Returns true if the s is on the list (s)List.

first : (s)List → s

Returns the first element from the list (s)List.

remove : s× (s)List → (s)List

Creates a copy of the list (s)List with all copies of s removed.

insert-back : s× (s)List → (s)List

Inserts s as the last element of (s)List.

insert-front : s× (s)List → (s)List

Inserts s as the first element of (s)List.

length : (s)List → Nat

Number of elements of (s)List.

4.3.3 Maps

|-> : s× s ′ → (s,s ′)Map

Creates an entry that binds s to s ′.

+++ : (s,s ′)Map× (s,s ′)Map → (s,s ′)Map

Disjoint union of maps.

length : (s,s ′)Map → Nat

63

Number of entries on the map.

def lookup : s× (s,s ′)Map → Bool

Is true if there exists a mapping from s in (s,s ′)Map.

lookup : s× (s,s ′)Map → s ′

Returns the element that s maps to in (s,s ′)Map.

/ : (s,s ′)Map× (s,s ′)Map → (s,s ′)Map

Overrides the mappings of the second (s,s ′)Map with the ones of the first (s,s ′)Map.

4.3.4 Sets

size : (s)Set → Nat

Number of elements of (s)Set.

in : s× (s)Set → Bool

Is true if (s)Set contains s.

+ : (s)Set × (s)Set → (s)Set

Disjoint union of sets.

4.4 User interface

The normal operation of the Maude MSOS Tool is with the user inputting MSDF mod-
ules at the command prompt or by loading files using Maude’s ‘load’ command and by
using Full Maude’s own commands for rewriting, reducing, searching and model checking
specifications. This Section outlines the commands that are specific to Maude MSOS

Tool.

Currently the only command available controls the step flag of the compilation process
(Chapter 5 details the compilation process). The normal operation of the MMT is with
this flag on, since, as shown in Section 2.4, there is a need to control the rewrites on the
conditions. The only case in which this step must be off is when there is other means
of controlling these rewrites, for example, using Alberto Verdejo’s strategy language for
Maude [45]. The syntax of the command is either ‘step flag on’ or ‘step flag off’.

4.5 A simple example

This section revisits the simple example of a language specification first shown in Sec-
tion 2.4, adapted forMaude MSOS Tool. Like the example on Section 2.4, this very simple
programming language contains only an ML-like ‘let-in-end’ construction and the ‘sum’
function.

64

The following specification is enclosed by an MSOS module definition to be accepted
in the MMT.

(msos SIMPLE-LANGUAGE is ... sosm)

The following datatype definitions declares the sets used on the specification: ‘Exp’,
the set of expressions, and ‘Id’, the set of identifiers. We let the expressions range over
identifiers and integers (the built-in set ‘Int’), the only primitive type of our simple
programming language.

Id .

Exp .

Exp ::= Int | Id .

We now declare the two constructions of the language.

Exp ::= let Id = Int in Exp end

| Exp sum Exp .

The specification of the ‘let-in-end’ construction requires a read-only environment
for the bindings. We declare it as a map from identifiers to integers. This environment is
accessed by the index ‘env’.

Env = (Id, Int)Map .

Label = { env : Env, ... } .

Now for the dynamic semantics. To evaluate the sum of two expressions, we first
evaluate the first expression until it reaches a final value, which is specified to be an
integer in this language. Then the second expression is evaluated. When final values
are produced, the final value of the function itself is the mathematical sum of the two
integers.

Exp1 -{...}-> Exp’1

-- --

(Exp1 sum Exp2) : Exp -{...}-> Exp’1 sum Exp2 .

Exp2 -{...}-> Exp’2

-- --

(Int sum Exp2) : Exp -{...}-> Int sum Exp’2 .

Int3 := Int1 + Int2

-- -----------------------------

(Int1 sum Int2) : Exp --> Int3 .

65

For the meaning of the ‘let-in-end’ construction, the expression is evaluated in the
context of the current environment overridden with the binding provided by ‘Id = Int’
declaration. When the evaluation of the expression reaches the final value of an integer,
the whole expression evaluates to this integer.

Env’ := (Id |-> Int) / Env, Exp -{env = Env’, ...}-> Exp’

-- ---

(let Id = Int in Exp end) : Exp -{env = Env, ...}->

(let Id = Int in Exp’ end) .

(let Id = Int in Int’ end) : Exp --> Int’ .

The evaluation of an identifier looks up its mapping in the environment and returns
it.

Int := lookup (Id, Env)

-- --------------------------

Id : Exp -{env = Env, -}-> Int .

In order to run programs with our specification we need to provide identifiers to it.
We do this by creating constants ‘x’ and ‘y’.

(msos TEST is

see SIMPLE-LANGUAGE .

Id ::= x | y .

sosm)

We may now use Full Maude’s ‘rewrite’ command to execute a simple program,
whose argument is an MRS configuration (see Section 2.4).

(rewrite < (let x = 10 in

let y = 10 in

x sum y

end

end) ::: ’Exp,

{ env = void } > .)

rewrite in TEST : < ... >

result Conf :

< 20 ::: ’Exp, { env = void } >

Bye.

Chapter 5

The implementation of MMT

This Chapter describes the implementation of Maude MSOS Tool. Recall from Sec-
tion 2.3.2.1 that the representation of a language/logic L in rewriting logic is given
by a representation map Ψ : L → R which is ultimately expressed by an executable
function in Maude Φ : ModuleL → Module. In the case of MSOS, this function is
Φ : ModuleM → Module, where ModuleM is a data type representing MSDF modules
and, as usual, Module is the data type representation of Full Maude’s system modules.

This Chapter is organized as follows: Section 5.1 describes procedure first described
in Section 2.3.4.3 applied to the case of MSDF modules; Section 5.2 describes the highest-
level of the compilation process, that of MSDF modules; Section 5.3 describes how
datatype specification in MSDF is converted to Maude; Section 5.4 describes how la-
bel information is used on the compilation process; and finally, Section 5.5 describes how
MSDF transitions are compiled into rewriting logic rules.

5.1 MMT as an extension of Full Maude

Since MMT is meant to be a conservative extension of Full Maude, we need to parse
both MSDF and Full Maude input. That is, we need not only to create the signature
for the MSDF constructions, but also to combine that with the Full Maude signature
to parse user input. The functional module ‘MSOS-SL-SIGNATURE’ defines the signature
of MSDF declarations and we combine with Full Maude’s ‘GRAMMAR’ to create the mod-
ule ‘MSOS+FM-GRAMMAR’. This combined signature is used on the command loop rules to
parse user input and redirect to the correct handlers. For this, we need to replace the
‘FULL-MAUDE’ module with our own, named ‘MAUDE-MSOS-TOOL’, that contains such rules.
This module includes ‘EXT-DATABASE-HANDLING’ which extends the ‘DATABASE-HANDLING’
with the functions that apply to MSDF user input.

Let us give a concrete example. Recall from Section 2.3.4.3 how Full Maude user
input is processed. In the particular case of MMT, when the user types a text through
‘LOOP-MODE’, it is converted to ‘QidList’ and matched on the rule ‘[in]’ on the variable
‘QIL’. The rule then attempts to parse this token list with the combined signature and, if
it is successful, puts the parsed term on the ‘input’ attribute of the database object.

crl [in] : [QIL, < O : X@Database |

67

db : DB, input : nilTermList, output : nil,

default : MN, Atts >, QIL’] =>

[nil, < O : X@Database | db : DB,

input : getTerm(metaParse(MSOS+FM-GRAMMAR,

QIL, ’Input)),

output : nil, default : MN, Atts >, QIL’]

if QIL =/= nil /\

metaParse(MSOS+FM-GRAMMAR, QIL, ’Input) : ResultPair .

The ‘EXT-DATABASE-HANDLING’ module declares specific rules for each type of input
term. Let us show one example. The following rule works as follows: if the input term
matches against the pattern ‘’msos_is_sosm[T, T’]’, which is an MSDF module as
defined by the module ‘MSOS-SL-SIGNATURE’, it is given to the function ‘mmt-proc-unit’
that begins the compilation process.

rl < O : X@Database | db : DB, input : (’msos_is_sosm[T, T’]),

step-flag : B,

output : nil, default : MN, Atts > =>

< O : X@Database | db : mmt-proc-unit(’msos_is_sosm[T, T’],

step-flag(B), DB),

input : nilTermList, step-flag : B,

output : (’Introduced ’MSOS ’module

modNameToQid(parseModName(T)) ’\n),

default : parseModName(T), Atts > .

The entire sequence works as follows: the metaparsing of the user entered ‘QidList’
produces a term of sort ‘MSOSUserInput’ that is the metarepresentation of the user input,
defined by ‘MSOS-SL-SIGNATURE’ module. We need to move from this metarepresentation
to a term of sort ‘MSOSModule’ that is the metarepresentation of MSDF modules, as defined
on the ‘MSOS-UNIT’ module. This two-phase process—user input into ‘MSOSUserInput’
and then to ‘MSOSModule’—is used because an MSDF module has user-definable syntax,
where the terms that appear in transitions are usually defined on the same module.
Because of this at the time of the first phase there is no information about the user
defined signature of these. The solution adopted by the Maude system and followed by
MMT is to use bubbles in place of those terms. Bubbles are sequence of tokens that have
not been parsed yet because there is no signature to parse them. After the signature is
collected from the MSDF module, it is used to parse those bubbles. Once all the bubbles
have been parsed, we have a complete metarepresentation of MSDF modules, according
to the definition of the ‘MSOS-UNIT’ module and the compilation may begin.

The first phase of the parsing produces a term that is the metarepresentation of a
‘MSOSUserInput’ module. This is not the MSDF module, as we have said, but a metarep-
resentation of what the user has typed. From this module we obtain the ‘MSOSModule’,
constructing it with the ‘mmt-proc-unit’, defined on the module ‘MSOS-PARSER’, with the
following signature:

mmt-proc-unit : Term × CFlags × Database → Database

68

where ‘Term’ is the parsed term, ‘CFlags’ are the compilation flags that control the
compilation process, described in Section 5.2, and ‘Database’ is the database of modules.
In order words, this function receives a term and a database, and returns a database
modified by inserting the “term unit” of the MSDF module; recall from Section 2.3.4 that
the “term unit” is the metarepresentation of the user input.

After inserting the term unit into the database, ‘mmt-proc-unit’ gives control to
‘mmt-eval-preunit’, whose job is to construct a signature out of the datatype information
from the MSDF module and solve the bubbles in it. The function is defined on the module
‘MSOS-SOLVER’ and has the following signature:

mmt-eval-preunit : Unit× CFlagsDatabase → Database

This functions expects to receive a ‘Unit’, which is a supersort of the
‘MSOSModule’ sort. It then solves the bubbles on this module by calling the function
‘solve-module-bubbles’ from module ‘MSOS-SOLVE-BUBBLES’.

solve-module-bubbles : Unit× Database → Unit

After the bubbles have been solved, the control returns to the ‘mmt-eval-preunit’
function, which then calls ‘convertMSOS’, which is the function that actually produces
the rewrite theory associated with the MSDF specification. The rest of this Chapter is
dedicated to the functionality provided by this function.

5.2 Modules

Let us begin by giving a high level view of the compilation process. Given an MSDF spec-
ification M, each MSOS module is converted into a system module that uses the MRS
rewrite theories; datatype definitions from M are converted into axioms in membership
equational logic, and the three-element relations (big-step, small-step, and static seman-
tics) are converted into the two-element relation defined by rewriting logic rules over MRS
configurations; label expressions are converted into MRS record expressions, and must be
split into two parts: records at the left-hand side (before) and at the right-hand side
(after) of MRS rules.

In order to formalize this, let us consider an abstract MSDF module M as a tuple
(D, L, T), with D the datatype declarations, L the label declarations, and T the transi-
tion rules. The compilation process generates a Full Maude system module Module that
contains the signature (Σ, E, R), with Σ the signature, E the set of equations, and R the
set of rewrite rules. The signature Σ contains the poset (S,⊆) of sorts, and the set O of
operators.

In the MMT this high level operation is performed by the function ‘convertMSOS’,
defined on the module ‘MSOS-CONVERTER’, with the following signature:

convertMSOS : MSOSModule × CFlags × Database → StrSModule

69

where ‘MSOSModule’ is the actual data type of ModuleM in the MMT implementation.
The image of ‘convertMSOS’ is a ‘StrSModule’, the metarepresentation, in Full Maude,
of Module modules. The sort ‘CFlags’ represents the flags that control the compilation
process; currently only one flag is used, the step flag that controls the generation of
restricted configurations that contains the ‘step’ rule, and the operators ‘{_,_}’ and
‘[_,_]’, see Section 5.5. The sort ‘Database’ is the database of modules handled by Full
Maude.

5.3 Datatypes

Now for the details of the compilation process, let us begin with the description on how
datatype information is processed. It is known since the early development of many-sorted
equational logic that there is a correspondence between many-sorted equational logic and
context-free grammars [24] and this fact is explored on the conversion from MSDF’s
datatype information into Maude signatures. However, we postpone the inclusion of
derived and implicit datatypes (such as lists, sequences, etc.) to Section 5.3.5.

Informally, the datatype declarations in D are used to generate the signature Σ, by
converting each set declaration into a sort declaration in S, each subset inclusion into a
subsort inclusion, and each function declaration into an operator in O.

5.3.1 Compilation of type declarations

The contents of the restricted configuration module (‘RCONF’, see Section 2.4) are also
created as a many-sorted signature from D, and, in order to understand why this is
needed, let us recall from Section 2.4 the definition of MRS configurations and restricted
configurations: MRS has three configuration constructors, ‘<_,_>’, ‘{_,_}, and ‘[_,_]’,
with a single step rule; the operators and the rule range over the abstract sort ‘Program’
and the sort ‘Record’. Having one sort for the program text requires that every sort
that appears on the first projection of configurations must be a subsort of ‘Program’.
While this simplifies the number of elements on a Maude system module, it also has the
drawback of putting all sorts, even those originally under separated components, into the
same connected component, which creates restrictions of regularity and overloading rules
that are artificially introduced by the compilation process and not by the user—a source
of frustration. To avoid some of these problems, the compilation process creates the three
operators for each sort. The same argument is applied to the ‘Component’ sort, the ‘_:_’
constructor for fields, and the ‘step’ rule. Because of this, a good deal of the compilation
process involves the reconstruction of some of the elements present of those modules that
are now absent due to the removal of the ‘Program’ and ‘Component’ sorts.

Formally speaking, consider the datatype definition D = (SD, FD) where SD is the
poset of sets and FD is the set of pairs of function signatures and a set of attributes.
Then, for each new set s ∈ SD, a sort s ∈ S, the poset of sorts in a rewrite theory
signature Σ, is created, with the same name. Each subset inclusion defines the order on
the poset S: for each s ⊆ s ′, with s, s ′ ∈ SD, its corresponding sorts are related as s < s ′

in Σ.

70

This is implemented by functions ‘get-new-sorts’ and ‘get-subsorts’, defined on
module ‘BNF-TOOLS’. They have the following syntax:

get-new-sorts : Set<BNF> → Set<ESort>

get-subsorts : Set<BNF> → Set<ESubsortDecl>

where ‘Set<BNF>’ is the metarepresentation of the datatype declarations on an MSDF
module, ‘Set<ESort>’ is the metarepresentation of sort declarations, and ‘Set<ESubsortDecl>’
is the metarepresentation of subsort declarations.

Given a poset (S,⊆) of sort declarations, let Smax be the set of maximal supersorts
in S. That is, Smax contains only the top sorts on each connected component of S. For
each sort s ∈ Smax, the < , > : s × Record → Conf operator is declared in Σ. Smax is
used instead of S to avoid adding unnecessary rules and operators to the theory, since all
operators and rules that apply to a sort also apply to all of its subsorts.

If the step flag is on, then the following additional operators are also created:

{ , } : s× Record ⇀ Conf

[,] : s× Record ⇀ Conf

This functionality is implemented by the function ‘make-confs’ defined on the module
‘AUX-CONF-OPS’, with the following signature:

make-confs : Set<BNF> × CFlags → Set<EOpDecl>

where ‘Set<EOpDecl>’ is the metarepresentation of operators in a Full Maude system
module.

5.3.2 Compilation of typed syntactic trees

A typed syntactic tree used in transitions is represented by a pair ‘t :::q’, where t is the
term representing the syntactic tree and q is a quoted-identifier that represents the sort.
This quoted-identifier is the name of the sort prefixed with a single quote, such as ‘’Exp’.
So, for each sort s ∈ Smax, the following operator is declared in Σ:

::: : s× Qid → s

This compilation step is implemented by the function ‘make-tst-ops’ defined on the
module ‘AUX-TYPED-SYNTACTIC-TREE-OPS’. It has the following signature:

make-tst-ops : Set<BNF> → Set<EOpDecl>

71

5.3.3 Compilation of functions

Continuing, for each function declaration f : s1×· · ·×sn → s in FD the following operator
is added to O as follows:

f : s1 × · · · × sn → s

Any attribute in f is moved verbatim to the operator. The function f may be in mixfix
format. In this case, the operator name is constructed by keeping all lowercase identifiers
from f and substituting all uppercase identifiers by underscores (‘_’) and the domain of
the operator is the set of all uppercase identifiers in f.

The conversion from functions to operators is done by the function ‘bnf->ops’, defined
in the module ‘BNF-TOOLS’. It has the following signature:

bnf->ops : Set<BNF> → Set<EOpDecl>

Next, the step rules from MRS must be generated. For search sort s ∈ Smax, the
following rule is generated if the step flag is on.

crl <X :::qid(s), R> → <X ′ :::qid(s), R ′>

if {X ::: qid(s), R} → [X ′ :::qid(s), R ′] [step]

where X, X ′ are variables of the sort s, and R, R ′ are variables of the sort ‘Record’. The
function qid(s) converts a sort name into a quoted-identifier. If the step flag is off, no step
rule is generated. The one-step rewrite at the conditions, in this case, must be controlled
by some other means, like a rewriting strategy.

5.3.4 Compilation of module inclusion

Finally, we must deal with module inclusion. The modules ‘QID’ and ‘MSOS-RUNTIME’ are
always included by the rewrite theory being generated. The former is needed due to the
use of quoted-identifiers on typed syntactic trees representations in Maude (the ‘_:::_’
operator), and the later contains the basic runtime support of the execution of MSDF
modules, such as the definition of the ‘Record’ sort, the sorts of indices, etc. For each
module m included using syntax ‘see m’, a corresponding ‘including m’ is generated.
Each parameterized set declaration gives rise to the inclusion of a module expression of
the relevant parameterized module. The details of this are described in Section 5.3.5 and
in Table 5.1.

For the implicit module inclusions described in Section 4.2.1, we need a few defi-
nitions first: let sets(D) be a projection function that returns all set identifiers that
are mentioned on an MSDF module datatype definition D, newsets(D) a projection
function that returns all set identifiers that correspond to the new sets declared on D,
and modules({s0, . . . , sn}) returns the modules that declare the sets identifiers in the
set {s0, . . . , sn}. Then the list of implicit modules to be included is modules(sets(D) \

newsets(D)), which is the list of the modules that declare the sets that are not new in

72

the current set.

This functionality is implemented by the function ‘make-includes’, defined in the
module ‘MSOS-INCLUDE-GENERATION’, with the following signature:

make-includes : MSOSModule × CFlags × Database → List<EImport>

where ‘List<EImport>’ is the metarepresentation of the list of imports in a Full Maude
module.

This function, in turn, depends on the following functions. The function ‘see->import’
converts MSDF inclusions into Maude inclusions, with the following signature:

see->import : List<See> × Database → List<EImport>

where ‘List<See>’ is the metarepresentation of the list of imports in an MSDF module.

The function ‘generate-subsort-includes’ handles implicit module inclusions:

generate-subsort-includes : List<See> × Set<BNF> ×

LabelType × Database → List<EImport>

where ‘LabelType’ is the metarepresentation of label declarations.

Finally, ‘generate-parameterized-includes’ handles the inclusion of the parame-
terized modules.

generate-parameterized-includes : Set<BNF> × Database

→ List<EImport>

These functions are all declared on the same module ‘MSOS-INCLUDE-GENERATION’.

The function that implements the search for a declaring module is
‘find-declaring-module’, defined on the module ‘SORT-SEARCH-TOOLS’. It has
the following signature:

find-declaring-module : Set<ESort> × Database → Set<ModName>

The sort ‘Set<ModName>’ is a set of module names. Function
‘find-declaring-module’ receives a set of sorts and returns the set of modules
where they are defined. Currently, the tool expects that there exists a single module that
defines each sort. This function works by iterating through all modules in the Full Maude
database, extracting the list of sorts that are defined on each module, and checking to
see if the one of the given sorts is present on this list. (It carefully avoids checking the
internally generated abstract modules A(s) described in Section 5.3.5 that are used to

73

Type Module Sorts

Sequences SEQUENCE(X :: TRIV) Seq(X), NeSeq(X)
Sets SET(X :: TRIV) Set(X)

Lists LIST(X :: TRIV) List(X)

Maps MAP(X :: TRIV | Y :: TRIV) Map(X | Y)

Table 5.1: Relationship between parameterized types and Full Maude

resolve the view forwarding problem.)

To exemplify the compilation so far, consider the following MSDF fragment that
assumes that the set ‘Value’ is defined in the module ‘VALUE’. This fragment defines two
new sets, the abstract syntax of two constructions, a looping command, and a parallel
execution command, two subset inclusions, and has an explicit inclusion of another MSDF
module.

see SEQ .

Id . Exp .

Exp ::= Id

| Value

| while Exp do Exp

| parallel (Exp, Exp) .

With the step flag on, it is converted into the following Maude fragment:

include VALUE . op <_,_> : Exp Record -> Conf .

include SEQ . op {_,_} : Exp Record ~> Conf .

op [_,_] : Exp Record ~> Conf .

sort Id . op _:::_ : Exp Qid -> Exp .

sort Exp .

subsort Id < Exp . op while_do_ : Exp Exp -> Exp .

subsort Value < Exp . op parallel : Exp Exp -> Exp .

5.3.5 Parameterized and derived types

Let us now extend the process so far to derived and parameterized types. Since the
translation involve a large number of steps, the simplest ones are presented first, enlarging
the conversion incrementally, while justifying the need for each increase in complexity.

Parameterized sets in MSDF—lists, sets, and maps—are converted into parameterized
sorts, a feature only available in Full Maude in the version 2.1.1 of the Maude system.
For each parameterized type, there is a built-in parameterized Full Maude system module
(see Section 2.3 for a discussion on those) that implements the generic functionality of
the relevant type. Table 5.1 lists the relationship between MSDF’s parameterized types
and Full Maude’s parameterized modules and sorts. Recall that in order to instantiate a

74

parameterized module with a specific sort, we first need to create a view; then, module
instantiation is made by importing a module expression that involves the parameterized
module and the desired view (see Section 2.3.4). So, for each parameterized instantiation
in an MSDF module the corresponding module expression that instantiates the parame-
terized module with the view is added to the includes section of the generated Full Maude
system module. This module instantiation makes available the parameterized sorts that
corresponds to the parameterized types, according to Table 5.1. Recall from Section 4.2.2
that parameterized sets are not used directly by themselves, but through an equivalent
set—the left hand side of the 〈 equiv 〉 non-terminal. This equivalent set of the parame-
terized set is made a supersort of the parameterized sort. This is necessary so that all
elements of the parameterized sort algebra will be made available to the equivalent sort
algebra, including their carrier sets and operations.

In order to formalize this, let us consider an abstract declaration of an equivalent set
s with its parameterized set P(s0, . . . , sn) as s = P(s0, . . . , sn) in an MSDF module M.
This declaration gives rise to the following components in the generated rewrite theory: a
sort declaration for s in Σ; an include for the parameterized module instantiation, which
depends on P, according to Table 5.1, as the instantiated view depends on s0, . . . , sn; and,
finally, a subsort ordering that relates s and P(s ′) as P(s ′) < s is added to S.

For example, the declaration ‘Channels = (Channel)Set’ generates the following
Maude fragment, where the module expression ‘SET(Channel)’ is the instantiation of
the parameterized module ‘CHANNEL’ with the view ‘Channel’ (not shown here). The
equivalent set ‘Channels’ is converted into the sort ‘Channels’ and is made a supersort
of the parameterized sort ‘Channel(Set)’.

mod CHANNEL is

including SET(Channel) .

sort Channels .

subsort Channel(Set) < Channels .

endm

5.3.5.1 View forwarding problem

The flexibility of MSDF creates a problem with this scheme that manifests itself when a
parameterized type is instantiated on the same module that its parameter set is declared,
such as:

msos CHANNEL is

Id .

Env = (Id, Int)Map .

sosm

The problem is that a view must be defined before a module instantiation occurs—
recall that a view defines a mapping from one theory (usually ‘TRIV’) to a module. In
this case, the view cannot be defined because the sort it refers to is defined in the same
module in which the view is needed. Hence, we have a forwarding declaration problem.

75

This is solved by adopting the following scheme: for each sort s ∈ S, two internal
modules are generated and inserted into Full Maude’s database before compilation begins:
an internal functional module A(s) (for “abstract module”), which contains only the
declaration of the sort s and can be seen as an abstract sort declaration module; a view
s, that maps the theory ‘TRIV’ to the module A(s); the view itself maps the sort ‘Elt’ to
the sort s.

After this step is completed, the module instantiation may be used on any subsequent
module without any forwarding concerns. The function that creates the abstract modules
and views is defined on the ‘MSOS-SOLVER’ module and has the following signature:

insert-generated-modules&views : Set<ESort> × Database → Database

5.3.5.2 Derived Sets

The derived sets treatment on the MMT is similar to the parameterized sets: each derived
set is converted into a parameterized sort according to Table 5.1. The difference in the
case of derived types is that there is no new sort declaration or any subsort ordering. All
references to ‘s*’ and ‘s+’ in the transitions, label declarations, and datatype definitions
are automatically converted to ‘Set(s)’ and ‘NeSeq(s)’, respectively, during the compi-
lation phase. This is straightforward, since derived types are always defined for any sort
s. We could use this same replacement approach for parameterized types (which would
avoid some preregularity problems) but this would involve keeping track of all mappings
across all defined modules, since a mapping may be defined on a completely separated
module from where it is actually used.

Formally, for each sort s ∈ S in the signature of the generated rewrite theory, the pa-
rameterized instantiation of the module expression ‘SEQUENCE(s)’ is automatically added
to its declaring module. This module expression defines ‘Seq(s)’ and ‘NeSeq(s)’ that cor-
responds, respectively, to ‘s*’ and ‘s+’. In order to maintain consistency among sequences
over a lattice of sorts, each subset inclusion s ⊆ s ′ must generate not only the subsort dec-
laration s < s ′, but also the subsort declaration of its derived types: Seq(s) < Seq(s ′),
and NeSeq(s) < NeSeq(s ′). The reason for this is that any sequence of elements from
s is also a sequence of elements from s ′—consider (5, 4, 3, 2, 1), a sequence of complex
numbers, which is also a sequence of reals, integers, and naturals. Since the relation
NeSeq(s) < Seq(s) is already built-in on the ‘SEQUENCE’ module, there is no need to
relate NeSeq(s) and Seq(s ′), as this is already achieved by transitivity of the < relation.

To exemplify the use of abstract modules and views, consider the following fragment.
It defines a set ‘Cmd’ of, say, commands and creates a function ‘seq’ that has as a single
parameter the set of non-empty list of commands.

msos SEQ-CMD is

Cmd .

Cmd ::= seq Cmd+ .

sosm

The following Maude code is generated (including the generated modules). First, the

76

abstract module ‘@@ABSTRACT-Cmd’ is generated containing only the declaration of the
sort ‘Cmd’.

fmod @@ABSTRACT-Cmd is

sort Cmd .

endfm

Next the view ‘Cmd’ is generated that maps ‘Elt’, defined in ‘TRIV’, to ‘Cmd’, defined
in ‘@@ABSTRACT-Cmd’.

view Cmd from TRIV to @@ABSTRACT-Cmd is

sort Elt to Cmd .

endv

Then, the module ‘SEQ-CMD’ is introduced, already including the module expression
‘SEQUENCE(Cmd)’, which instantiates the parameterized module ‘SEQUENCE’ with the view
‘Cmd’. This instantiation creates the sorts ‘Seq(Cmd)’ and ‘NeSeq(Cmd)’. The function
‘seq’ is converted into the operator ‘seq’ and, as described, the set ‘Cmd+’ is converted
directly into the sort ‘NeSeq(Cmd)’.

mod SEQ-CMD is

including SEQUENCE(Cmd) .

sort Cmd .

op seq_ : NeSeq(Cmd) -> Cmd .

endm

In order to exemplify the subsorting of derived types, consider the following module
that defines two sets, ‘Exp’ and ‘Id’, and makes ‘Id’ a subset of ‘Exp’.

msos EXP is

Id .

Exp .

Exp ::= Id .

sosm

Omitting the abstract modules and views generated, the following code contains the
instantiation of the ‘SEQUENCE(Id)’ and ‘SEQUENCE(Exp)’ modules, a subsorting relation
between ‘Id’ and ‘Exp’, as well as the expected subsorting relation between the derived
types.

mod EXP is

including SEQUENCE(Id) .

including SEQUENCE(Exp) .

sort Id .

77

sort Exp .

subsort Id < Exp .

subsort NeSeq(Id) < NeSeq(Exp) .

subsort Seq(Id) < Seq(Exp) .

endm

The level of nesting in parameterized types is arbitrary. For example, if one needs to
create a mapping ‘Ref’ that maps locations (‘Loc’) to environments (‘Env’) which are in
turn mapping themselves, one would write:

Loc .

Env = (Id, Value) Map .

Ref = (Loc, Env) Map .

In order to cope with some preregularity and non-associativity of operators, we cur-
rently avoid derived types in parameterized types. Chapter 7 has a discussion on this.

5.4 Processing label declarations

The 〈 label 〉 declaration is used to create the various ‘Field’ operators that are used
on MRS configurations. This is necessary also due to the removal of the ‘Component’
sort originally used in MRS configurations because of the same problems of preregularity
that lead to the removal of the ‘Program’ sort. Also, a number of additional subsorts
of ‘Field’ and ‘Index’ are also defined as they are necessary on the compilation of the
transition rules. For read-only fields, the sort ‘ROField’ is used; for read-write fields,
the sort ‘RWField’ is used; and for write-only fields, the sort ‘WOField’ is used. For the
indices, the following sorts are defined: for read-only indices, the sort ‘RO-Index’ is used;
for read-write indices, both sorts ‘Pre-RW-Index’ and ‘Post-RW-Index’ are defined related
to the unprimed and primed indices, respectively; and finally for write-only indices, the
sort ‘WO-Index’ is used.

Formally, the compilation is as follows. Consider a label declaration L as a set of field
declarations {f0, . . . , fn}, where each field fj is a pair (i, s), with i the index and s the type
of the component. Consider a function sets(L) that returns the all the second projections
from the fields in L and indices(L) that returns all the first projections from the fields
in L. Then, for each set s ∈ sets(L), its corresponding module modules(s) is included
on the module being generated and the following operator is created in O:

= : Index× s ⇀ Field

For each index i ∈ indices(L) the following operator is created in O:

i : → indexsort(i)

where indexsort(i) is RO-Index if i is a read-only index, Pre-RW-Index if i is the un-
primed index of a read-write index, Post-RW-Index if i is the primed index of a read-write
index, and WO-Index if i is a write-only index.

78

This is implemented by the operator ‘make-op-indices’, defined in the module
‘AUX-INDICES-OPS’. It has the following signature:

make-op-indices : LabelType → Set<EOpDecl>

We also need to reconstruct the membership in the original MRS configuration that
asserts that the term i = s is a field. For each field (i, s) ∈ L the following membership
equation is created:

mb (i =X) : fieldsort(i)

where X is a variable of the sort s, and fieldsort(i) is ROField if i is a read-only
index, RWField if i is either an unprimed or a primed index of a read-write compo-
nent, and WOField if i is a write-only index. This is implemented by the operator
‘make-memberships’, defined in the module ‘MSOS-MEMBERSHIP-GENERATION’. It has the
following signature:

make-memberships : LabelType → Set<EMembAx>

where ‘Set<EMembAx>’ is the metarepresentation of the set of membership equations in
Full Maude.

Recall from that ‘duplicate’ equations are used on the conditional membership equa-
tion that asserts that a record contains no duplicated fields.

duplicated : PreRecord ⇀ Bool

Since there is no single ‘Component’ sort we have to generate this equation for every
sort that appears on a label declaration. Thus, for every sort s ∈ sets(L), the following
equation is generated:

eq duplicated((i =X), (i =X ′), PR) = true.

where X, X ′ are variables of sort s, i is a variable of sort Index, and PR is a variable of
sort PreRecord. This is implemented by the operator ‘make-dup-function’, defined in
the module ‘AUX-DUP-FUNCTION-EQS’, that has the following signature:

make-dup-function : LabelType → Set<EEquation>

where ‘Set<EEquation>’ is the metarepresentation of the set of equations in Full Maude.

As an example, a label declaration such as:

Label = { env : Env, st : Store, st’ : Store,

out’ : Value*, ... } .

generates the following Maude fragment.

op _=_ : [Index] [Env] -> [Field] .

79

op _=_ : [Index] [Store] -> [Field] .

op _=_ : [Index] [Seq(Value)] -> [Field] .

op env : -> RO-Index .

op out’ : -> WO-Index .

op st : -> Pre-RW-Index .

op st’ : -> Post-RW-Index .

mb env = V:Env : ROField .

mb out’ = V:Seq(Value) : WOField .

mb st = V:Store : RWField .

mb st’ = V:Store : RWField .

eq duplicated(I:Index = X:Env,I:Index = X’:Env,

PR:PreRecord) = true .

eq duplicated(I:Index = X:Seq(Value),

I:Index = X’:Seq(Value), PR:PreRecord) = true .

eq duplicated(I:Index = X:Store,I:Index = X’:Store,

PR:PreRecord) = true .

5.5 Processing MSOS transitions

This Section presents the implementation of the transformation described in Section 2.4.1.
We begin by describing the most straightforward transformation first, that of uncondi-
tional rewrites. Essentially, we are converting from a relation between three elements—the
two syntactic trees and the MSOS label—to a relation between MRS configurations, which
are tuples containing the syntactic tree (or, using the algebraic terminology, the term)
and the MRS record.

Dealing with the syntactic trees is straightforward: the left-hand side of MSDF tran-
sitions become the first projection on the left-hand side configuration, the program part,
and the same idea applies to the right-hand side. Recall that, in MSDF, the syntactic
trees have an associated type; this typed syntactic tree is converted to tuples of syntactic
trees and types constructed by the ‘_:::_’ operator, as explained in Section 5.3. The use
of restricted configurations versus configurations—‘{_,_}’ and ‘[_,_]’ versus ‘<_,_>’—is
controlled by the step flag.

To handle MSOS label expressions we need to decompose it into two MRS records, one
for each MRS configuration: the first represents the fields present in the MSOS label at
the beginning of the transition, while the second represents the fields present at the end of
the transition. The decomposition is as follows: read-only fields must remain unchanged,
so they appear both at the beginning and at the end with the same value; read-write
components are decomposed into their unprimed and primed parts; the unprimed part
is moved to the beginning and the primed is moved to the end; finally, write-only fields
are more tricky since they model “produced information” and there is no information
available at the start of the transition. This is modeled as the appending of the produced
value to the current sequence that corresponds to that field. Thus, at the end of the

80

computation, this component will have a sequence of all produced values.

Formally speaking, let us consider the transition as a tuple (c, t, α, t ′), where c is the
condition, t is the left-hand side, α the MSOS label, and t ′ the resulting term. In the
case of unconditional transitions, c is a tautology. From that, the following unconditional
MRS rewrite rule is generated. If the step flag is on:

rl {t̂ :::qid(s), pre(α̂)} → [t̂ ′ :::qid(s), post(α̂)]

If the step flag is off, normal MRS configurations are used instead of the restricted
configurations above.

rl <t̂ :::qid(s), pre(α̂)> → <t̂ ′ :::qid(s), post(α̂)>

Here t̂, t̂ ′, and α̂ are the same terms as t, t ′, and α, except that all implicit metavari-
ables have been made explicit according to the rules defined in Section 4.2.4. The ex-
pansion of implicit metavariables is a purely syntactical manipulation of terms that is
made before any processing is made on the transitions. Given a term t, we remove
from it all characters that are neither letters nor the symbols ‘*’ and ‘+’ to create the
sort of that term. This is made by the functions ‘create-transition-variables’,
‘create-label-variables’, and ‘create-condition-variables’, which converts, re-
spectively, terms at the transition, labels and conditions of MSDF transitions.

These functions are implemented on the module ‘AUTOMATIC-VARIABLES’ and have
the following signature:

create-transition-variables : QidList → QidList

create-label-variables : QidList → QidList

create-condition-variables : QidList → QidList

where ‘QidList’ is a list of quoted identifiers that represents the input tokens as they are
read by ‘LOOP-MODE’.

Before we describe the remainder of the compilation process, a word about how MSOS
labels and MRS records are represented algebraically is needed: MSOS labels are defined
as purely abstract sorts ‘Label’, which represents an entire label; ‘ILabel’, which rep-
resents an entire, unobservable label; ‘FieldSet’, which represents a subset of the fields
on a label, and ‘IFieldSet’, that represents an unobservable subset of the fields on a
label. The equivalent MRS sorts are, respectively, ‘Record’, ‘PreRecord’, ‘IRecord’, and
‘IPreRecord’.

The functions pre, post convert from label expressions—FieldSet, IFieldSet—in
MSOS to record expressions—PreRecord, IPreRecord—in MRS. Let α be a general label
expression {f0, . . . , fn}. Each fj is a field, which is abstractly represented as pairs (i, c),
with i the index and c the component.1 Let ε be an identity field so that {f0, ε, f1} =

{f0, f1}. The conversion rules for complete label expressions are:

1Please notice that this is not the same as (i, s), described previously on Section 5.4, which is a label
type declaration, with s the sort of the component indexed by i.

81

pre({f0, . . . , fn}) = {pre(f0), . . . , pre(fn)}

post({f0, . . . , fn}) = {post(f0), . . . , post(fn)}

where the ellipsis are just a compact way of saying that the function ranges over the entire
set of fields in a label.

The “rest of the label”-type of variables are converted as follows:

pre(U) = Ũ

post(U) = Ũ

pre(X) = X̃

post(X) = X̃ ′

where U is a variable of the sort IFieldSet, X and X ′ are variables of the sort FieldSet.
The result of the conversion generates variables X̃ and X̃ ′ of the sort PreRecord, and Ũ,
of the sort IPreRecord. Since a variable of the sorts ‘Label’ or ‘ILabel’ is equivalent to
the label expression {V} with V being a variable of the sort ‘FieldSet’ or ‘IFieldSet’,
there is no need to create equations of the pre and post operations that range over whole
labels.

Now let us describe the equations that range over a specific field (i, c). If i is a
read-only index:

pre(i, c) = (i, c)

post(i, c) = (i, c)

If i is the unprimed index of a read-write index:

pre(i, c) = (i, c)

post(i, c) = ε

If i ′ is the primed index of a read-write index:

pre(i ′, c) = ε

post(i ′, c) = (i ′, c)

If i ′ is a write-only index:

pre(i ′, c) = (i ′, V)

post(i ′, c) = (i ′, (V,c))

where V is a fresh variable of the sort s. Recall that the only free monoid currently
accepted by MMT is the finite sequence, with identity ‘()’, and binary operation ‘_,_’.

82

For conditional transitions, the only type of condition that needs attention is the tran-
sition condition; the other types are moved verbatim from MSDF to Maude, since they
already are present in Maude—they are conditional equations, variable instantiations, and
predicates. Conditional transitions are converted into conditional rules, in which transi-
tion conditions are converted into rewrite conditions using a slightly different approach
from the unconditional transitions. The difference is on the handling of write-only compo-
nents: at the beginning of a conditional transition the component is the empty sequence
‘()’ so that any information produced is present at the conclusion of the transition.

Formally, a conditional transition (c, t, α, t ′) is converted as follows. Let us consider
the condition c a conjunction of conditions c0, . . . , cn. If the step flag is on the following
conditional rewrite rule is generated:

crl {t :::qid(s), pre(α)} → [t ′ :::qid(s), post(α)]

if cond(c0, . . . , cn)

On the other hand, if the step flag is off, the following rule is generated:

crl <t :::qid(s), pre(α)> → <t ′ ::: qid(s), post(α)>

if cond(c0, . . . , cn)

The function cond(c) converts the conditions on the transitions to rewriting logic condi-
tions according to the following rules:

cond(c0, . . . , cn) = cond(c0) ∧ · · ·∧ cond(cn);

For each condition ci, the conversion is as follows. If ci is a transition condition
(t, α, t ′), then it is converted into a conditional rewrite rule. If the step flag is on, this
rule is as follows:

{t:::qid(s), pre ′(α)} → [t ′:::qid(s), post ′(α)]

Otherwise the rule is as follows:

<t:::qid(s), pre ′(α)> → <t ′:::qid(s), post ′(α)>

where s is the least sort applicable to t, therefore implying preregularity.

If ci is not a conditional transition:

cond(ci) = ci

The pre ′, and post ′ functions work in the same way as pre and post. These equations

83

follow the equations for the pre and post functions. The same observations apply.

pre ′({f0, . . . , fn}) = {pre ′(f0), . . . , pre
′(fn)}

post ′({f0, . . . , fn}) = {post ′(f0), . . . , post
′(fn)}

pre ′(U) = Ũ

post ′(U) = Ũ

pre ′(X) = X̃

post ′(X) = X̃ ′

For fields the only difference lies on the write-only fields. If i is a read-only index:

pre ′(i, c) = (i, c)

post ′(i, c) = (i, c)

If i is the unprimed index of a read-write index:

pre ′(i, c) = (i, c)

post ′(i, c) = ε

If i ′ is the primed index of a read-write index:

pre ′(i ′, c) = ε

post ′(i ′, c) = (i ′, c)

If i ′ is a write-only index:

pre ′(i ′, c) = (i ′, ())

post ′(i ′, c) = (i ′, c)

Finally, let us describe the practical aspects of this conversion. First, the transitions
must be de-sugared and normalized according to this: all relations --> are converted to
-{U}->, the metavariable ‘-’ in label expressions is converted to ‘U’, and the metavariable
‘...’ to ‘X’.

The main function for the conversion from MSDF transitions to rewrite rules is
‘make-rewriting-rules’ on module ‘MSOS-RULE-GENERATION’. It has the following sig-
nature:

make-rewriting-rules : Set<Transition> × LabelType × CFlags → RuleSet

The parameters are: ‘Set<Transition>’ is the metarepresentation of a set of MSDF
transitions, ‘LabelType’, which is the metarepresentation of the label definition present
on the same module that contains the set of transitions, and ‘CFlags’ is are compilation
flags. The image is ‘RuleSet’, which is the metarepresentation of a set of rewrite rules.
This function iterates over the transitions in ‘Set<Transition>’. In order to generate
the beginning and end configurations, it calls the ‘lhs-conf’ and ‘rhs-conf’ operators,

84

defined on module ‘AUX-CONF-UTILS’, with the following signature:

lhs-conf : Term× QidTerm× ConfLocation × CFlags → Term

‘rhs-conf’ has the same signature. Here, following the order of the parameters, ‘Term’ is
the syntactic tree at the beginning of the transition, ‘Qid’ is the type of that syntactic tree,
‘Term’ is the resulting syntactic tree of the transition, ‘ConfLocation’ indicates whether
this configuration is being generated in on a conclusion or on a condition, and finally,
‘CFlags’ are the compilation flags. The image sort is ‘Term’, which is a metarepresentation
of an MRS condition.

Finally, the conversion of conditions is handled by the function ‘convert-condition’,
on module ‘MSOS-RULE-GENERATION’, with the following signature:

convert-condition : MSOS-Condition × IsComp? × CFlags → Condition

The parameter ‘MSOS-Condition’ is the metarepresentation the conjunction of con-
ditions of a particular transition, ‘IsComp?’ is a flag that indicates if the transition in
which these conditions appear uses label composition to that it can be dealt accordingly,
‘CFlags’ is the usual compilation flags and the image sort ‘Condition’ is the metarepre-
sentation of rewriting logic’s conditions.

Source dependent variables in MMT are not checked in MSDF transitions, but after
the compilation is done—on the generated rewrite rules. This is to simplify the verification
process, since the compilation process itself may introduce new variables on the rewrite
rules and it is straightforward to check for source dependency on unlabeled transitions,
as is the case of rewrite rules (labels in rewrite rules are only decorative and may not
contain metavariables).

The verification process simply follows the definition of source-dependent variables:
all variables on the source of the conclusion are source-dependent; if all variables on the
source of a condition are source-dependent then all the variables on the conclusion are
source-dependent. To formalize this, consider a rewriting rule r as:

t → t ′ ⇐ c1 ∧ · · ·∧ cn

Let vars(t) be the set of variables in term t. Let lhs(t) be the set of variables in the
left-hand side of t and rhs(t) the set of variables on its right hand side. Then, we define
incrementally sd(r), the set of source-dependent variables of a rule r, as follows:

• add vars(t) to sd(r);

• for each condition ci, from left to right, we proceed as follows: if lhs(ci) ⊆ sd(r)

then add rhs(ci) to sd(r);

• add lhs(ci) to sd(r) if ci is a matching equation (since the left hand side of ci in
this case is being instantiated).

85

The verification of source-dependent variables is made by function
‘source-dependent’, defined in module ‘SOURCE-DEPENDENCY-CHECK’, with the fol-
lowing signature:

source-dependent : Rule → Set<Var>

To check whether a rule is source-dependent or not we first select all variables from
the rule and then remove those that are source-dependent. There should be no variable
left.

Chapter 6

Case studies

This Chapter describes several applications of the MMT: Section 6.1 describes Construc-
tive MSOS [52] and how it is used on the formal definition of programming languages;
Section 6.2 describes the semantics of a normal-order language, Mini-Freja [56]; Section 6.3
describes several different distributed algorithms from [36] specified in MSDF and verified
in Maude.

6.1 Constructive MSOS

Mosses’s Constructive MSOS (CMSOS) [52] is a technique for the specification of pro-
gramming languages semantics based on the idea that each language construction should
be specified in a separated module and the complete language specification is based on the
combination of all these modules. A related approach, named Constructive Action Seman-
tics, which uses the same ideas and is developed under the Action Semantics framework,
is described in [19, 30, 31].

A further generalization that Constructive MSOS makes is to use neutral constructions
with regard to a particular programming language. This allows a high degree of reuse
of those modules on a wide range of programming languages. Mosses’s lecture notes [52]
contain a proposed set of these abstract constructions, which we have implemented and
call it also as CMSOS. We also exemplify the use of these abstract constructions to give the
formal semantics of two different programming languages: a subset ML described in [52]
(Section 6.1.2) and a subset of Java, called MiniJava, based on the language described
in [2] (Section 6.1.3).

6.1.1 The CMSOS constructions

This Section describes Mosses’s proposed set of CMSOS constructions. Each subsection
describes a particular aspect of the CMSOS language. We follow [52] on the order of
presentation, which divides the semantics of CMSOS into five aspects: expressions, decla-
rations, abstractions, commands, and concurrency. We opted not to present all of CMSOS
here, selecting instead those constructions that are needed on the semantics of ML and
MiniJava.

87

A word on terminology of CMSOS modules: recall from Chapter 3 that Mosses’s
MSOS Tool library separates each module into a file in its own directory. For example, the
directory ‘Cons/’ contains all the constructions of CMSOS. Inside ‘Cons/’, the directory
‘Exp/’ contains all the constructions related to expressions. Inside ‘Exp/’, one of the
several directories is ‘tup/’, which contains the module that defines the syntax of general
tuples. MSDF modules must have a name, so we opted to use the directory hierarchy
as the name of the module. Also, Mosses divides each construction into three modules:
one for the abstract syntax, one for the static semantics, and another for the dynamic
semantics. To make things simple, we opted to combine both abstract syntax and dynamic
semantics in the modules implemented with MMT.

This Section describes a few selected modules from the complete CMSOS specifica-
tion needed to give the semantics for the other languages in this Chapter, namely ML
(Section 6.1.2) and MiniJava (Section 6.1.3). Appendix A contains the remainder of the
constructions.

6.1.1.1 Expressions

Expressions are the basic building blocks of CMSOS programs and contain the following
constructions: tuples, conditionals, application of operators, and applications of identi-
fiers. We begin by showing the abstract semantics of tuples of expressions first with its
most general form of tuples and then a more restricted one.

We begin by defining the general modules that define the set of expressions, ‘Exp’,
and values, ‘Value’. The module ‘Value’ defines the set of values along with a function
‘apply-op’, which receives an operation ‘Op’, and a sequence of values, ‘Value*’. The
set ‘Op’, defined on the module ‘Cons/Op’, contains all primitive operations on values. To
simplify things, we avoid to define rules for extremely obvious operations, such as arith-
metic operations, and comparison operations: these are defined outside the specification,
as we shall see later. The important thing is that the specifier does not have to worry
about defining things like the addition of two integer values, and so on.

msos Cons/Op is

Op .

sosm

msos Value is

Value .

Value ::= apply-op (Op, Value*) .

sosm

Next, we define the set of expressions, ‘Exp’, in the module ‘Cons/Exp’. Expressions
evaluate into values, hence the subset inclusion.

msos Cons/Exp is

Exp .

Exp ::= Value .

sosm

88

The ‘Cons/Exp/tup’ below defines a general form of tuples in which each element of
the tuple is selected nondeterministically to be evaluated.

msos Cons/Exp/tup is

Exp ::= tup Exp* .

Value ::= tup Value* .

Exp -{...}-> Exp’

-- --

(tup (Exp*,Exp,Exp*’)) : Exp -{...}-> tup (Exp*,Exp’,Exp*’) .

sosm

A sequential variant has the additional constraint in which elements must be evaluated
left to right.

msos Cons/Exp/tup-seq is

Exp ::= tup-seq Exp* .

Value ::= tup Value* .

Exp -{...}-> Exp’

-- --

(tup-seq (Value*, Exp, Exp*)) : Exp

-{...}-> (tup-seq (Value*, Exp’, Exp*)) .

(tup-seq Value*) : Exp --> tup (Value*) .

sosm

6.1.1.2 Declarations

Declarations constructions declare bindings and evaluate expressions within the context
of a set of bindings. A binding associate an identifier to a “bindable” value—a value that
may be part of a binding. The set ‘Bindable’ is the set of bindable values.

msos Data/Bindable is

Bindable .

sosm

Now the set of identifiers ‘Id’. In order to solve a forwarding problem, we first define
identifiers in a module ‘Id’, as follows:

msos Id is

Id .

Id ::= Bindable .

sosm

89

We may now define environments of bindings, which are used to associated identifiers
with bindable values. An environment ‘Env’ is a parameterized set, a map from ‘Id’ to
‘Bindable’.

msos Data/Env is

Env .

Env = (Id, Bindable) Map .

sosm

The definition of identifiers make use of a read-only component indexed by ‘env’. The
evaluation of a binding looks up its value on the ‘Env’ component and returns the value.

msos Cons/Id is

Label = {env : Env, ...} .

Bindable := lookup (Id, Env)

-- ---------------------------------

Id : Id -{env = Env, -}-> Bindable .

sosm

The set ‘Dec’ is the set of declarations in the language. Declarations evaluate to
bindings, hence the subset inclusion.

msos Cons/Dec is

Dec .

Dec ::= Env .

sosm

The construction ‘bind’ declares the binding of an identifier ‘Id’ and the value resulted
from the evaluation of the expression ‘Exp’.

msos Cons/Dec/bind is

Dec ::= bind Id Exp .

Exp -{...}-> Exp’

-- --

(bind Id Exp) : Dec -{...}-> (bind Id Exp’) .

(bind Id Value) : Dec --> Id |-> Value .

sosm

6.1.1.3 Abstractions

We describe here the constructions associated with procedural abstractions, and recursive
bindings. We begin by defining the set of abstractions and the set of its formal parameters.

90

msos Cons/Abs is

Abs .

sosm

msos Cons/Par is

Par .

sosm

When used to define a language in which abstractions are expressions, the following
module must be included.

msos Cons/Exp/Abs is

Exp ::= Abs .

Value ::= Abs .

sosm

The abstraction is defined using the abstract syntax defined in the module ‘Cons/Abs/abs-Exp’.
The set ‘Passable’ is the set of values that may be used as arguments. The application
of an abstraction to a “passable value” creates a ‘local’ declaration, with the pass-
able being bound to the parameter with the ‘app’ construction described on the module
‘Cons/Dec/app’.

msos Cons/Abs/abs-Exp is

see Cons/Exp/local, Cons/Dec/app .

see Cons/Exp/Abs, Cons/Exp/app .

Abs ::= abs Par Exp .

(app (abs Par Exp) Passable) : Exp -->

(local (app Par Passable) Exp) .

sosm

Closing an abstraction creates a “closure,” which is, in essence, an abstraction with
an environment.

msos Cons/Exp/close is

see Cons/Abs/closure .

Exp ::= close Abs .

Label = {env : Env, ...} .

(close Abs) : Exp -{env = Env,-}-> (closure Env Abs) .

sosm

The module ‘Cons/Abs/closure’ contains the definition of the application of a closure
to a passable value. Essentially, the environment in the closure is used as an “outer
declaration” of the ‘local’ construction.

91

msos Cons/Abs/closure is

see Cons/Exp/local, Cons/Abs .

see Cons/Exp/app, Cons/Exp/Abs .

Abs ::= closure Dec Abs .

(app (closure Dec Abs) Passable) : Exp -->

(local Dec (app Abs Passable)) .

sosm

6.1.1.4 Commands

Commands are the imperative facet of CMSOS. We begin by defining the set of commands,
‘Cmd’. All commands evaluate to a final value, ‘skip’, which is the “do nothing” command
and has no meaningful value as an expression.

msos Cons/Cmd is

Cmd .

Cmd ::= skip .

sosm

In order to execute a sequence of commands, we use the ‘seq-n’ construction, which
takes as parameter the non-empty list of commands, ‘Cmd+’, and evaluates each command
in order. As each command finishes, that is, evaluates to ‘skip’, it is removed from this
tuple.

msos Cons/Cmd/seq-n is

Cmd ::= seq Cmd+ .

Cmd -{...}-> Cmd’

-- --

(seq (Cmd, Cmd*)) : Cmd -{...}-> (seq (Cmd’, Cmd*)) .

(seq (skip, Cmd+)) : Cmd --> (seq Cmd+) .

(seq skip) : Cmd --> skip .

sosm

The ‘effect’ construction is the bridge between expressions and commands. It eval-
uates the expression to a value, and disposes of that value. Hopefully, the expression will
have changed some read-write or write-only component, like altering a value in storage,
or printing a value. Once a final value is produced by the evaluation of the expression,
the command evaluates to ‘skip’.

msos Cons/Cmd/effect is

Cmd ::= effect Exp .

92

Exp -{...}-> Exp’

-- --------------------------------------

(effect Exp) : Cmd -{...}-> effect Exp’ .

(effect Value) : Cmd --> skip .

sosm

6.1.1.5 Concurrency

Now we define the concurrency aspect of CMSOS specifications. Let us begin by defining
the concept of “complete” concurrent programs, or “systems,” represented by the set
‘Sys’.

msos Cons/Sys is

Sys .

sosm

The pool of threads running in a system is bound together by the ‘conc’ operator.
Two rules select nondeterministically which projection should be evaluated at each step.
We opted to follow Mosses’s specification to the letter here. Had we defined ‘conc’ a
commutative function, only one rule would be necessary. In either case the outcome is
the definition of an interleaving model of concurrency.

msos Cons/Sys/conc is

Sys ::= conc Sys Sys .

Sys1 -{...}-> Sys1’

-- --

(conc Sys1 Sys2) : Sys -{...}-> (conc Sys1’ Sys2) .

Sys2 -{...}-> Sys2’

-- --

(conc Sys1 Sys2) : Sys -{...}-> (conc Sys1 Sys2’) .

sosm

6.1.2 ML

ML is a subset of Concurrent ML [61] and is the first example of how to give the semantics
of a language in terms of CMSOS. The conversion from ML to CMSOS described in this
Section follows the one present in [52].

The transformation from ML’s syntax to CMSOS abstract syntax is presented using
an equation, where the CMSOS equivalent of an ML construction c is denoted between
double-bracket parentheses (such as [[c]]). The equation specifies how each component
of a construction is translated to CMSOS constructions. The transformation of an ML

93

construction f that contains parameters x and y is written as: [[f(x, y)]] = m([[x]],[[y]])

meaning that the f construction is converted into an CMSOS construction ‘m’ that receives
the converted parameters x and y from f.

This Section presents only a subset of the compilation from ML into CMSOS, and
Appendix B gives the complete specification.

6.1.2.1 Expressions

We begin by describing ML expressions and their CMSOS counterparts. First we need
to gather all CMSOS modules that are necessary for the definitions of expressions in
ML. This is done by creating a module ‘Lang/ML/Exp’ as follows. The module contains
explicit references to all CMSOS constructions needed. It also defines that the set of
values (‘Value’) and operators (‘Op’) are “bindable” in environments, that the set of
values are “passable” to procedural abstractions, and that the set of operators contains
the constants ‘plus’, ‘times’, etc.

msos Lang/ML/Exp is

see Cons/Prog, Cons/Prog/Exp .

see Cons/Exp, Cons/Exp/Boolean, Cons/Exp/Int,

Cons/Exp/Id, Cons/Exp/cond, Cons/Exp/app-Op,

Cons/Exp/app-Id, Cons/Exp/tup, Cons/Exp/tup-seq .

see Cons/Arg, Cons/Arg/Exp .

see Cons/Op .

see Cons/Id .

Bindable ::= Value | Op .

Op ::= plus | times | minus | eq | lt | gt .

Passable ::= Value .

sosm

The following module contains the initial dynamic basis for ML expressions. It is
defined as a system module that includes the MSDF module ‘Lang/ML/Exp’. Recall that
we must define the operation ‘apply-op’ externally and this is done here for each ‘Op’
constant declared on the ‘Lang/ML/Exp’ module. Following, we create the initial environ-
ment with the default associations of identifiers to operators. We reuse the names of the
operator as identifiers, created with the coercion function ‘ide’ on the mapping.

mod Lang/ML/Exp’ is

including Lang/ML/Exp .

including QID .

94

vars i1 i2 : Int .

eq apply-op (plus, (i1, i2)) = i1 + i2 .

eq apply-op (minus, (i1, i2)) = i1 - i2 .

eq apply-op (times, (i1, i2)) = i1 * i2 .

eq apply-op (eq, (i1, i2)) = if i1 == i2 then tt else ff fi .

eq apply-op (lt, (i1, i2)) = if i1 < i2 then tt else ff fi .

eq apply-op (gt, (i1, i2)) = if i1 > i2 then tt else ff fi .

op ide : Qid -> Id .

op ide : Op -> Id .

op op : Qid -> Op .

eq init-env = (ide(eq) |-> eq +++ ide(lt) |-> lt +++

ide(gt) |-> gt +++ ide(plus) |-> plus +++

ide(times) |-> times +++ ide(minus) |-> minus) .

eq op (’+) = plus . eq op (’*) = times .

eq op (’-) = minus . eq op (’<) = lt .

eq op (’>) = gt . eq op (’=) = eq .

endm

I Complete expressions

These are the rules for complete expressions in ML. We have omitted the rules for the
conversion of identifiers, special constants (i.e., numbers), application expressions, and
infix expressions.

〈 exp 〉→ 〈 exp 〉 ‘andalso’ 〈 exp 〉 | 〈 exp 〉 ‘orelse’ 〈 exp 〉
| ‘if’ 〈 exp 〉 ‘then’ 〈 exp 〉 ‘else’ 〈 exp 〉

[[e0 andalso e1]] = cond [[e0]] [[e1]] ff

[[e0 orelse e1]] = cond [[e0]] tt [[e1]]

[[if e0 then e1 else e2]] = cond [[e0]] [[e1]] [[e2]]

6.1.2.2 Declarations

For declarations, let us introduce the relevant MSDF module that contains all CMSOS
constructions related to declarations in ML.

msos Lang/ML/Dec is

see Lang/ML/Exp’ .

95

see Cons/Prog, Cons/Prog/Dec .

see Cons/Dec, Cons/Dec/bind, Cons/Dec/simult-seq,

Cons/Dec/accum, Cons/Dec/local .

see Cons/Exp, Cons/Exp/local .

sosm

I let-Expressions

We begin by extending the atomic expressions with the ‘let-in-end’ expression,
which is mapped into the CMSOS ‘local’.

〈 exp 〉→ ‘let’ 〈 dec 〉 ‘in’ 〈 exp 〉 ‘end’

Let d range over 〈 dec 〉.

[[let d in e end]] = local [[d]] [[e]]

I Value bindings

Next, the declarations are defined. Value bindings are converted into the CMSOS
‘bind’ construction.

〈 dec 〉→ ‘val’ 〈 vid 〉 ‘=’ 〈 exp 〉

[[val i = e]] = bind [[i]] [[e]]

6.1.2.3 Imperatives

ML does not have the concept of a “command,” as everything is an expression, but it
does have imperative features. We have opted to show here the conversion rules for the
assignment of values and the looping command.

The module ‘Lang/ML/Cmd’ defines the “commands” in the ML language:

msos Lang/ML/Cmd is

see Lang/ML/Dec .

see Cons/Cmd, Cons/Cmd/seq-n, Cons/Cmd/effect, Cons/Cmd/while .

see Cons/Exp, Cons/Exp/seq-Cmd-Exp, Cons/Exp/seq-Exp-Cmd,

Cons/Exp/assign-seq, Cons/Exp/ref, Cons/Exp/assigned .

96

see Cons/Var, Cons/Var/alloc, Cons/Var/deref .

Storable ::= Value .

sosm

Next we add another “external” definition, which is the equation that allocates a new
cell on a given store.

mod Lang/ML/Cmd’ is

including Lang/ML/Cmd .

var Store : Store .

eq new-cell (Store) = cell (length (Store) + 1) .

endm

I Assignment

Since an assignment in ML does not have any final value, we use the construc-
tion ‘seq-Cmd-Exp’ to first execute the assignment and then to return the empty tuple
(‘tup()’). The assignment itself is made using the ‘assign-seq’ construction by first
dereferencing the assigned expression.

〈 exp 〉→ 〈 exp 〉 ‘:=’ 〈 exp 〉

[[e0 := e1]] = seq (effect (assign-seq (deref [[e0]]) [[e1]])) tup()

I Loops

Finally, we add a construction that is typical of imperative languages, which is the
looping command.

〈 exp 〉→ 〈while 〉 〈 exp 〉 ‘do’ 〈 exp 〉

[[while e0 do e1]] = seq (while [[e0]] (effect [[e1]])) tup()

6.1.2.4 Abstractions

Let us introduce the relevant MSDF module, ‘Lang/ML/Abs’, to introduce the equations
for abstractions.

97

msos Lang/ML/Abs is

see Lang/ML/Dec .

see Cons/Exp, Cons/Exp/Abs, Cons/Exp/close, Cons/Exp/app-seq .

see Cons/Abs, Cons/Abs/abs-Exp, Cons/Abs/closure .

see Cons/Par, Cons/Par/bind, Cons/Par/tup .

see Cons/Dec, Cons/Dec/app, Cons/Dec/rec .

sosm

I Recursive functions

The version of recursive functions shown here is a very simple form that does not make
use of more complicated pattern matching capabilities as we opted to show an example
of pattern matching rules in the semantics of the Mini-Freja language, Appendix D. The
new option for the 〈 dec 〉 nonterminal shows the syntax of recursive functions: the first
〈 vid 〉 is the name of the function, the second is the single argument, and the 〈 exp 〉 is the
body. It is converted into the binding of the function name to a closure.

〈 dec 〉→ ‘fun’ 〈 vid 〉 〈 vid 〉 ‘=’ 〈 exp 〉

[[fun i0 i1 = e]] = rec (bind [[i0]] (close (abs (bind [[i1]]) [[e]])))

6.1.2.5 Concurrency

Finally, let us present the concurrency primitives of ML. This Section shows the primitives
for creating new threads and for complete concurrent ML programs.

The module ‘Lang/ML/Conc’ gathers the necessary MSDF modules.

msos Lang/ML/Conc is

see Lang/ML/Cmd’, Lang/ML/Abs .

see Cons/Cmd, Cons/Cmd/send-chan-seq,

Cons/Cmd/start .

see Cons/Exp, Cons/Exp/recv-chan,

Cons/Exp/alloc-chan .

see Cons/Sys, Cons/Sys/Cmd, Cons/Sys/conc,

Cons/Sys/conc-chan, Cons/Sys/quiet .

sosm

I Creating new threads

The operation ‘spawn’ creates a new thread of execution, and is equivalent to the
‘start’ construction from CMSOS.

98

〈 exp 〉→ ‘spawn’ 〈 exp 〉

[[spawn e]] = seq (start [[e]])

I Complete concurrent ML programs

Now, the final rule. All ML programs that are concurrent must be prefixed by ‘cml’.
It is converted to the ‘quiet’ CMSOS construction.

〈 exp 〉→ ‘cml’ 〈 exp 〉

[[cml e]] = quiet (effect [[e]])

Let us discuss the actual implementation of the parser and the conversion from ML
to CMSOS. The syntax of ML is given using a Bison grammar and its semantics is
presented as a series of MSDF modules. The use of a Bison parser generator is due to
some limitations of the Maude interpreter, discussed on Chapter 7.

We use the Bison productions to generate the CMSOS output for each ML construc-
tion, using the ‘format’ function, which is a function that is similar to the C function
‘sprintf’, with the difference that it allocates a pointer and returns the string created
according to the formatting specified. For example, let us show the actual rules for the
conversion of conditional expressions in ML: The symbol ‘$$’ is defined as “the semantic
value of the left-hand side of the rule” by the Bison manual. In this specification it will
hold the string that contains the translation from ML into CMSOS. The symbol ‘$1’ refers
to the matched token on the rule.

exp: infexp

| exp ANDALSO exp { $$ = format ("(cond %s %s ff)", $1, $3); }

| exp ORELSE exp { $$ = format ("(cond %s tt %s)", $1, $3); }

| IF exp THEN exp ELSE exp

{ $$ = format ("(cond %s %s %s)", $2, $4, $6); };

When the parser reaches the topmost production on the grammar, the output string
is the converted CMSOS code. The grammar of this version of ML is simple enough so
that there was no need to use an abstract version in the translation to CMSOS, as it was
the case with the MiniJava language (Section 6.1.3).

6.1.2.6 Example

As an example of this semantics, let us analyze a concurrent program. It starts as a single
thread that creates a channel through the declaration ‘chan’ and binds it to the variable
‘c’; then, in turn, spawns three new threads: the first sends the value 10 to the channel

99

‘c’, the second sends the value 20 through the same channel, while the third expects to
receive a value through ‘c’. If we search through all possible outcomes of this program it
is expected that there are two final states: one in which the first thread had a successful
synchronization with the third thread and another in which the second thread was the
successful one.

cml

let chan c in

(spawn (fn x => send (c, 10)) ;

spawn (fn x => send (c, 20)) ;

spawn (fn x => receive c))

end

After the conversion to CMSOS, we have the following program.

exec ((quiet

(effect

(local (bind ide(’c) alloc-chan)

(seq (seq ((effect

(seq (start (close (abs (bind (ide(’x)))

(seq (send-chan-seq ide(’c) 10) (tup ()))))) (tup ()))),

(effect (seq (start (close (abs (bind (ide(’x)))

(seq (send-chan-seq ide(’c) 20) (tup ()))))) (tup ())))))

(seq (start (close (abs (bind (ide(’x)))

(recv-chan ide(’c))))) (tup ()))))))) .)

By searching through all possible final states using the ‘search’ command from Maude
we arrive at the expected situation. The first solution shows the remaining, unsynchro-
nized thread stopped at the point where it is trying to send the value 10 through the
channel, while the second shows the same with the value 20. (As threads end, they are
removed from the configuration.)

search in CML-INTERPRETER : exec(...) =>!

C:Conf .

Solution 1

C:Conf <- <

quiet

effect (

local (ide(’c)|-> chan 1)

local (ide(’x)|-> tup())

seq send-chan-seq chan 1 10 tup())

::: ’Sys, {chans ={chan 1},env = void, starting’ =(),

event’ = (), store =void}

>

100

Solution 2

C:Conf <- <

quiet

effect (

local (ide(’c)|-> chan 1)

local (ide(’x)|-> tup())

seq send-chan-seq chan 1 20 tup())

::: ’Sys, {chans ={chan 1},env = void, starting’ =(),

event’ = (), store =void}

>

No more solutions.

6.1.3 MiniJava

Our implementation of MiniJava into the framework of Constructive MSOS follows the
idea that a (simple) object-oriented language is, in its essence, an imperative language in
which classes are types, and objects are records [62, 57, 34, 60]. The actual implementation
of objects is based on [65].

As an introduction, let us begin with a trivial, abstract, mapping and then expand
it with more advanced features, such as recursive reference, and object instantiation.
A straightforward view of objects is to consider them as records, whose fields are the
methods of the object. We may simplify this even further by using tuples and keeping
track of which method corresponds to each projection. As an example, let us consider an
object specified in some abstract, Java-like, language:

object {

int i;

int foo() { return i; }

int bar() { i := i + 1; return i; }

}

It may be represented as a closure, namely, a tuple surrounded by an environment.

local (bind x 1) (tup-seq f, b)

Here f and b are closures that represent, respectively, methods ‘foo()’ and ‘bar()’
from the object above. We omit the abstract representation of those for brevity. In this
mapping, all fields of the object are declared as bindings that “surround” the tuple. With
this scheme, bindings are not allowed external access directly. It is possible, however, to
allow direct access to bindings by creating access functions automatically for each field.

In order to call a method in the object, we obtain the desired projection and evaluate
it: if we want to call method ‘bar()’, we first obtain the second projection, by applying
the operation ‘nth(1)’ to the tuple, and then evaluate it, applying the resulting closure
to its arguments, the empty tuple in this example.

101

app (app nth(1) o) tup()

where o is an object.

This is a severely limited form of object-orientation: instance methods are not allowed
to be recursive, nor access other methods on the same object. We now add a form of self-
reference (e.g., ‘this’ in Java) so that a method may call other methods inside the same
object. This is achieved by adding a recursive function ‘self’ which, when evaluated,
returns the object. Being recursive, a method may call ‘self’ from within itself, thus
having access to the other methods on the object, including itself.

local

(accum (bind x 1)

(rec bind self

close abs (bind tup()) (tup-seq f, b)))

(app self tup())

The above code means that a closure is bound recursively to the identifier ‘self’ (the
closure receives no arguments, specified as ‘bind tup()’, in CMSOS); the closure code
is, as before, the tuple containing the methods. This closure is defined in accumulation
of ‘bind x 1’ making those fields available to the methods f and b.

Being a recursive binding, f and b may also call ‘self’. Self-reference within a method
is achieved by calling ‘self’ from within the method and evaluating the desired projection.

The remaining issue is how to instantiate an object based on the type declaration of its
class. We follow the approach of object cloning using prototype objects, in the tradition
of the Self language [67]. The actual implementation is as follows: each class declaration
gives rise to a function declaration that, when evaluated, returns a new object. Thus, a
class C is converted into the following fragment:

bind C (close abs (bind tup()) o)

where o is a prototype object created from the class declaration. Object instantiation is
then converted to: (app C tup()), which returns a copy of the object o.

With this preliminary exposition, we may fully describe the mapping from MiniJava
to CMSOS.

The transformation from MiniJava’s abstract syntax to CMSOS constructions is pre-
sented using the same notation we used for the ML language on Section 6.1.2. The actual
implementation of the converter was made using the SableCC framework due to the same
reasons we outlined in the description of the ML language semantics. Again, to simplify
the exposition we show only selected components of the language, while keeping the entire
specification in Appendix C.

6.1.3.1 Expressions

Expressions consist of mathematical operations, identifiers, method invocations (that al-
ways return a value), literals, and objects themselves.

102

〈 exp 〉→ 〈math operation 〉 | 〈 id 〉 | 〈method invocation 〉
| 〈 literal 〉 | 〈 this 〉 | 〈 new 〉

I Math operations

〈math operation 〉→ 〈 exp 〉 〈math op 〉 〈 exp 〉
〈math op 〉→ ‘&&’ | ‘<’ | ‘+’ | ‘/’ | ‘%’ | ‘-’ | ‘*’ | ‘>’ | ‘<=’ | ‘>=’ | ‘=’

Let ei range over 〈 exp 〉, and m range over 〈math op 〉.

[[e0 m e1]] = app [[m]] tup-seq ([[e0]], [[e1]])

I Method invocations

〈method invocation 〉→ 〈 exp 〉 ‘.’ 〈 id 〉 ‘(’ 〈 exp 〉∗‘)’

[[e . i (e ∗)]] = app (app nth(n(i)) [[e]]) (tup-seq p)

The evaluation of e must return an object; n(i) is the method number in the class
of the object returned by e, obtained by looking up the method name i in the metaclass
information generated in the static analysis phase of the compilation process; and p is
constructed as a sequence of ‘ref (alloc [[ei]])’ which allocates a new memory entry for
each parameter ei in e∗.

I Self-reference

〈 this 〉→ ‘this’

[[this]] = app self tup()

I Object instantiations.

〈 new 〉→ ‘new’ 〈 id 〉 ‘()’

[[new i ()]] = app i tup()

103

6.1.3.2 Statements

MiniJava contains the usual statements of imperative programming languages: condi-
tionals, loops, output, assignment, etc. We only show here the conversion of the output
command.

〈 statement 〉→ 〈 if 〉 | 〈while 〉 | 〈 block 〉 | 〈 print 〉 | 〈 assign 〉 | 〈 empty 〉

I Output

〈 print 〉→ ‘System.out.println’ ‘(’ 〈 exp 〉 ‘)’

[[System.out.println (e)]] = print [[e]]

6.1.3.3 Classes

I Class declaration

As described at the beginning of this Section a class declaration defines a “prototype”
object, which is a closure where the fields become bindings and the methods become
projections of a tuple.

〈 class declaration 〉→ ‘class’ 〈 identifier 〉 ‘{’ (〈 field declaration 〉)∗

(〈method declaration 〉)∗‘}’

Let fi range over 〈 field declaration 〉 and mi over 〈method declaration 〉.

[[class i { f ∗ m ∗ }]] =

local

(accum (accum [[f∗]])
(rec (bind self

close (abs (bind dummy) tup-seq ([[m]])))))

app self tup()

I Method declaration

A method declaration is converted into a closure with parameters being bound simul-
taneously by the ‘tup’ construction. The closure body is a ‘local’ definition with the
variable declarations as the declaration part the method body as the expression begin
evaluated. We use the ‘seq-Cmd-Exp’ command so that the last expression evaluated is
returned as the method return value.

104

〈method declaration 〉→ 〈 type 〉 〈 identifier 〉 ‘(’ (〈 parameter 〉)∗‘)’
‘{’ (〈 var declaration 〉)∗(〈 statement 〉)∗‘return’ 〈 expression 〉 ‘}’

Let pi range over 〈 parameter 〉.

[[t i (p ∗) { v ∗ s ∗ return e }]] =

close (abs tup([[p∗]]) (local (accum [[v∗]]) (seq (seq [[s∗]]) e)))

6.1.3.4 Example

As an example of the translation, let us consider a class that calculates the factorial of
a number. This class implements actually two forms of calculating the factorial: the one
implemented by the ‘RecFat’ is recursive, while the one implemented by ‘NonRecFac’ is
direct, using a loop. The code is as follows:

class Factorial

{

public static void main (String[] arg)

{

System.out.println (new Fac().Test (6));

}

}

class Fac

{

public int Test (int num)

{

int r;

Fac recfac;

Fac nonrecfac;

recfac = this;

nonrecfac = this;

return recfac.RecFac(num) - nonrecfac.NonRecFac (num);

}

public int RecFac(int num)

{

int num_aux;

if (num < 1) num_aux = 1 ;

else num_aux = num * (this.RecFac(num-1));

return num_aux;

}

public int NonRecFac (int num)

{

105

int i;

int fat;

i = num;

fat = 1;

while (i > 0)

{

fat = fat * i;

i = i - 1;

}

return fat;

}

}

And the converted code to CMSOS is:

local accum bind Fac close (abs bind @ local accum void

rec (bind self close (abs bind @ tup-seq (close (abs

tup bind num local accum bind r ref alloc 0 accum

bind recfac ref alloc 0 accum bind nonrecfac ref alloc

0 void seq seq (effect (assign-seq deref recfac app self

tup ()),effect (assign-seq deref nonrecfac app self tup

()),skip) app minus tup-seq ((app app nth(1) assigned

deref recfac tup-seq ref alloc assigned deref num),app

app nth(2) assigned deref nonrecfac tup-seq ref alloc assigned

deref num)),close (abs tup bind num local accum

bind num aux ref alloc 0 void seq seq ((cond app lt tup-seq

(assigned deref num ,1) effect (assign-seq deref num aux

1) effect (assign-seq deref num aux app times tup-seq (assigned

deref num ,app app nth(1) app self tup () tup-seq ref

alloc (app minus tup-seq (assigned deref num ,1))))),skip)

assigned deref num aux),close (abs tup bind num local

accum bind i ref alloc 0 accum bind fat ref alloc 0 void

seq seq (effect (assign-seq deref i assigned

deref num),effect (assign-seq deref fat 1),(while app gt

tup-seq (assigned deref i ,0) seq (effect (assign-seq

deref fat app times tup-seq (assigned deref fat ,assigned

deref i)),effect (assign-seq deref i app minus tup-seq

(assigned deref i ,1)))),skip) assigned deref fat))))

app self tup ()) void app app nth(0) local accum void rec

(bind self close (abs bind @ tup-seq close (abs tup

bind @@ local void seq seq (print (app app nth(0)

app Fac tup () tup-seq ref alloc 6),skip) 0))) app self

tup () tup-seq ref alloc 0

Executing it under Maude, the following output is produced:

rewrite in MINIJAVAPROGRAM : output(...) .

106

rewrites: 177289 in 58209ms cpu (58242ms real)

(3045 rewrites/second)

result Output: output(0)

Now, let summarize the actual implementation. The option to use SableCC, which is
also a LALR(1) parser generator, was due to SableCC’s support for the transformation
from concrete syntax to abstract syntax directly in the grammar file using a somewhat
“term rewriting” style, which simplifies the construction of the compiler enormously, since
MiniJava has a rather complex concrete grammar. This choice also enabled us to reuse
the already existing Java 1.1 grammar created by Etienne Gagnon to create the grammar
of MiniJava, which is a sublanguage of Java.

The process is as follows. First, the Java 1.1 grammar was modified to exclude the
syntax not supported by MiniJava. Next, an abstract syntax of MiniJava, based on the
abstract syntax described in Appel’s book was created and the concrete grammar was
modified to add the rewriting rules that convert from the concrete to the abstract syntax.
When this file is processed, SableCC generates tree-walker classes that uses the visitor
design pattern. This tree-walker is then implemented by the programmer by creating a
subclass that adds the appropriate actions that must be performed as the walker visits
each node.

The actual compilation process consists of two phases: the static analysis, where all
types are checked, and metadata is generated. The second phase makes another visit to the
tree, converting each node into its CMSOS equivalent. As in the case of the ML language,
instead of constructing the CMSOS code in Java, we could have just exported the abstract
syntax tree and let Maude equations do the conversion. In this first implementation, we
opted to leave the MiniJava compiler self-contained.

Let us illustrate this description with a simple example, which shows how arith-
metic expressions are compiled. We begin with the abstract syntax of arithmetic expres-
sions. In the fragment shown below, the ‘expression’ non terminal has a rule named
‘math operation’. The rule name is important as it will be used to generate the node
classes. An arithmetic expression is two expressions with an infixed mathematical opera-
tor, represented by the non-terminal ‘math op’. The prefixes ‘[lh]’ and ‘[rh]’ have the
purpose of identifying each expression on the rule for code-generation purposes.

expression =

{math_operation} [lh]:expression math_op [rh]:expression

math_op = {and} and | {lt} lt {plus} plus

| {div} div | {minus} minus | {star} star

Now, let us show the concrete syntax for these, along with the rewriting rules that
generate the abstract syntax. We show only the rule for “additive expressions,” since,
due to operator precedence issues, the concrete grammar has nine different rules. On the
grammar below an ‘additive expression’ is converted to the abstract ‘expression’.
It has three alternatives: it is either a ‘multiplicative expression’ (not shown here),
in this case it is converted to whatever ‘multiplicative expression’ is converted. It
can be also the ‘plus’ option, in which a new abstract syntax node ‘math operation’

107

is created by converting recursively each side of the additive expression described. The
same happens for the ‘minus’ alternative.

additive_expression { -> expression } =

{multiplicative_expression}

multiplicative_expression

{ -> multiplicative_expression.expression } |

{plus}

additive_expression plus multiplicative_expression

{ -> New expression.math_operation

(additive_expression.expression,

New math_op.plus (plus),

multiplicative_expression.expression) } |

{minus}

additive_expression minus multiplicative_expression

{ -> New expression.math_operation

(additive_expression.expression,

New math_op.minus (minus),

multiplicative_expression.expression) };

Now we show the fragment from the tree-walker code that passes through the ‘math operation’
node. The name of the method is automatically generated by SableCC and it receives as
parameter a node that is the representation of the ‘math operation’ production. Through
getters and setters, each component of the syntax tree is accessed. The conversion is
achieved by keeping a dictionary ‘cmsos’ that maps every node to its CMSOS equivalent.
Thus, by looking up the ‘lh’ and ‘rh’ expressions (using the functions ‘n.getLH()’ and
‘n.getRh()’), we obtain the representation of each expression. After we have all this
information at hand, we put back into the dictionary the mapping from the current node,
the mathematical operation, to its CMSOS equivalent.

public

void outAMathOperationExpression (AMathOperationExpression n)

{

String l, r;

PMathOp o = n.getMathOp ();

String[] args = { (String) cmsos.get (n.getMathOp ()),

(String) cmsos.get (n.getLh ()),

(String) cmsos.get (n.getRh ()) };

cmsos.put (n, printf ("(app {0} tup-seq ({1}, {2}))", args));

}

108

6.2 Mini-Freja

Mini-Freja [56] is a pure functional programming language with a normal-order seman-
tics.1 This specification was implemented with several purposes: it does not use Mosses’s
CMSOS, rather, giving the semantics for the language directly in MSDF; it does not need
any external tools, parsing the language directly—with some limitations, as we shall see;
it is a big-step semantics; and, finally, it has pattern matching capabilities.

6.2.1 Abstract Syntax

The main construction of Mini-Freja is the expression, denoted by the set ‘Exp’.

Exp .

Exp ::= fn Var => Exp

| Primu Exp

| Exp :: Exp [assoc]

| Exp Primd Exp

| if Exp then Exp else Exp

| Exp Exp

| rec Exp

| case Exp of Rules

| let Decls in Exp .

Exp ::= Var | Const .

‘Exp :: Exp’ is the Mini-Freja syntax of lists, ‘Exp Exp’ is the traditional syntax for
application of expressions, ‘rec Exp’ defines a recursive expression, ‘Var’ is the set of
variables on the language (technically speaking, they are not variables, but identifiers,
but we follow the nomenclature of Pettersson), ‘Const’ is the set of constants, ‘Primu’
are unary primitive operators, and ‘Primd’ are binary primitive operations, defined as
follows:

Primu .

Primu ::= not | neg .

Primd .

Primd ::= lt | le | eq | ne | ge | gt | and

| or | plus | minus | times | div | mod .

Const .

Const ::= Int | Boolean | nil .

Finally, we present the abstract syntax for the declaration of bindings. The syntax
is slightly altered from the original, due to preregularity problems. Instead of binding
variables to expression with syntax ‘Var = Exp’ we use ‘Var is Exp’.

1Pettersson[56] uses “call-by-name”; we follow the terminology of Reynolds [62].

109

Decls .

Dec .

Dec ::= Var is Exp .

Decls ::= Dec | Decls Decls [assoc] .

6.2.2 Semantics

We now describe the dynamic semantics for the Mini-Freja. This specification is based on
Pettersson’s and Hartel’s specifications of the Mini-Freja language, in big-step operational
semantics. Mini-Freja, as we mentioned, is a normal-order language, that is, an expression
may be “suspended” and is only evaluated until it is clear that its value is needed. The
only semantic component needed for this specification is the bindings environment.

Label = { env : Env, ... } .

We now add the set of values to the specification, which consist basically of constants,
closures, lists and suspended expressions. Suspended expressions need an environment to
be evaluated in the future.

Values .

Value ::= susp (Env, Exp)

| clo (Env, Var, Exp)

| cons (Value, Value) [assoc]

| Const .

Values are a subset of expressions. We also add a new expression operator ‘force e’
that forces the evaluation of a suspended expression e.

Exp ::= Value | force Exp .

Let us begin with the evaluation of lists in Mini-Freja, which are into a sequence of
recursive applications of the ‘cons’ operator.

[cons] (Exp1 :: Exp2) : Exp ={env = Env, -}=>

cons (susp (Env, Exp1), susp (Env, Exp2)) .

The arithmetic operators are evaluated in the traditional big-step manner.

(Exp1 ={X1}=> Value1), (Exp2 ={X2}=> Value2),

(Value1 Primd Value2 ={X3}=> Value3)

[prim-app] -- ---

(Exp1 Primd Exp2) : Exp ={X1 ; X2 ; X3}=> Value3 .

110

(Int1 plus Int2) : Exp ==> (Int1 + Int2) .

(Int1 times Int2) : Exp ==> (Int1 * Int2) .

(Int1 mod Int2) : Exp ==> (Int1 rem Int2) .

(Int1 minus Int2) : Exp ==> _-_(Int1, Int2) .

(Int1 eq Int2) : Exp ==> if (Int1 == Int2) then tt else ff fi .

(Int1 ne Int2) : Exp ==> if (Int1 == Int2) then ff else tt fi .

The following rule establishes that canonical forms always evaluate to themselves.

Const : Exp ==> Const .

In order to evaluate the conditional construction we define an auxiliary operation
‘if-choose(b,e1,e2)’, which work as follows: if b is true, it evaluates to e1, otherwise it
evaluates to e2.

Exp ::= if-choose (Value, Exp2, Exp3) .

[if-choose-tt] if-choose (tt, Exp2, Exp3) : Exp ==> Exp2 .

[if-choose-ff] if-choose (ff, Exp2, Exp3) : Exp ==> Exp3 .

(Exp1 ==> Value),

(if-choose (Value, Exp2, Exp3) ==> Exp),

(Exp ==> Value’)

[if] -- ---

if Exp1 then Exp2 else Exp3 : Exp ==> Value’ .

Closures evaluate to its value form, ‘clo(ρ,v,e)’, consisting on the “captured” envi-
ronment ρ, the argument v, and the closure expression e.

[clo] (fn Var => Exp) : Exp ={env = Env, -}=>

clo (Env, Var, Exp) .

The following rules specify the meaning of the ‘force’ operator. Essentially, non-
suspended expressions evaluate to themselves. Suspended expressions (rule ‘[force-susp]’)
‘susp(ρ,e)’ are evaluated by replacing the current environment with ρ and evaluating e
into an intermediate value v, which is itself “forced” into the final value v ′.

[force-const] force Const : Exp ==> Const .

[force-clo] force clo (Env, Var, Exp) : Exp

==> clo (Env, Var, Exp) .

[force-cons] force cons (Value1, Value2) : Exp

==> cons (Value1, Value2) .

111

Exp ={env = Env’, -}=> Value,

force Value ={env = Env, -}=> Value’

[force-susp] -- --

force susp (Env’, Exp) : Exp ={env = Env, -}=> Value’ .

Application of expressions implements a type of β-reduction. It is expected that
‘Exp2’ on rule ‘[app]’ below evaluates to a closure.

Exp1 ={env = Env, -}=> clo (Env1, Var1, Exp’),

Env2 := (Var1 |-> susp (Env, Exp2)) / Env1,

Exp’ ={env = Env2, -}=> Value

[app] -- ---

(Exp1 Exp2) : Exp ={env = Env, -}=> Value .

The rule for variables follows the traditional rules, with the additional requirement
that the returned value must be “forced.”

Value := lookup (Var, Env),

(force Value ={env = Env, ...}=> Value’)

[lookup] -- -----------------------------------

Var : Exp ={env = Env, ...}=> Value’ .

The rule for the ‘let’ operator evaluates the declarations ‘Decls’ into a set of bindings
‘dec(Env’)’ and evaluates ‘Exp’, overriding its environment with these bindings.

Decls ::= dec (Env) .

Decls ={env = Env, -}=> dec (Env’),

Env’’ := Env’ / Env, Exp ={env = Env’’, -}=> Value

[let] -- ---

(let Decls in Exp) : Exp ={env = Env, -}=> Value .

In order to evaluate ‘Decls’, each ‘Dec’ is evaluated in turn the resulting environments
are concatenated.

Dec ={env = Env, -}=> dec (Env’),

Env’’ := Env’ / Env,

Decls ={env = Env’’, -}=> dec(Env’’’)

[decls] -- --------------------------------------

(Dec Decls) : Decls ={env = Env, -}=>

dec (Env’ +++ Env’’’) .

Dec ==> dec (Env’)

[decls] -- -------------------------

Dec : Decls ==> dec (Env’) .

112

The following rule is necessary to give the normal order evaluation: expressions are
not evaluated as they are bound to variables; they are first converted into “suspended”
values.

[dec] (Var is Exp) : Dec ={env = Env, -}=>

dec (Var |-> susp (Env, Exp)) .

Recursive functions in the language are implemented using a fixed point operator,
following ideas present in Reynolds’s book [62]. The expression ‘Exp’ is expected to be a
lambda-expression, such as ‘fn v => e’.

Exp (rec Exp) ==> Value

[fixed-point] -- ----------------------

rec Exp : Exp ==> Value .

The following rule evaluates an expression using the ‘exec’ and ‘strict’ constructions,
the later is similar to the ‘force’ construction with the exception that it operates over
values, while ‘force’ operators over expressions.

Value ::= exec Exp | done Value .

Exp ==> Value,

strict Value ==> Value’

[exec] -- -----------------------------

exec Exp : Exp ==> done Value’ .

Value ::= strict Value .

[strict-const] strict Const : Value

==> Const .

[strict-clo] strict clo (Env, Var, Exp) : Value

==> clo (Env, Var, Exp) .

strict Value1 ==> Value1’,

strict Value2 ==> Value2’

[strict-cons] -- -------------------------------------

strict cons (Value1, Value2) : Value

==> cons (Value1’, Value2’) .

Exp ={env = Env’, -}=> Value,

strict Value ={env = Env, -}=> Value’

[strict-susp] -- ----------------------------------

strict susp (Env’, Exp) : Value

={env = Env, -}=> Value’ .

113

6.2.3 Example: sieve of Eratosthenes

Let us demonstrate the normal-order characteristics of Mini-Freja by creating a sieve of
Eratosthenes using “lazy lists.” The algorithm works as follows: we create an infinite list
of numbers (function ‘from’ below). This infinite list of numbers is filtered to keep only the
prime numbers (functions ‘filter’, ‘sieve’, ‘not-div’). From this infinite list of primes,
we take the first few (function ‘take’ below). The implementation is as follows. We opted
to split each function declaration into its own constant to simplify the exposition. We
begin by creating all the constants that are used on the specification. We could have
created these constants on an MSOS module but since they are used only for expository
purposes and need equations anyway, we opted to declare them in a single Maude module.

ops fat n n0 xs0 x y xs pp N filter

not-div sieve take from primes : -> Var .

op filterd : -> Dec .

op fromd : -> Dec .

op taked : -> Dec .

op not-divd : -> Dec .

op sieved : -> Dec .

op primesd : -> Dec .

op fatd : -> Dec .

Function ‘filter’ receives as arguments (in curried form) a predicate and a list and
returns only the elements from the list that satisfy the given predicate. Due to the fixed
point operator defined formally in Appendix D, in order to declare a recursive function f,
whose contents is an expression e, we write it as ‘rec f is fn f => e’.

eq filterd

= filter is rec (fn filter => fn pp => fn xs0 =>

case xs0 of

p nil => nil

|| p x :: p xs => if (pp x) then

x :: ((filter pp) xs)

else

(filter pp) xs) .

Function ‘from’ initiates an infinite list beginning at the value specified by its first
argument

eq fromd

= from is rec (fn from =>

(fn n => (n :: (from (n plus 1))))) .

Function ‘take’ receives as arguments a number n and an infinite list l and returns
the first n elements from l.

114

eq taked

= take is rec (fn take => fn n0 => fn xs0 =>

case n0 of (p 0 => nil)

|| p n => (case xs0 of

p x :: p xs =>

(x :: ((take (n minus 1)) xs))

|| p nil => nil)) .

The function ‘not-div’ is used as a predicate on function ‘filter’. It takes two
arguments x and y and returns true if y divides x.

eq not-divd = not-div is (fn x => (fn y => ((y mod x) ne 0))) .

Function ‘sieve’ implements the sieve by removing from the list it receives all numbers
that are divisible by the rest of the numbers present on the list. The list must begin with
two, for obvious reasons.

eq sieved

= sieve is rec (fn sieve => fn xs0 =>

case xs0 of

((p x :: p xs) =>

(x :: (sieve ((filter (not-div x)) xs))))) .

eq primesd = primes is sieve (from 2) .

Now, we may execute the program by concatenating all the declarations above and
asking for the first 18 primes.

rewrite in PRIMES :

< exec(let filterd taked fromd not-divd sieved primesd N is 18

in ((take N) primes))::: ’Exp,init-rec >

result Conf :

< done cons(2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,

59,61,nil)::: ’Exp,{env = void} >

6.3 Distributed algorithms

This Section shows the use of the Maude MSOS Tool in the specification and verification of
distributed algorithms. As we mentioned before, SOS and MSOS are formalisms not only
used in the specification of programming languages, but also of concurrent systems [50, 51].
The conversion from MSOS to Rewriting Logic performed by Maude MSOS Tool using
the Maude interpreter enables the use of Maude’s built in Linear Temporal Logic (LTL)
model checker and breadth-first search capabilities, detailed in Section 2.3.1.

115

This Section is organized as follows: Section 6.3.1 defines a model for process execu-
tion of distributed processes and Section 6.3.2 shows the examples from [36] and [20]. Ap-
pendix E contains the complete specification and several variations of the Dining Philoso-
phers specifications (E.2), and three additional examples of distributed algorithms: a
simple mutual exclusion using semaphores (E.1), Lamport’s Bakery Algorithm (E.3) and
Leader Election (E.4).

6.3.1 Process execution model

This Section outlines a simple process execution model. We begin with the notion of
processes and process identifiers. The set ‘Proc’ represents processes in our specifications:

Proc .

A process contains an integer as its process identifier (pid) and an abstract data
type that represents its local state (‘St’). The local state is dependent on the algorithm
being specified, and will be mostly used on our specifications to record the state of the
computation of a process, but it can also store temporary values that are local to a specific
process throughout the execution.

St .

Proc ::= prc (Int, St) .

We follow ideas present in [39, 4] and create a set ‘Soup’ that represents an associative-
commutative “soup of processes.” A single process is a trivial soup. The evolution of the
soup is done by selecting non-deterministically a process out of the “floating processes,”
made using matching modulo associativity and commutativity, evaluating this process,
and putting it back into the soup.

Soup ::= Proc .

Soup ::= Soup Soup [assoc comm] .

The following rule implements the evolution of the soup of processes.

Proc -{...}-> Proc’

[exec1] -- -------------------------------------

(Proc Soup) : Soup -{...}-> Proc’ Soup .

One could write the left-hand side of the conclusion as ‘Soup1 Soup2’, instead of ‘Proc
Soup’. This would select non-deterministically an entire portion of the soup to evolve.
This extra generality is not necessary on some of the algorithms shown here, since they
specify transitions for a particular process, and not a subset of processes. The alternative
rule would then recursively apply to itself until ‘Soup1’ is a single ‘Proc’ to which there
are other applicable transitions available, generating unnecessary rewrites, and artificially
augmenting the state space of a particular specification.

Finally, we need a rule for the trivial case in which the soup consists of a single process:

116

Proc -{...}-> Proc’

-- --------------------------

Proc : Soup -{...}-> Proc’ .

6.3.1.1 Process communication models

This Section describes two possible models for process communication: shared memory
and message-passing.

Shared memory model is trivially implemented with the use of a read-write component
on the label to store the shared variables of the processes. The remainder of this Section
deals with a simple message passing model on an asynchronous network.

The set ‘Msg’ represents the messages that circulate on the network.

Msg .

The specific type of message is, as usual, algorithm dependent, but, for this exposition
let us assume the following:

Msg ::= msg Int from Int to Int .

where the first argument is the value to be transfered, the second is the origin of the
message, and the third is the destination.

The message passing mechanism in our specification follows Maude’s pattern matching
capabilities. In this mechanism, messages and processes “float” on the soup and the
transition rules will emulate the transmission of a message to a process by matching the
destiny argument of the message with the pid present on the process object. For this we
need to expand the range of the ‘Soup’ object to allow also messages.

Soup ::= Msg | Proc .

To exemplify the message passing through matching, consider the following fragment
in which a message originating from process ‘Int’’ with a destination of process ‘Int’ is
paired with the process of pid ‘Int’.

prc (Int, St) (msg C from Int’ to Int)

Since now processes and messages need to interact for the evolution of the soup, we
must generalize the interleaving rule to allow the evolution of a portion of the soup.

Soup1 -{...}-> Soup’1

[exec2] -- ---

(Soup1 Soup2) : Soup -{...}-> Soup’1 Soup2 .

While it is true that this rule has the drawback discussed at the beginning of Sec-
tion 6.3.1, its generality allows no a priori commitments on the nature of the algorithm.
In order words, the relationship of objects and messages is left open for a wide variety of
interactions, depending on the specific needs of a particular specification.

117

6.3.1.2 Justice

Let us discuss justice in rule ‘[exec1]’. It is easy to notice that there is no specific order in
which processes are selected to be evaluated: all possible traces of execution are produced,
including those in which a particular process loops forever, not letting any other process
evolve.

A very simple way of adding justice to a specification is by controlling which process
is chosen to be evaluated through some sort of scheduling policy. Let us describe one such
policy, the round-robin, or fair scheduling of processes. It consists of having a counter
that operates modulo the number of processes: the current value of the counter is the
pid of the process that is allowed to execute; upon executing one step, the counter is
incremented. With this strategy, all processes eventually reach their execution turn.

This is implemented by adding a read-write component indexed by ‘fair’ to the label.

Label = { fair : Int, fair’ : Int, ... } .

We now change rule ‘[exec1]’ to reflect the scheduling just described. Let us assume
that there is a constant ‘n’ that will be instantiated later, through an equation, with the
number of processes in the soup.

Int’ := (Int + 1) rem n,

prc (Int, St) -{fair = Int, fair’ = Int, ...}-> prc (Int, St’)

-- ---

(prc (Int, St) Soup) : Soup -{fair = Int, fair’ = Int’, ...}->

prc (Int, St’) Soup .

Even though this solution works, it is far too restricted: all processes receive the same
probability of execution, which is not always the case, and the processes always execute
on the same order. This last restriction may be lifted by using a pseudo-random number
generator and randomly selecting which process to evaluate at a time.

6.3.2 Examples

6.3.2.1 Another thread game

Let us begin with a simple specification, based on the thread game described in [20]. This
specification also demonstrates the problems associated with the justice (or lack thereof)
in the specification.

Two threads continuously attempt to update the value of a shared variable: one
process increments the value by one, while the other decrements the value by one. This
shared variable is modeled using a read-write component indexed by ‘v’.

Label = {v : Int, v’ : Int, ...} .

118

Let us formalize the behavior of both threads. Process ‘prc 0’ increments and process
‘prc 1’ decrements. Let us also limit the value of the shared variable to no less than zero
and no more than five, an arbitrary value.

Int < 5, Int’ := Int + 1

-- --

(prc 0) : Proc -{v = Int, sh’ = Int’, -}-> prc 0 .

Int > 0, Int’ := Int - 1

-- --

(prc 1) : Proc -{v = Int, sh’ = Int’, -}-> prc 1 .

These next two rules keep the system running when the variable is in the established
limits.

Int >= 5, Int’ := Int

-- --

(prc 0) : Proc -{v = Int, sh’ = Int’, -}-> prc 0 .

Int <= 0, Int’ := Int

-- --

(prc 1) : Proc -{v = Int, sh’ = Int’, -}-> prc 1 .

In order to analyze this specification with Maude’s model checker (Section 2.3.1.3),
let us create a proposition ‘max(i)’, which holds whenever the shared variable has a value
equal or inferior to i.

op max : Int -> Prop .

ceq (< S, { v = I’, PR } >) |= max (I) = true

if I’ <= I .

If we use the fair scheduling of processes described on Section 6.3.1.2, we will notice
that the value of the shared variable will never exceed one.

rewrites: 2511 in 26ms cpu (26ms real) (93013 rewrites/second)

reduce in CHECK :

modelCheck(init,[] max(1))

result Bool :

true

Using the specification without fairness we quickly arrive at a counterexample where
process zero always increments the shared variable up to five.

119

reduce in CHECK :

modelCheck (init, [] max(1))

result ModelCheckResult :

counterexample(

{ < (prc 0 prc 1), {fair = 0, v = 0} > }

{ < (prc 0 prc 1), {fair = 0, v = 1} > }

{ < (prc 0 prc 1), {fair = 0, v = 2} > }

{ < (prc 0 prc 1), {fair = 0, v = 3} > }

{ < (prc 0 prc 1), {fair = 0, v = 4} > },

{ < (prc 0 prc 1), {fair = 0, v = 5} > })

6.3.2.2 Dining Philosophers

This Section presents a solution to Dijkstra’s “Dining Philosophers” problem as described
in [36]. This solution is based on breaking the symmetry on the moment in which each
philosopher acquires its fork: philosophers with even pids first attempt to acquire the fork
at their left, while philosophers with odd pids first attempt to acquire the fork at their
right.

By definition, the right fork of a philosopher i has number i, and the left fork has
number i + 1 mod n. When there is a competition to acquire a fork, the pids of the
competing philosophers are inserted on a queue present in each fork. As each philosopher
is done with the fork, it removes its pid from the queue.

The MSDF specification is as follows. First we need to map each fork id to a list of
pids to implement the queue on each fork. The set ‘Pids’ defines that list of pids, while
‘Queue’ defines the map from integers (fork ids) to ‘Pids’. Although a specific queue
needs to be shared only between two philosophers, to simplify the specification we opted
to make it globally shared by creating a read-write component indexed by ‘q’.

Pids = (Int) List .

Queue = (Int, Pids) Map .

Label = {q : Queue, q’ : Queue, ...} .

The specification is parameterized by a constant ‘n’, which should be instantiated
through an equation to the correct number of philosophers on the table.

Int ::= n .

Each philosopher is a process with the following states. Each state will be detailed
on the subsequent transitions.

St .

St ::= srem

| stest-right

| stest-left

| sleave-try

120

| scrit

| sreset-right

| sreset-left

| sleave-exit

| stry

| sexit .

Let us show only the transitions for odd-numbered processes. The even-numbered
transitions are symmetric to the ones shown here. Initially, all philosophers are hungry
and will attempt to acquire their forks, that is all processes are in the state ‘stry’. Odd-
numbered processes, selected with the predicate ‘odd(i)’, attempt to acquire their right
forks (state ‘stest-right’).

odd (Int)

-- --

prc (Int, stry) : Proc --> prc (Int, stest-right) .

At this point we make a slight modification to the original algorithm. The original
rule is the following: if the fork is unavailable, the process put its pid on the queue, and go
back to test if its pid reached the beginning of the queue, as the rule below shows. Recall
from Section 4.3 that ‘insert-back’ and ‘first’ are functions operating on parameterized
lists.

odd (Int),

Pids := lookup (Int, Queue),

Pids’ := if (not Int in Pids)

then insert-back (Int, Pids) else Pids fi,

Queue’ := (Int |-> Pids’) / Queue,

St := if first (Pids’) == Int

then stest-left else stest-right fi

-- --

prc (Int, stest-right) : Proc

-{q = Queue, q’ = Queue’, -}-> prc (Int, St) .

This busy waiting makes verification more complex since, if the algorithm is incorrect,
it would enter a livelock and not in a deadlock. Deadlocks are easier to check with Maude:
it needs only to look for a state to which no rule applies, since the system is reactive.
We opted to change the algorithm by allowing at most one process in the queue, making
it behave as a semaphore. The transition will only happen when a process successfully
acquires a fork by putting its pid on the queue and immediately checking that it is at the
beginning of the queue—that is, the queue was empty. If the fork is successfully acquired,
the process moves to acquire its left fork by changing its state to ‘stest-left’, otherwise
it does not change its state.

odd (Int),

Pids := lookup (Int, Queue),

121

Pids’ := if (not Int in Pids)

then insert-back (Int, Pids) else Pids fi,

Queue’ := (Int |-> Pids’) / Queue, first (Pids’) == Int

-- --

prc (Int, stest-right) : Proc

-{q = Queue, q’ = Queue’, -}-> prc (Int, stest-left) .

Not only is this rule simpler than the previous one, it also has the advantage of
creating a deadlock instead of a livelock if the specification has any problems.

The remainder of the specification appears on Appendix E.2 and it works as follows:
after acquiring its right fork, the process attempts to acquire its left fork using a similar
transition. Upon acquiring both forks, a process moves to its critical region and proceeds
to put the forks down, first the right, then the left and finally enters its ‘srem’ state,
which represents a philosopher thinking. The process moves from ‘srem’ directly to ‘stry’,
indicating that right after thinking it becomes hungry again.

Searching for a final state on with the ‘search’ command with the ‘=>!’ predicate
relation is a good way of finding a deadlock on the algorithm, since a final state is a state
in which no rule applies, meaning that the entire pool of processes is stopped and cannot
continue to evolve.

The auxiliar function ‘initial-conf’ creates an initial configuration with the desired
number n of philosophers. For n = 4, the algorithm takes 3.6 seconds to find that there
is no final state, as we expect on a correct configuration.

rewrites: 760825 in 3604ms cpu (3646ms real)

(211079 rewrites/second)

search in SEARCH : initial-conf =>! C:Conf .

No solution.

When n = 6, the search takes two minutes.

rewrites: 26197002 in 127450ms cpu (127420ms real)

(205547 rewrites/second)

search in SEARCH : initial-conf =>! C:Conf .

No solution.

We may further test the specification using more searches. For example we know
that, in a configuration with four philosophers, two philosophers may eat at the same
time (that is, be at their respective ‘scrit’ states), however, a philosopher may never eat
concurrently with its neighbor. We may verify this by asking ‘search’ to return all states
in which two philosophers are in their ‘scrit’ states:

search in SEARCH : initial-conf =>*

< (prc(I1:Int,scrit)prc(I2:Int,scrit) S:Soup)::: ’Soup,

122

R:Record > .

I1:Int <- 0 ; I2:Int <- 2

I1:Int <- 1 ; I2:Int <- 3

I1:Int <- 2 ; I2:Int <- 0

I1:Int <- 3 ; I2:Int <- 1

Another search confirms that three philosophers never eat at the same time in a
four-philosopher configuration.

search in SEARCH : initial-conf =>*

<(prc(I1:Int,scrit)prc(I2:Int,scrit)prc(I3:Int,scrit)

S:Soup)::: ’Soup,R:Record > .

No solution.

Because the specification does not have justice, it is possible that a particular philoso-
pher may never have the chance to eat, as the following model checking shows. The propo-
sition ‘state(i,s)’ holds when process i is in state s. Looking at the counterexample,
we notice that process ‘0’ is “stuck” in ‘sleave-try’ while process ‘2’ keeps entering and
leaving its critical region indefinitely.

rewrites: 3539 in 60ms cpu (60ms real) (58983 rewrites/second)

reduce in MODEL-CHECK :

modelCheck(initial-conf,<> state(0,scrit))

result ModelCheckResult :

counterexample(

{ prc(0,stry) prc(1,stry) prc(2,stry) prc(3,stry)}...,

{ prc(0,sleave-try) prc(2,srem) ... }

{ prc(0,sleave-try) prc(2,stry) ... }

{ prc(0,sleave-try) prc(2,stest-left) ... }

{ prc(0,sleave-try) prc(2,stest-right) ... }

{ prc(0,sleave-try) prc(2,sleave-try) ... }

{ prc(0,sleave-try) prc(2,scrit) ... }

{ prc(0,sleave-try) prc(2,sexit) ... }

{ prc(0,sleave-try) prc(2,sreset-left) ... }

{ prc(0,sleave-try) prc(2,sreset-right) ... }

{ prc(0,sleave-try) prc(2,sleave-exit) ... }

Appendix E.2 completes this Section with further variations on the specification for
the solution to the Dining Philosophers, such as a specification in which, after eating each
philosopher stops, and a specification with a fair scheduling of the processes. We also
specify an incorrect version of the algorithm and use Maude’s formal tools to detect the
deadlock.

Chapter 7

Conclusion

This Chapter discusses our work showing our contributions, and outlines some limitations
of the current implementation of Maude MSOS Tool and outlines future work. It is orga-
nized as follows. Section 7.1 discusses some limitations of Maude MSOS Tool; Section 7.2
discusses possible enhancements to the tool; while Section 7.3 outlines the contributions
of our work.

7.1 Design decisions and limitations

Section 7.1.1 explains our choice of using a default least set for typed syntactic trees in the
conditions of MSDF transitions; Section 7.1.2 describes some problems in MSDF parsing
that made it somewhat different from Mosses’s proposed MSDF; Section 7.1.3 explains an
undesirable side-effect of our choice of compilation process; Section 7.1.4 describes some
design choices of Maude that affect negatively MMT; finally, Section 7.1.5 describes why
alternatives to our choice of automatic metavariable typing cannot be implemented in an
order-sorted equational theory.

7.1.1 Typed syntactic trees in conditions

The use of a default least sort as the type of the syntax tree in the conditions of MSDF
rules (Section 4.2.4) could be generalized to the same syntax of typed syntax trees in
conclusions. However, pragmatically it seems that the current approach is sufficient,
given the several examples that were built using it. It may be because, in structural
operational semantics, often, if not always, the condition involves a very specific subtree
of the general tree at the conclusion, which has the least possible set.

7.1.2 Limitations of the MSDF syntax in MMT

The Maude 2.1.1 parser allows the specification of highly flexible syntax, but few punctu-
ation symbols are used to separate identifiers, forcing the user to insert arbitrary spaces
to avoid parsing errors. For example, it is common in languages to declare an assignment
operator such as ‘_:=_’, but it is not possible to write ‘x:=y’, as it would be identified as

124

an erroneous “constant.” The same problem does not happen when symbols ‘{’, ‘}’, ‘,’,
‘(’, ‘)’, among others, are used: it is possible to write ‘{({z,(x,y)})}’ without having
to insert arbitrary spaces.

Another problem is that, currently, there is no way of specifying the “form” of some
tokens (e.g., that its first character should be an uppercase vowel). A general solution
would be to add some form of lexical parser generator in Maude that combines the flexi-
bility of regular expressions with the intended algebraic semantics of Maude operators.

With some programming effort these restrictions may be removed due to the reflec-
tive nature of Maude. In order to deal with some limitations of spacing requirements,
one could easily add a “filter,” with signature QidList → QidList, on the input stream
coming from ‘LOOP-MODE’ that “breaks” input tokens in certain specific characters. For
example, an input such as ‘x:=y’ would be transformed by ‘LOOP-MODE’ into ‘’x:=y’ and
this function would break it into ‘’x ’:= ’y’, according to some rule that makes any se-
quence of punctuation symbols a token separator. A meta-level solution is also applicable
to overcome the limitations due to the lack of regular expressions: after inputting the user
text and parsing into a data type, one could write a static checker at the meta-level that
rejects ill-formed programs, by effectively programming what a regular expression would
match.

Moreover, when designing the concrete grammar of a programming language that
imports built-in modules, often conflicts arise between predefined operators and those
present on the language, as the following example show:

fmod PROBLEM1 is

inc INT .

sorts Value Exp Id .

subsort Value < Exp .

subsort Id < Exp .

subsort Int < Value .

op _+_ : Exp Exp -> Exp [ditto] .

op _-_ : Exp Exp -> Exp [ditto] .

op _<_ : Exp Exp -> Exp .

endfm

Loading this module into Maude, we receive the following warning:

Warning: "limitations.maude", line 23 (fmod PROBLEM1):

declaration for _<_ has the same domain kinds as the

declaration on "prelude.maude", line 190 (fmod NAT)

but a different range kind.

because, in module ‘NAT’ (built-in), the operator ‘_<_’ has image sort ‘Bool’, disconnected
from the image sort ‘Exp’ of ‘_<_’. Also, in order to suppress another warning we had to use
the attribute ‘ditto’ on the operations ‘_+_’, and ‘_-_’, which means that the attributes

125

of these operations are the same as the operations defined for sorts that are related to
‘Exp’, such as ‘Nat’, ‘Int’, etc., that is, ‘[assoc comm prec 33]’. Apparently, there is no
good solution to this, apart from modifying the built-in operations to use less “natural”
names such as ‘ADD’ instead of ‘_+_’. Of course, this solution would break compatibility of
all specifications written so far and is not really recommended. Normally, to solve these
problems, one isolates built-in sorts such as ‘Int’ by using coercion functions to artificial
sorts (say, ‘Integers’). The simplest solution is not to use the conflicting symbols.

All these restrictions cater for a difference in Mosses’s MSOS Tool and Maude MSOS

Tool and the use of Bison and SableCC to define formally the syntax of the programming
languages ML and MiniJava. Some of the differences from Mosses’s tool to ours are: (i)
the line of dashes that separates the conclusion from the premises must necessarily have
‘--’, followed by a space before the rest of the line is written. In Maude, three dashes
(‘---’) start a line comment (ii) restrictions on spacing while writing label expressions
and value added syntax trees. Other restrictions, described in Section 7.1.4, include the
use of named modules and preregularity problems arising from the compilation process.

7.1.3 Loading of modules

Maude MSOS Tool follows Full Maude in the way it handles module hierarchies: modules
included are incorporated into the final, compiled module, called a “flat module.” This
has the drawback of slowing down the loading of modules, as in the case of the CMSOS
specification (of the order of 100 modules), since, as modules keep including other modules,
their flattened versions (metarepresented in Full Maude’s database) keep growing. This
also happens in Full Maude for the same reason, and a simple experiment confirms this:
generating 100 modules at random, with random module inclusions, but with the exact
(meaningless) contents, such as this (the numbers vary from module to module):

(omod name98 is

including name47 .

including name10 .

including name79 .

sort s98 .

ops c98 d98 : -> s98 .

ops x98 y98 : s98 s98 -> s98 .

eq x98(c98,d98) = d98 .

vars W WW : s98 .

crl y98(W,WW) => d98 if W => WW .

endom)

we obtain the following figures: the first module loaded takes around 2000 rewrites and 240
milliseconds to be processed by Full Maude. The final modules, depending on the number

126

of inclusions that they carry (no more than ten are generated), take up to 26 million
rewrites and 90 seconds to load, with the same content as the one shown above. We
used “object-oriented” (‘omod ... endom’) modules in Full Maude since, as MMT, they
are compiled into system modules, although the compilation is somewhat straightforward
since it does not have to deal with a different language for the syntax definition.

The example shows an extremely connected modular specification, but a moderately
connected specification such as CMSOS (Section 6.1, Appendix A) in MMT may cause
problems as well. For example, the module that loads all the necessary CMSOS modules
to give the semantics of the ML language (Section 6.1.2) takes around 950000 rewrites
and 16 seconds to process.

The same test made using only the Maude interpreter shows that it does not have
this limitation. Unfortunately, Maude 2.1.1 does not have an operation that loads a
metarepresented module and, if Maude MSOS Tool is to be modified to run under Maude
directly (instead of Full Maude) for any reason, it would not have the ability of, in a single
session load and execute MSDF specifications—it would have to work as a “preprocessor”
that, on the first execution, outputs Maude code from MSDF specifications into a file and,
on a second execution, loads this file to execute those specifications. All this complexity
could be encapsulated by a shell script that hides this preprocessing step, even though at
this point the tool ceases to be a formal tool at least in this particular aspect.

7.1.4 Limitations on the generality of MSDF in MMT

Membership equational logic has the prerequisite that a module should be preregular [41],
that is, each term t should have a least sort. This algebraic requirement may affect
modularity, as the following, taken from [28], shows. Modules ‘SIG0’ and ‘SIG2’ are, by
themselves, preregular.

fmod SIG0 is

sorts t1 t2 .

endfm

fmod SIG2 is

including SIG0 .

op f : t1 -> t1 .

op f : t2 -> t2 .

endfm

Combining both modules with ‘SIG’ below makes ‘f’ non-preregular, with an addi-
tional advisory from the Maude interpreter.

fmod SIG is

including SIG2 .

sort s .

subsort s < t1 .

subsort s < t2 .

127

endfm

Advisory: "preregular-combination.maude", line 11 (fmod SIG):

operator f has been imported from both

"preregular-combination.maude", line 7 (fmod SIG2) and

"preregular-combination.maude", line 8 (fmod SIG2) with

no common ancestor.

Warning: sort declarations for operator f failed

preregularity check.

As specifications grow complex, even more particularly in the case of a highly fine-
grained specification such as CMSOS, with a large number of modules, sets and subsets
relations that are directly mapped as sorts and subsorts, the possibility of making a
module inclusion that results in a loss of preregularity is to be taken seriously. This is,
unfortunately, a characteristic mel and not MMT. What the tool currently lacks is a way
of warning users about non-preregular modules. This is done by the Maude engine itself
only after the compilation is done, which can be very confusing for a user that has little
knowledge of the implementation of the tool.

Another improvement in Maude that would bring Maude MSOS Tool closer in func-
tionality of Mosses’s MSOS Tool is the ability to dynamically load modules. Currently,
the loading of modules through Maude’s ‘in’ or ‘load’ commands (they differ only in the
verbosity of the loading process) is not part of the formalism itself (as the ‘rewrite’ com-
mand its, for example). Even though MMT automatically includes modules that satisfy
certain requirements (Section 4.2.1), they must already be loaded into Full Maude to ac-
tually be included. A consequence of this is that all modules must be manually loaded in
a required order that corresponds to their dependency relation. A way of avoiding this la-
borious step is to dynamically load required modules, if they have not been loaded before.
Mosses’s MSOS Tool uses Prolog’s ‘ensure_loaded’ function to achieve this effect.

Finally, LOOP-MODE’s way of handling user input treats loaded files as an endless stream
of tokens. In other words, files cannot be compilation units themselves. This is probably
why it is common in Full Maude to use delimited modules such as ‘msos ... sosm’,
‘tmod ... endtm’, ‘omod ... endom’, etc., as compilation units. This makes Maude

MSOS Tool different from Mosses’s MSOS Tool, which files are modules with MSDF
constructions, named by their directory hierarchy and filename.

7.1.5 Automatic variables

The automatic typing of variables, based on their names obviously limit the name of vari-
ables that are allowed on MSDF specifications. This has an awkward effect on rules that
needs several variables of the same type, such as the following, taken from Appendix E.1,
where variables ‘Int’ and ‘Int’’ have the same name, but correspond to different objects:
‘Int’ refers to the process id, while ‘Int’’ is the semaphore value.

Int’ == 0

-- --

prc (Int, down) : Proc -{sem = Int’, sem’ = Int’, -}->

128

prc (Int, down) .

This is is a matter of specification engineering: a possible approach on the rule above
is to create another set, ‘SemVal’ that is a superset of integers and use a variable name
‘SemVal’ instead of ‘Int’’. This problem also does not appear in the CMSOS and Mini-
Freja specifications.

Even though we will not attempt to prove it, we believe that a type inference algorithm
would have serious problems in the face of an order-sorted specification and we hope that
the problem should be made clear with the following example.

Exp .

Exp ::= Int | add(Exp, Exp) .

A -{...}-> A’

--- -------------------------------

add(A,B) : Exp -{...}-> add(A’,B) .

D -{...}-> D’

--- -------------------------------

add(C,D) : Exp -{...}-> add(C,D’) .

add(E,F) --> E + F .

A proper type inferencing algorithm would be able to determine the type of variables
‘A’–‘F’, which are, respectively, ‘Exp’, ‘Exp’, ‘Int’, ‘Exp’, ‘Int’, and ‘Int’. The only two
variables which the type might be safely inferred are ‘E’ and ‘F’, because ‘_+_’ is only
defined for ‘Int’ in this case. Otherwise, due to the subset inclusion of ‘Int’ into ‘Exp’
it is not possible to know, for example that ‘C’ should be ‘Int’ and not ‘Exp’. A brute
force approach of adding all possible combinations of ‘Exp’ and ‘Int’ to the other rules
would work (tests show this), but it would generate an unnecessary number of spurious
rewrites. The combination of subset inclusion and metavariables could be exponential on
a large specification.

7.2 Enhancements to the tool — future work

The relationship between MSOS and MRS developed by [6, 44] uses conditional rewrite
rules for the semantics of MSOS transitions, since they cover the general case of non-
deterministic, non-terminating transition systems. However, for a deterministic, termi-
nating, fragment of a transition system, one could use equations instead of rules and keep
the later only in cases where non-determinism or non-termination might happen. For
example, rule ‘[let1]’ on page 42 could be converted to a conditional equation (with a
“one step” conditional equality) such as:

ceq [let1] : { let X = I in E end, {(env = Env), PR} }

= [let X = I in E’ end, {(env = Env), PR’}]

129

if Env’ := override (Env, X, I) /\

[E’, {(env = Env’), PR’}] := { E, {(env = Env’), PR} } .

Unfortunately, combining, on a single specification, equations and rules would prob-
ably generate difficulties. Consider MSDF rules for concurrent processes, variable as-
signment, and looping commands that would be converted to conditional rewrite rules
since non-determinism or non-termination might occur. Usually, these rewrite rules use
rewriting conditions such as:

crl { E1 || E2, R } => [E’1 || E2, R’]

if { E1, R } => [E’1, R’] .

where ‘_||_’ is an associative-commutative operator, a “soup” of expressions. There will
be no equation that would match the condition (they are equalities, not rewrites). It
should be remarked, that, in the case of a concurrent specification of a programming
language, a common solution in Rewriting Logic adapted to the MRS case is to use a
multiset of configurations, instead of a single configuration [48]. Each configuration would
have its own program text and record; concurrent execution of the system would be given
by rewrite rules over this multiset and each configuration itself would be rewritten using
equations for the deterministic, terminating parts and rules for the non-deterministic, non-
terminating parts. This may open the possibility of adding true concurrency to MSDF
specifications, instead of the current interleaving semantics. This would probably require
also some work on new label categories to support a true concurrent trace of execution in
face of MSOS requirements of composability.

Another limitation is that model checking of MSDF specifications with conditional
rewrites representing the transition rules’ premises is problematic since rewrites in the
conditions are assumed “scratch pad rewrites” in rewriting logic [40]. Thus, states that
exist only in the conditions cannot be specified in the query (LTL formula) to the model
checker. For example, on the main transitions, the bindings environment is always its
initial value, while the actual bindings to identifiers happen in the conditions. With this
limitation queries to the model checker must be made by observing changes to mutable
components, such as the store, or by exploiting some property that involves the entire
program text, and not some part. Also, conditional rewrites often slow down the rewriting
process [63]. A possible solution to these is to generate only unconditional rewrites,
following the ideas of evaluation contexts [21] and the use of rewriting strategies [14] to
replace the need for the ‘step’ rule (Section 2.4).

The combination of evaluation contexts and unconditional equations might lead to a
significant increase in performance and (we believe) at the penalty of a significant decrease
in readability, according to a prototype we developed using this technique for a subset of
the Concurrent ML language (http://www.ic.uff.br/~cbraga/losd/specs/cml-cps/cml.
maude) as seen in [11] and [48] shows—a further incentive to add these capabilities to
MMT.

Another possible source of enhancement might come inspired by ideas in “partial
evaluation” results. The idea is that it is quite possible that a given program P does
not use the full set of transitions rules present on a specification S. One could then
generate a “specialized specification” SP that contains only the necessary constructors,

130

rules, and equations for the execution and verification of the program P. If the set of
rules omitted is large, the matching of terms to rules will probably be significantly faster
in the Maude engine. When Maude acquires a compiler, one could effectively compile a
program P creating the specialized specification SP and then compiling this specification
using Maude’s compiler.

The tool needs better user-interface support. Currently, errors may happen at three
different levels: those that MMT reports, those that MMT fails to report but Full Maude
detects, and those that are left to the Maude rewrite engine to warn about. This is confus-
ing, but a more robust solution would need to endow MMT with significant knowledge of
mel in order to foresee any problems a particular module might have after compilation.
In the same way that Maude’s ‘metaParse’ command may return an error indicating
a source of parsing problems, there could be other meta-level commands that analyze
metamodules and report any problems in the same way.

Finally, following the example from LETOS (Chapter 3), a LATEX typeseting capability
and some form of trace execution that is closer to the MSOS domain than to the Maude
domain would greatly influence on the usability of the tool.

7.3 Contributions

The main contributions of our work are: (i) developing an MSOS interpreter that uses a
specification language that is closer to the domain of MSOS specifications than to Maude
specifications. This fact opens the possibility of the automatic typeseting of MSOS speci-
fications that are close to graphical MSOS (and SOS) notations; (ii) implementing a new
conversion from MSOS to Rewriting Logic, based on the subsequent work of Braga and
Meseguer in [8, 44]; (iii) demonstrating the usability of the tool and the CMSOS frame-
work by developing different programming languages specifications; (iv) demonstrating
what can be accomplished when one develops a formal tool in the Maude environment,
since it allows the use of other formal tools already available with MSDF specifications.
We have demonstrated this by simulating and model checking concurrent programs and
distributed algorithms; (v) providing an example of a non-trivial extension of Full Maude;
(vi) finally, one of the objectives of the tool, that is, integrating several formal tools by
using Maude as aggregating technology has recently put to test by extending MMT with
Verdejo’s Strategy Language for Maude [45] by Braga1 and using the combined tool to
give the semantics of core GpH (Glasgow Parallel Haskell) [3].

1Personal communication, Feb. 2005.

Bibliography

[1] Luca Aceto, Willem Jan Fokkink, and Chris Verhoef. Conservative extension in
structural operational semantics. Research Series RS-99-24, BRICS, Department of
Computer Science, Institute of Electronic Systems, Aalborg University, September
1999. 23 pp. Appears in the Bulletin of the European Association for Theoretical
Computer Science, 70:110–132, 1999.

[2] Andrew W. Appel. Modern Compiler Implementation in Java: Basic Techniques.
Cambridge University Press, Cambridge, UK, February 1997.

[3] Clem Baker-Finch, David J. King, and Phil Trinder. An operational semantics for
parallel lazy evaluation. In ICFP ’00: Proceedings of the fifth ACM SIGPLAN in-
ternational conference on Functional programming, pages 162–173, New York, NY,
USA, 2000. ACM Press.

[4] G. Berry and G. Boudol. The chemical abstract machine. In Conf. Record 17th
ACM Symp. on Principles of Programmming Languages, POPL’90, San Francisco,
CA, USA, 17–19 Jan. 1990, pages 81–94. ACM Press, New York, 1990.

[5] Peter Borovanský, Claude Kirchner, Hélène Kirchner, and Pierre-Etienne Moreau.
Elan from a rewriting logic point of view. Theoretical Computer Science, 285:155–
185, 2002.

[6] Christiano Braga. Rewriting Logic as a Semantic Framework for Modular Struc-
tural Operational Semantics. PhD thesis, Pontif́ıcia Universidade Católica do Rio de
Janeiro, September 2001. http://www.ic.uff.br/~cbraga.

[7] Christiano Braga, Hermann Haeusler, José Meseguer, and Peter Mosses. Maude Ac-
tion Tool: Using reflection to map action semantics to rewriting logic. In Teodor
Rus, editor, Algebraic Methodology and Software Technology, 8th International Con-
ference, AMAST 2000, Iowa City, Iowa, USA, May 20–27, 2000, Proceedings, volume
1816 of Lecture Notes in Computer Science, pages 407–421. Springer-Verlag, 2000.

[8] Christiano Braga and José Meseguer. Modular rewriting semantics in practice. Elec-
tronic Notes in Theoretical Computer Science, 117:393–416, 2005.

[9] Walter S. Brainerd and Lawrence H. Landweber. Theory of Computation. John
Wiley and Sons, New York, 1974.

[10] Roberto Bruni and José Meseguer. Generalized rewrite theories. In Thirtieth Inter-
national Colloquium on Automata, Languages and Programming, Lecture Notes in
Computer Science. Springer-Verlag, 2003.

132

[11] Fabricio Chalub and Christiano Braga. A Modular Rewriting Semantics for CML.
Journal of Universal Computer Science, 10(7):789–807, July 2004. http://www.

jucs.org/jucs_10_7/a_modular_rewriting_semantics.

[12] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Mart́ı-Oliet,
José Meseguer, and José F. Quesada. Maude as a metalanguage. In Claude Kirchner
and Hélène Kirchner, editors, Proceedings Second International Workshop on Rewrit-
ing Logic and its Applications, WRLA’98, Pont-à-Mousson, France, September 1–4,
1998, volume 15 of Electronic Notes in Theoretical Computer Science, pages 237–250.
Elsevier, 1998. http://www.elsevier.nl/locate/entcs/volume15.html.

[13] Manuel Clavel, Francisco Durán, Steven Eker, Narciso Mart́ı-Oliet, Patrick Lincoln,
José Meseguer, and José Quesada. Maude: Specification and Programming in Rewrit-
ing Logic. SRI International, http://maude.csl.sri.com, January 1999.

[14] Manuel Clavel, Francisco Durán, Steven Eker, Narciso Mart́ı-Oliet, Patrick Lincoln,
José Meseguer, and Carolyn Talcott. Maude Manual (Version 2.1). SRI Interna-
tional and University of Illinois at Urbana-Champaign, http://maude.cs.uiuc.edu,
March 2004.

[15] Manuel Clavel, Francisco Durán, Steven Eker, José Meseguer, and Mark-Oliver Stehr.
Maude as a formal meta-tool. In Jeannette M. Wing, Jim Woodcock, and Jim
Davies, editors, FM’99 — Formal Methods, World Congress on Formal Methods in
the Development of Computing Systems, Toulouse, France, September 20–24, 1999
Proceedings, Volume II, volume 1709 of Lecture Notes in Computer Science, pages
1684–1703. Springer-Verlag, 1999.

[16] Manuel Clavel, José Meseguer, and Miguel Palomino. Reflection in membership
equational logic, many-sorted equational logic, horn logic with equality, and rewriting
logic. In Fabio Gadducci and Ugo Montanari, editors, Fourth Workshop on Rewriting
Logic and its Applications, WRLA ’02, volume 71 of Electronic Notes in Theoretical
Computer Science. Elsevier, 2002.

[17] Grit Denker, José Meseguer, and Carolyn Talcott. Protocol specification and analysis
in Maude. In Heintze, N. and Wing, J., editors, Proc. of Workshop on Formal
Methods and Security Protocols, June 1998. Indianápolis, Indiana.

[18] Grit Denker, José Meseguer, and Carolyn Talcott. Formal specification and analysis
of active networks and communication protocols: The Maude experience. In DISCEX
2000, Proc. Darpa Information Survivability Conference and Exposition, Hilton Head,
South Carolina, volume 1, pages 251–265. IEEE Computer Society Press, January
2000.

[19] Kyung-Goo Doh and Peter D. Mosses. Composing programming languages by com-
bining action-semantics modules. Science of Computer Programming, 47(1):3–36,
April 2003.

[20] Azade Farzan, Feng Chen, José Meseguer, and Grigore Roşu. Formal analysis of Java
programs in JavaFAN. In Rajeev Alur and Doron A. Peled, editors, CAV, Lecture
Notes in Computer Science. Springer, 2004.

133

[21] Matthias Felleisen. The Calculi of λ-ν-CS Conversion: A Syntactic Theory of Control
and State in Imperative Higher-Order Programming Languages. PhD thesis, Indiana
University, 1987.

[22] Kokichi Futatsugi and R. Diaconescu. Cafeobj report. World Scientific, AMAST
Series, 1998.

[23] J. Goguen, C. Kirchner, A. Megrelis, J. Meseguer, and T. Winkler. An introduction
to obj3. In S. Kaplan and J.-P. Jouannaud, editors, Conditional Term Rewriting
Systems, 1st International workshop, Orsay, France, volume 308 of Lecture Notes in
Computer Science, pages 258–263. Springer-Verlag, New York, NY, July 1987.

[24] J. A. Goguen, J. W. Thatcher, E. G. Wagner, and J. B. Wright. Initial algebra
semantics and continuous algebras. Journal of the ACM, 24(1):68–95, 1977.

[25] Joseph A. Goguen and Grant Malcolm. More higher order programming in OBJ3.
In Joseph A. Goguen and Grant Malcolm, editors, Software Engineering with OBJ:
Algebraic Specification in Action, chapter 9, pages 397–408. Kluwer, Boston, 2000.

[26] James Gosling, Bill Joy, and Guy L. Steele. The Java Language Specification. The
Java Series. Addison-Wesley, Reading, MA, USA, 1996.

[27] P. H. Hartel. LETOS – A lightweight execution tool for operational semantics.
Software—Practice and Experience, 29(15):1379–1416, Sep 1999.

[28] A. E. Haxthausen and F. Nickl. Pushouts of order-sorted algebraic specifications.
Lecture Notes in Computer Science, 1101:132–147, 1996.

[29] Matthew Hennessy. A Semantics of Programming Languages: An Elementary Intro-
duction Using Operational Semantics. John Wiley and Sons, 1990. Currently out of
print; available from http://www.cogs.susx.ac.uk/users/matthewh/semnotes.

ps.gz.

[30] Jørgen Iversen. Formalisms and tools supporting Constructive Action Semantics.
PhD thesis, Univ. of Aarhus, 2005.

[31] Jørgen Iversen and Peter D. Mosses. Constructive action semantics for core ML.
IEE Proceedings, 152(2), April 2005. Special issue on Language definitions and tool
generation.

[32] S. Peyton Jones, editor. Haskell 98 Language and Libraries; The Revised Report.
Cambridge University Press, 2003.

[33] Gilles Kahn. Natural semantics. In Proceedings of the Symposium on Theoretical
Aspects of Computer Science (STACS), volume 247 of Lecture Notes in Computer
Science, pages 22–39. Springer-Verlag, 1987.

[34] Samuel N. Kamin and Uday S. Reddy. Two semantic models of object-oriented
languages. In Carl A. Gunter and John C. Mitchell, editors, Theoretical Aspects
of Object-Oriented Programming: Types, Semantics, and Language Design, pages
464–495. MIT Press, 1994.

134

[35] Donald E. Knuth. Selected Papers on Computer Languages. CSLI Publications,
Stanford, CA, USA, 2002.

[36] Nancy Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

[37] Narciso Mart́ı-Oliet and José Meseguer. Rewriting logic as a logical and semantic
framework. Technical Report SRI-CSL-93-05, SRI International, Computer Science
Laboratory, August 1993. To appear in D. Gabbay, editor, Handbook of Philosophical
Logic, Second Edition, Volume 6, Kluwer Academic Publishers, 2001. http://maude.
csl.sri.com/papers.

[38] Narciso Mart́ı-Oliet and José Meseguer. Handbook of Philosophical Logic, volume 61,
chapter Rewriting Logic as a Logical and Semantic Framework. Kluwer Academic
Publishers, second edition, 2001. http://maude.cs.uiuc.edu/papers.

[39] José Meseguer. Rewriting as a unified model of concurrency. Technical Report
SRI-CSL-90-02R, SRI International, Computer Science Laboratory, February 1990.
Revised June 1990. Appendices on functorial semantics have not been published
elsewhere.

[40] José Meseguer. Conditional rewriting as a unified model of concurrency. Theoretical
Computer Science, 96(1):73–155, April 1992.

[41] José Meseguer. Membership algebra as a semantic framework for equational specifi-
cation. In F. Parisi-Presicce, editor, WADT’97, volume 1376, pages 18–61. Springer,
1998.

[42] José Meseguer. Software specification and verification in rewriting logic. Lectures
given at the NATO Advanced Study Institute International Summer School, Mark-
toberdorf, Germany, 2002. Available from http://maude.cs.uiuc.edu, 2003.

[43] José Meseguer and Christiano Braga. Modular rewriting semantics of programming
languages. Manuscript. http://maude.cs.uiuc.edu/papers.

[44] José Meseguer and Christiano Braga. Modular rewriting semantics of programming
languages. In Charles Rattray, Savitri Maharaj, and Carron Shankland, editors, In
Algebraic Methodology and Software Technology: proceedings of the 10th International
Conference, AMAST 2004, volume 3116 of LNCS, pages 364–378, Stirling, Scotland,
UK, July 2004. Springer. ISSN 0302-9743, ISBN 3-540-22381-9.

[45] José Meseguer, Narciso Mart́ı-Oliet, and Alberto Verdejo. Towards a strategy lan-
guage for Maude. In Narciso Mart́ı-Oliet, editor, Proceedings of 5th International
Workshop on Rewriting Logic and its Applications, WRLA 2004, volume 117 of
Eletronic Notes in Theoretical Computer Science, pages 417–441. Elsevier, 2005.

[46] José Meseguer, Miguel Palomino, and Narciso Mart́ı-Oliet. Notes on model checking
and abstraction in rewriting logic. http://maude.cs.uiuc.edu/.

[47] José Meseguer, Miguel Palomino, and Narciso Mart́ı-Oliet. Equational abstractions.
In Franz Baader, editor, Automated Deduction - CADE-19. 19th International Con-
ference on Automated Deduction, Miami Beach, FL, USA, July 28 - August 2, 2003,
Proceedings, volume 2741 of Lecture Notes in Computer Science. Springer-Verlag,
2003.

135

[48] José Meseguer and Grigore Roşu. Rewriting logic semantics: From language specifi-
cations to formal analysis tools. In D. Basin and M. Rusinowitch, editors, Proceed-
ings of the 2nd International Joint Conference on Automated Reasoning, IJCAR’04,
(Cork, Ireland), volume 3097 of Lecture Notes in Computer Science, pages 183–197.
Springer, 2004.

[49] Robert Milner, Mads Tofte, Robert Harper, and David MacQueen. The definition of
Standard ML (Revised). MIT Press, 1997.

[50] Robin Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes
in Computer Science. Springer-Verlag, 1980.

[51] Robin Milner. Communicating and Mobile Systems: the π-Calculus. Cambridge
University Press, 1999.

[52] Peter D. Mosses. Fundamental Concepts and Formal Semantics of Programming
Languages—an introductory course. Lecture notes, available at http://www.daimi.
au.dk/jwig-cnn/dSem/, 2004.

[53] Peter D. Mosses. Modular structural operational semantics. Journal of Logic and
Algebraic Programming, 60–61:195–228, 2004. Special issue on SOS.

[54] Hanne Riis Nielson and Flemming Nielson. Semantics with Applications: A For-
mal Introduction. Wiley Professional Computing. John Wiley & Sons, Chichester,
England, 1992.

[55] Peter Csaba Ölveczky. Specification and Analysis of Real-Time and Hybrid Systems
in Rewriting Logic. PhD thesis, University of Bergen, Norway, 2000. http://maude.
csl.sri.com/papers.

[56] Mikael Pettersson. Compiling Natural Semantics, volume 1549 of Lecture Notes in
Computer Science. Springer, 1999.

[57] Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002.

[58] Gordon D. Plotkin. A structural approach to operational semantics. Journal of Logic
and Algebraic Programming, 60–61:17–139, 2004. Special issue on SOS.

[59] Alexandre Rademaker, Christiano Braga, and Alexandre Sztajnberg. A rewriting
semantics for a software architecture description language. 2005. To appear.

[60] Uday S. Reddy. Objects as closures: Abstract semantics of object oriented languages.
In ACM Symposium on Lisp and Functional Programming (LFP), Snowbird, Utah,
pages 289–297, Snowbird, Utah, July 1988.

[61] John Reppy. CML: A higher-order concurrent language. In Programming Language
Design and Implementation, pages 293–259. SIGPLAN, ACM, June 1991.

[62] John C. Reynolds. Theories of Programming Languages. Cambridge University Press,
Cambridge, England, 1998.

[63] Grigore Rosu. From conditional to unconditional rewriting. In Proc. 17th Int. Work-
shop on Algebraic Development Techniques (WADT 2004), 2004.

136

[64] Mark-Oliver Stehr and Ambarish Sridharanarayanan. Formal specification of sec-
trace. In Workshop on Context Sensitive Systems Assurance (Contessa’03), 2003.

[65] Lars Thorup and Mads Tofte. Object-oriented programming and Standard ML. In
John H. Reppy, editor, Record of the 1994 ACM SIGPLAN Workshop on ML and its
Applications, Orlando, Florida, number 2265 in Rapport de recherche, pages 41–49.
INRIA, June 1994.

[66] David A. Turner. Miranda: A non-strict functional language with polymorphic types.
In J. Jouannaud, editor, Proceedings IFIP International Conference on Functional
Programming Languages and Computer Architectures, Nancy, France, volume 201
of Lecture Notes in Computer Science, pages 1–16. Springer-Verlag, New York, NY,
September 1985.

[67] David Ungar and Craig Chambers. Self: The power of simplicity. In Object-Oriented
Programming Systems, Languages and Applications Conference, in Special Issue of
SIGPLAN Notices, number 12, pages 227–242. ACM, 1987.

[68] José Alberto Verdejo. Maude como um marco semântico ejecutable. PhD thesis,
Universidad Complutense Madrid, 2003.

[69] Patrick Viry. Equational rules for rewriting logic. Theor. Comput. Sci., 285(2):487–
517, 2002.

137

APPENDIX A -- Constructive MSOS

In this Appendix, we describe the remainder of the CMSOS constructions that were
omitted from Section 6.1.

A.1 Expressions

We begin by describing the modules for the application of operators and application of
identifiers. Rule ‘app-op1’ evaluates the argument of the application—additional rules are
needed for a particular case. As we mentioned earlier, rule ‘app-op2’ is a convenience to
the user and is used in the particular case that the original argument is a tuple of values,
and there is an (externally defined) equation that gives the result of the application of
operation ‘Op’ to the values in ‘Value*’.

msos Cons/Exp/app-Op is

Exp ::= app Op Arg .

Value ::= tup Value* .

Arg -{...}-> Arg’

[app-op1] -- --------------------------------------

(app Op Arg) : Exp -{...}-> app Op Arg’ .

Value’ := apply-op (Op, Value*)

[app-op2] -- -------------------------------------

(app Op (tup Value*)) : Exp --> Value’ .

sosm

The ‘app-Id’ module defines the application of an identifier to an argument. The
actual rules that will govern each particular case of identifiers and arguments will be
defined in subsequent modules. It is usually the case where the identifier will evaluate,
by looking up on the environment, to an operator, and then the associated operation will
be applied.

msos Cons/Exp/app-Id is

Exp ::= app Id Arg .

138

Id --> Id’

-- ---------------------------------

(app Id Arg) : Exp --> app Id’ Arg .

Arg -{...}-> Arg’

-- --------------------------------------

(app Id Arg) : Exp -{...}-> app Id Arg’ .

sosm

A.2 Declarations

Continuing, the module ‘simult-seq’ defines the simultaneous creation of a set of bind-
ings. This means that the bindings are created independently of each other. This is a
restricted variant of the ‘simult’ construction (not shown here) that evaluates the bind-
ings sequentially, while the general version evaluates the bindings in any order. The
bindings are evaluated and then joined together by the ‘+++’ operator at the end.

msos Cons/Dec/simult-seq is

Dec ::= simult-seq Dec Dec .

Dec1 -{...}-> Dec’1

-- --

(simult-seq Dec1 Dec2) : Dec -{...}-> simult-seq Dec’1 Dec2 .

Dec2 -{...}-> Dec’2

-- ---

(simult-seq Env1 Dec2) : Dec -{...}-> simult-seq Env1 Dec’2 .

Env := (Env1 +++ Env2)

-- -----------------------------------

(simult-seq Env1 Env2) : Dec --> Env .

sosm

The construction ‘accum’ defines a cumulative declaration, a counterpart of the ‘simult-seq’
construction, where bindings have available to themselves all bindings generated so far.

msos Cons/Dec/accum is

Dec ::= accum Dec Dec .

Label = {env : Env,...} .

Dec1 -{...}-> Dec’1

-- --

(accum Dec1 Dec2) : Dec -{...}-> accum Dec’1 Dec2 .

Env’ := (Env1 / Env0),

139

Dec2 -{env = Env’, ...}-> Dec’2

-- --

(accum Env1 Dec2) : Dec -{env = Env0, ...}-> accum Env1 Dec’2 .

Env := (Env2 / Env1)

-- ------------------------------

(accum Env1 Env2) : Dec --> Env .

sosm

The ‘Exp/local’ construction takes a declaration and an expression, and evaluates
the expression in terms of the declarations. The declaration is first evaluated into ‘Env’, a
set of bindings that are used to override the current environment, ‘Env0’, that surrounds
the construction. These newly created bindings, ‘Env’’, are used to evaluate each step
of the expression ‘Exp’. When this expression reaches a final value ‘Value’, the whole
construction evaluates to this value.

msos Cons/Exp/local is

Exp ::= local Dec Exp .

Label = { env : Env, ...} .

Dec -{...}-> Dec’

-- --

(local Dec Exp) : Exp -{...}-> local Dec’ Exp .

Env’ := (Env / Env0),

Exp -{env = Env’, ...}-> Exp’

-- --

(local Env Exp) : Exp -{env = Env0, ...}-> local Env Exp’ .

(local Env Value) : Exp --> Value .

sosm

A.3 Commands

Module ‘seq-Cmd-Exp’ defines a construction ‘seq’ which evaluates the sequence of com-
mands given as its first argument and then evaluates the expression, returning its value. It
may be regarded as the body of an imperative language function where the last command
is a ‘return’, that returns the value of ‘Exp’.

msos Cons/Exp/seq-Cmd-Exp is

Exp ::= seq Cmd Exp .

Cmd -{...}-> Cmd’

-- --

(seq Cmd Exp) : Exp -{...}-> seq Cmd’ Exp .

140

(seq skip Exp) : Exp --> Exp .

sosm

The construction defined by the module ‘seq-Exp-Cmd’ is equivalent the one defined
in ‘seq-Exp-Cmd’ but the expression is evaluated before the commands, but its evaluated
value is returned after the evaluation of the list of commands given as the second argument.

msos Cons/Exp/seq-Exp-Cmd is

Exp ::= seq Exp Cmd .

Exp -{...}-> Exp’

-- --

(seq Exp Cmd) : Exp -{...}-> seq Exp’ Cmd .

Cmd -{...}-> Cmd’

-- --

(seq Value Cmd) : Exp -{...}-> seq Value Cmd’ .

(seq Value skip) : Exp --> Value .

sosm

The ‘cond’ construction is a command conditional, that selects which command to
execute, depending on the evaluation of its first argument.

msos Cons/Cmd/cond is

Cmd ::= cond Exp Cmd Cmd .

Value ::= Boolean .

Exp -{...}-> Exp’

-- --

(cond Exp Cmd1 Cmd2) : Cmd -{...}-> cond Exp’ Cmd1 Cmd2 .

(cond tt Cmd1 Cmd2) : Cmd --> Cmd1 .

(cond ff Cmd1 Cmd2) : Cmd --> Cmd2 .

sosm

The ‘while’ construction is the traditional looping construction, whose meaning is
based on the command sequencing and conditional commands.

msos Cons/Cmd/while is

see Cons/Cmd/cond, Cons/Cmd/seq .

Cmd ::= while Exp Cmd .

141

(while Exp Cmd) : Cmd -->

cond Exp (seq Cmd (while Exp Cmd)) skip .

sosm

Now we enter the set of constructions that deal with mutable information, modelled
through ‘Store’, a read-write component indexed by ‘st’ and ‘st’’. In order to achieve
the desired generality, CMSOS uses the set ‘Var’ to represent the variables that are bound
to memory locations (represented by the set ‘Cell’).

msos Cons/Var is

Var .

Var ::= Cell .

sosm

The evaluation of a variable as an expression expects it to evaluate to a ‘Cell’. Once
this happens, it value bound to the cell in the store is returned.

msos Cons/Exp/Var is

Exp ::= Var .

Label = {store : Store, store’ : Store, ...} .

Var -{...}-> Var’

-- ----------------------

Var : Exp -{...}-> Var’ .

Value := lookup(Cell, Store)

-- --

Cell : Exp -{store = Store, store’ = Store,-}-> Value .

sosm

Variables may or may not be related to identifiers. If they are, then we use the
following module, which defines the evaluation of identifiers in the context of variables. It
is expected that an identifier in this case evaluates to a cell. To appear in environments,
a cell must be a ‘Bindable’ value.

msos Cons/Var/Id is

Var ::= Id .

Bindable ::= Cell .

Label = {env : Env, ...} .

Cell := lookup (Id, Env)

-- -----------------------------

Id : Var -{env = Env,-}-> Cell .

sosm

142

The construction ‘assign-seq’ changes the value pointed by ‘Var’ to the value ob-
tained by the evaluation of ‘Exp’.

msos Cons/Exp/assign-seq is

Exp ::= assign-seq Var Exp .

Label = {store : Store, store’ : Store, ...} .

Var -{...}-> Var’

-- --

(assign-seq Var Exp) : Exp -{...}-> assign-seq Var’ Exp .

Exp -{...}-> Exp’

-- --

(assign-seq Cell Exp) : Exp -{...}-> assign-seq Cell Exp’ .

def lookup(Cell, Store),

Store’ := (Cell |-> Storable) / Store

-- --

(assign-seq Cell Storable) : Exp

-{store = Store, store’ = Store’,-}-> Storable .

sosm

These constructions are complements of each other. The first ‘ref’ evaluates the
variable passed as it sole argument. The second ‘deref’ evaluates the expression as its
sole argument and expects it to be evaluated to a ‘ref Cell’. These constructions are
used to bring the imperative facet to a functional language by creating a special “value,”
‘ref’ that holds a pointer. On a purely imperative language, these constructions are not
necessarily needed, as variables may be used directly. They work as follows: if we want to
bind an identifier i to some value v through the store, we first create a new cell c on the
store that is mapped to v and enclose this cell by the ‘ref’ construction. The identifier
is now bound indirectly to v. To access this value on a subsequence computation, we will
call ‘deref i’, which will evaluate to a ‘deref (ref (c))’. The evaluation of this last
expression, according to the rules from the ‘Cons/Exp/Var’ module, will then evaluate to
the desired value v.

msos Cons/Exp/ref is

Exp ::= ref Var .

Value ::= ref Cell .

Var -{...}-> Var’

-- --------------------------------

(ref Var) : Exp -{...}-> ref Var’ .

sosm

msos Cons/Var/deref is

Var ::= deref Exp .

143

Value ::= ref Cell .

Exp -{...}-> Exp’

-- ------------------------------------

(deref Exp) : Var -{...}-> deref Exp’ .

(deref (ref Cell)) : Var --> Cell .

sosm

The following construction returns the value bound through the variable ‘Var’.

msos Cons/Exp/assigned is

Exp ::= assigned Var .

Label = {store : Store, store’ : Store, ...} .

Var -{...}-> Var’

-- --

(assigned Var) : Exp -{...}-> assigned Var’ .

Storable := lookup (Cell ,Store)

-- ---

(assigned Cell) : Exp -{store = Store,

store’ = Store,-}-> Storable .

sosm

The ‘alloc’ construction creates a new entry on the store for the value obtained from
the evaluation of ‘Exp’ and then returns a pointer to this entry.

msos Cons/Var/alloc is

Var ::= alloc Exp .

Label = {store : Store, store’ : Store, ...} .

Exp -{...}-> Exp’

-- ------------------------------------

(alloc Exp) : Var -{...}-> alloc Exp’ .

Cell := new-cell (Store),

Store’ := (Cell |-> Storable) / Store

-- ---

(alloc Storable) : Var -{store = Store,

store’ = Store’,-}-> Cell .

sosm

A.4 Abstractions

Continuing the semantic of abstractions from Section 6.1, the ‘Cons/Dec/app’ module
defines the abstract syntax for the application of an argument to a parameter. This

144

application will be converted into a declaration in which the argument will be bound to
the parameter. This construction will be used on the application of closures to expressions.

msos Cons/Dec/app is

Dec ::= app Par Arg .

Arg -{...}-> Arg’

-- --

(app Par Arg) : Dec -{...}-> (app Par Arg’) .

sosm

Module ‘Cons/Par/bind’ defines the actual parameters of abstractions and how they
become declarations when applied to arguments. The simplest form of parameter is the
‘bind’, which takes a single identifier. When applied to a bindable value, it is converted
into a binding.

msos Cons/Par/bind is

see Cons/Dec/app .

Par ::= bind Id .

(app (bind Id) Bindable) : Dec --> (Id |-> Bindable) .

sosm

In order to bind several parameters simultaneously, the following module should be
used, which defines the ‘tup’ parameter construction.

msos Cons/Par/tup is

see Cons/Dec/app, Cons/Dec/simult .

see Cons/Exp/tup .

Par ::= tup Par* .

(app (tup(Par, Par*)) (tup (Bindable, Bindable*))) : Dec -->

(simult (app Par Bindable)

(app (tup(Par*)) (tup(Bindable*)))) .

(app tup() tup()) : Dec --> void .

sosm

For recursive bindings we use the concept of finite unfolding, with reclosures. We
define a recursive binding with the construction ‘rec’ applied before any declaration.
This creates a special type of declaration where the first argument is always ‘rec Dec’.
As this declaration is evaluated to generate bindings, ‘rec Dec’ is evaluated over and over
again, having the effect of an finite unfolding.

145

msos Cons/Dec/rec is

see Cons/Dec/bind, Cons/Dec/simult,

Cons/Dec/simult-seq, Cons/Exp/close,

Cons/Abs/closure .

Dec ::= rec Dec .

Dec ::= reclose Dec Dec .

(rec Dec) : Dec --> (reclose (rec Dec) Dec) .

(reclose (rec Dec) (bind Id (close Abs))) : Dec -->

(bind Id (close (closure (rec Dec) Abs))) .

(reclose (rec Dec) (simult-seq Dec1 Dec2)) : Dec -->

(simult-seq (reclose (rec Dec) Dec1) (reclose (rec Dec) Dec2)) .

(reclose (rec Dec) (simult Dec1 Dec2)) : Dec -->

(simult (reclose (rec Dec) Dec1) (reclose (rec Dec) Dec2)) .

sosm

A.5 Concurrency

The construction ‘start’ signals the creation of a new thread. It is expected that the
body of the thread consists of an abstraction that will be applied to the empty tuple upon
activation. The module ‘Cons/Cmd/start’ defines its meaning: after the evaluation of the
expression ‘Exp’, the construction signalizes the creation of a new thread by “producing”
the abstraction in the write-only component ‘starting’.

msos Cons/Cmd/start is

Cmd ::= start Exp .

Label = {starting’ : Abs*, ...} .

Value ::= Abs .

Exp -{...}-> Exp’

-- --------------------------------------

(start Exp) : Cmd -{...}-> (start Exp’) .

(start Abs) : Cmd -{starting’ = Abs,-}-> skip .

sosm

Systems are composed of commands. The following module describes the evaluation
of a command in the context of a system. If during the execution a command a new
thread is detected on the ‘starting’’ component, it is removed from that component
and put into the pool of running threads, bound together by the ‘conc’ construction. If

146

no thread is signalized, then the execution continues as usual. As threads end, i.e., they
evaluate to the ‘skip’ command, they are removed from the pool.

msos Cons/Sys/Cmd is

see Cons/Sys/conc, Cons/Cmd/effect,

Cons/Exp/Abs,

Cons/Exp/app, Cons/Exp/tup .

Sys ::= Cmd | skip .

Label = {starting’ : Abs*, ...} .

Cmd -{starting’ = Abs, ...}-> Cmd’

-- --------------------------------------

Cmd : Sys -{starting’ = (), ...}->

conc Cmd’ effect (app Abs tup()) .

Cmd -{starting’ = (), ...}-> Cmd’

-- --------------------------------------

Cmd : Sys -{starting’ = (), ...}-> Cmd’ .

(conc skip Sys) : Sys --> Sys .

(conc Sys skip) : Sys --> Sys .

sosm

The following modules deal with synchronous message-passing. Let us begin with the
creation of channels, represented by the set ‘Chan’. Each channel has an unique identifier
an integer.

msos Data/Chan is

Chan .

Chan ::= chan Int .

sosm

The ‘alloc-chan’ creates a new channel to be used and adds it to the read-write
‘Chans’ components, that keeps track of all channels created so far. The function ‘new-chan’
is defined externally through equations to simplify the specification, it creates a new chan-
nel by looking at the set of channels (‘Chans’) and returning an unused identification.

msos Data/Chans is

Chans .

Chans = (Chan) Set .

sosm

msos Cons/Exp/alloc-chan is

147

Exp ::= alloc-chan .

Label = {chans : Chans, chans’ : Chans, ...} .

Value ::= Chan .

Chan ::= new-chan (Chans) .

Chan := new-chan (Chans), Chans’ := Chans + { Chan }

-- ---

alloc-chan : Exp -{chans = Chans, chans’ = Chans’, -}-> Chan .

sosm

In order to model the synchronous message passing of values, CMSOS follows the
ideas of Concurrent ML. The write-only component ‘event’ models the production of
events during a computation. Threads block after producing events, waiting for other
threads to produce matching events. Concurrent ML defines several different events and
their matching relationships, but in this case the only matching events are the ‘sending’
and ‘receiving’, which model the sending and receiving of values through a particular
channel.

The ‘send-chan-seq’ function receives two expressions as arguments: the first is
evaluated into a channel identification and the second is evaluated to the value that
should be sent to that channel. After both expressions are evaluated, it produces the
event ‘sending’ with the channel and value.

msos Cons/Cmd/send-chan-seq is

Cmd ::= send-chan-seq Exp Exp .

Label = {event’ : Event*, ...} .

Event ::= sending Chan Value .

Value ::= Chan .

Exp1 -{...}-> Exp1’

-- ---

(send-chan-seq Exp1 Exp2) : Cmd -{...}->

(send-chan-seq Exp1’ Exp2) .

Exp2 -{...}-> Exp2’

-- ---

(send-chan-seq Chan Exp2) : Cmd -{...}->

(send-chan-seq Chan Exp2’) .

(send-chan-seq Chan Value) : Cmd

-{event’ = (sending Chan Value),-}-> skip .

sosm

148

The construction ‘recv-chan’ receives a value through the channel that is obtained
from the evaluation of the expression ‘Exp’. Here we deviate from the original MSDF
specification since that used variable unification, a feature not available in Maude as
of version 2.1.1. Originally, the function ‘recv-chan’ also used a free variable ‘Value’
that unifies when there is a match against a ‘sending’ event. Our solution is to, after
evaluating ‘Exp’ to a ‘Chan’, we put a placeholder ‘ph Chan’ in place of the free variable.
When the matching occurs we update this placeholder with the correct value, following
the technique we applied while defining a Modular Rewriting Semantics of Concurrent ML
in [11]

msos Cons/Exp/recv-chan is

Exp ::= recv-chan Exp .

Label = {event’ : Event*, ...} .

Event ::= receiving Chan .

Value ::= ph Chan | Chan .

Exp -{...}-> Exp’

-- --

(recv-chan Exp) : Exp -{...}-> (recv-chan Exp’) .

(recv-chan Chan) : Exp -{event’ = (receiving Chan),-}->

(ph Chan) .

sosm

Here is the module that describes the matching of events: if a ‘sending’ and ‘receiving’
event are produced by any two threads, they synchronize and the value is passed from
one thread to another. This is make using a metafunction ‘update-ph’ that updates the
placeholder with the transmitted value. This metafunction iterates over the program text
at the metalevel to make the substitution, and for this reason our solution does not de-
pend on the signature of the language and hence does not harm the modularity of the
specification.

msos Cons/Sys/conc-chan is

Sys ::= conc Sys Sys .

Sys ::= update-ph (Sys, Chan, Value) .

Label = {event’ : Event*, ...} .

Event ::= sending Chan Value

| receiving Chan .

Sys1 -{event’ = (sending Chan Value),-}-> Sys1’,

Sys2 -{event’ = (receiving Chan),-}-> Sys2’

149

-- ---

(conc Sys1 Sys2) : Sys -{event’ = (),-}->

(conc Sys1’ update-ph (Sys2’, Chan, Value)) .

Sys2 -{event’ = (sending Chan Value),-}-> Sys2’,

Sys1 -{event’ = (receiving Chan),-}-> Sys1’

-- --

(conc Sys1 Sys2) : Sys -{event’ = (),-}->

(conc update-ph (Sys1’, Chan, Value) Sys2’) .

sosm

Finally, we must forbid threads to evaluate if they contain unmatched events. This is
achieved by enclosing the entire system with the ‘quiet’ construction. This construction
only let the system evolve when all events have been matched. When this happen the
‘event’ component is always the empty sequence ‘()’.

msos Cons/Sys/quiet is

see Cons/Sys/Cmd .

Sys ::= quiet Sys .

Label = {event’ : Event*, ...} .

Sys -{event’ = (), ...}-> Sys’

-- --

(quiet Sys) : Sys -{event’ = (), ...}-> (quiet Sys’) .

(quiet skip) : Sys --> skip .

sosm

150

APPENDIX B -- ML specification

This Chapter contains the complete ML specification that was described in Section 6.1.2.

B.1 Expressions

We begin by describing ML expressions and their CMSOS counterparts. First we need
to gather all CMSOS modules that are necessary for the definitions of expressions in
ML. This is done by creating a module ‘Lang/ML/Exp’ as follows. The module contains
explicit references to all CMSOS constructions needed. It also defines that the set of values
(‘Value’) and operators (‘Op’ are “bindable” in environments, that the set of values are
“passable” to procedural abstractions, and that the set of operators contains the constants
‘plus’, ‘times’, etc.

msos Lang/ML/Exp is

see Cons/Prog, Cons/Prog/Exp .

see Cons/Exp, Cons/Exp/Boolean, Cons/Exp/Int,

Cons/Exp/Id, Cons/Exp/cond, Cons/Exp/app-Op,

Cons/Exp/app-Id, Cons/Exp/tup, Cons/Exp/tup-seq .

see Cons/Arg, Cons/Arg/Exp .

see Cons/Op .

see Cons/Id .

Bindable ::= Value | Op .

Op ::= plus | times | minus | eq | lt | gt .

Passable ::= Value .

sosm

The following module contains the initial dynamic basis for ML expressions. It is
defined as a system module that includes the MSDF module ‘Lang/ML/Exp’. Recall that
we must define the operation ‘apply-op’ externally and this is done here for each ‘Op’

151

constant declared on the ‘Lang/ML/Exp’ module. Following, we create the initial environ-
ment with the default associations of identifiers to operators. We reuse the names of the
operator as identifiers, created with the coercion function ‘ide’ on the mapping.

mod Lang/ML/Exp’ is

including Lang/ML/Exp .

including QID .

vars i1 i2 : Int .

eq apply-op (plus, (i1, i2)) = i1 + i2 .

eq apply-op (minus, (i1, i2)) = i1 - i2 .

eq apply-op (times, (i1, i2)) = i1 * i2 .

eq apply-op (eq, (i1, i2)) = if i1 == i2 then tt else ff fi .

eq apply-op (lt, (i1, i2)) = if i1 < i2 then tt else ff fi .

eq apply-op (gt, (i1, i2)) = if i1 > i2 then tt else ff fi .

op ide : Qid -> Id .

op ide : Op -> Id .

op op : Qid -> Op .

eq init-env = (ide(eq) |-> eq +++ ide(lt) |-> lt +++

ide(gt) |-> gt +++ ide(plus) |-> plus +++

ide(times) |-> times +++ ide(minus) |-> minus) .

eq op (’+) = plus . eq op (’*) = times .

eq op (’-) = minus . eq op (’<) = lt .

eq op (’>) = gt . eq op (’=) = eq .

endm

We begin the grammar by specifying “special constants” (〈 scon 〉), which are currently
only integers, represented by the non-terminal ‘integer literal’.

I Special constants

〈 scon 〉→ 〈 integer literal 〉

Special constants are converted verbatim to CMSOS constructions.

I Infix operators

Next, the rules for “infix operators” (〈 inop 〉) with are the operators that appear
infixed in expressions. They can be either the equals sign or some symbol as defined by
the non-terminal 〈 symbolic id 〉. We expect this non-terminal to be provided by the lexical
analysis. Both are converted to an ‘Op’ in CMSOS through the coercion function ‘op’ that
has as argument a quoted-identifier.

152

〈 inop 〉→ ‘=’ | 〈 symbolic id 〉

Let s range over 〈 symbolic id 〉.

[[=]] = op(’=)

[[s]] = op(s)

I Identifiers

Identifiers defined by the nonterminal 〈 id 〉 (also provided by the lexical analysis phase)
are converted into ‘Id’s using the coercion function ‘ide’ in the same way as the ‘op’
function.

〈 vid 〉→ 〈 id 〉

Let i range over 〈 vid 〉.

[[i]] = ide(i)

I Atomic expressions

Being an abstract syntax version of the ML syntax, we avoid the use of different
non-terminals to represent atomic, application, infix and complete expressions. However
we opted to use that subdivision for ease of presentation of the specification. These are
the rules for atomic expressions, which are special constants, identifiers, and tuple of
expressions.

〈 exp 〉→ 〈 scon 〉 | 〈 vid 〉 | ‘()’ | ‘(’ 〈 exp 〉 ‘)’ | ‘(’ 〈 exp 〉∗ ‘)’

Let ei range over 〈 exp 〉.

[[()]] = tup()

[[(e)]] = [[e]]

[[(e ∗)]] = tup-seq([[e∗]])

I Application expressions

Application expressions are used to invoke a procedural abstraction and are converted
to the CMSOS construction ‘app’.

〈 exp 〉→ 〈 exp 〉 〈 exp 〉

153

[[e0 e1]] = app [[e0]] [[e1]]

I Infix expressions

Infix expressions contains the infix operators, which are converted to the application
of the operator receiving an argument the sequential tuple formed by both expressions.

〈 exp 〉→ 〈 exp 〉 〈 inop 〉 〈 exp 〉

Let o range over 〈 inop 〉 .

[[e0 o e1]] = app [[o]] tup-seq([[e0]],[[e1]])

I Complete expressions

Complete expressions are all of the above and the ML constructions for conditionals.

〈 exp 〉→ 〈 exp 〉 ‘andalso’ 〈 exp 〉 | 〈 exp 〉 ‘orelse’ 〈 exp 〉
| ‘if’ 〈 exp 〉 ‘then’ 〈 exp 〉 ‘else’ 〈 exp 〉

[[e0 andalso e1]] = cond [[e0]] [[e1]] ff

[[e0 orelse e1]] = cond [[e0]] tt [[e1]]

[[if e0 then e1 else e2]] = cond [[e0]] [[e1]] [[e2]]

B.2 Declarations

For declarations, let us introduce the relevant MSDF module that contains all CMSOS
constructions related to declarations in ML.

msos Lang/ML/Dec is

see Lang/ML/Exp’ .

see Cons/Prog, Cons/Prog/Dec .

see Cons/Dec, Cons/Dec/bind, Cons/Dec/simult-seq,

Cons/Dec/accum, Cons/Dec/local .

see Cons/Exp, Cons/Exp/local .

sosm

I let-Expressions

We begin by extending the atomic expressions with the ‘let-in-end’ expression,
which is mapped into the CMSOS ‘local’.

154

〈 exp 〉→ ‘let’ 〈 dec 〉 ‘in’ 〈 exp 〉 ‘end’

Let d range over 〈 dec 〉.

[[let d in e end]] = local [[d]] [[e]]

I Value bindings

Next, the declarations are defined. Currently, ML supports only value bindings, that
are converted into the CMSOS ‘bind’ construction.

〈 dec 〉→ ‘val’ 〈 vid 〉 ‘=’ 〈 exp 〉

[[val i = e]] = bind [[i]] [[e]]

B.3 Imperatives

ML does not have the concept of a “command,” as everything is an expression, but it
does have imperative features. Module ‘Lang/ML/Cmd’ defines this.

msos Lang/ML/Cmd is

see Lang/ML/Dec .

see Cons/Cmd, Cons/Cmd/seq-n, Cons/Cmd/effect, Cons/Cmd/while .

see Cons/Exp, Cons/Exp/seq-Cmd-Exp, Cons/Exp/seq-Exp-Cmd,

Cons/Exp/assign-seq, Cons/Exp/ref, Cons/Exp/assigned .

see Cons/Var, Cons/Var/alloc, Cons/Var/deref .

Storable ::= Value .

sosm

Next we add another “external” definition, which is the equation that allocates a new
cell on a given store.

mod Lang/ML/Cmd’ is

including Lang/ML/Cmd .

var Store : Store .

eq new-cell (Store) = cell (length (Store) + 1) .

endm

155

I Sequencing of expressions

We begin by revisiting atomic expressions, where we define the syntax of sequencing of
expressions. Sequences of expressions are converted into the ‘seq-Cmd-Exp’ construction,
which receives a sequence of commands and a final expression. Each command is an ex-
pression enclosed by the ‘effect’ construction. For example, the sequence of expressions
‘3;4;1’ is converted into ‘seq seq (effect (3), effect (4)), 1’.

〈 exp 〉→ ‘(’ 〈 exp seq 〉 ‘;’ 〈 exp 〉 ‘)’
〈 exp seq 〉→ 〈 exp 〉 ‘;’ 〈 exp seq 〉

Let es range over 〈 exp seq 〉.

[[(es ; e)]] = seq (seq [[es]]) [[e]]

[[e ; es]] = (effect [[e]],[[es]])

I Dereferencing of expressions

The dereferencing of expressions is straightforward: we first dereference the expression
into a cell with the construction ‘deref’ and return the assigned value to this cell with
the construction ‘assigned’.

〈 exp 〉→ ‘!’ 〈 exp 〉

[[! e]] = assigned (deref ([[e]]))

I Referencing of expressions

The application expressions have the additional rule of the referencing of expressions.
It first allocates a new cell on the store and encloses this cell with the ‘ref’ construct so
that it becomes a value.

〈 exp 〉→ ‘ref’ 〈 exp 〉

[[ref e]] = ref (alloc ([[e]]))

I Assignment

The infix expressions now have the assignment operation. Since an assignment in ML
does not have any final value, we use the construction ‘seq-Cmd-Exp’ to first execute the
assignment and then to return the empty tuple (‘tup()’). The assignment itself is made
using the ‘assign-seq’ construction by first dereferencing the assigned expression.

156

〈 exp 〉→ 〈 exp 〉 ‘:=’ 〈 exp 〉

[[e0 := e1]] = seq (effect (assign-seq (deref [[e0]]) [[e1]])) tup()

I Loops

Finally, we add a construction that is typical of imperative languages, which is the
looping command.

〈 exp 〉→ 〈while 〉 〈 exp 〉 ‘do’ 〈 exp 〉

[[while e0 do e1]] = seq (while [[e0]] (effect [[e1]])) tup()

B.4 Abstractions

Let us introduce the relevant MSDF module, ‘Lang/ML/Abs’, to introduce the equations
for abstractions.

msos Lang/ML/Abs is

see Lang/ML/Dec .

see Cons/Exp, Cons/Exp/Abs, Cons/Exp/close, Cons/Exp/app-seq .

see Cons/Abs, Cons/Abs/abs-Exp, Cons/Abs/closure .

see Cons/Par, Cons/Par/bind, Cons/Par/tup .

see Cons/Dec, Cons/Dec/app, Cons/Dec/rec .

sosm

I Recursive functions

Our language only has recursive functions. The version here is a very simple for of
recursive functions in ML that does not make use of its full pattern matching capabilities
(we opted to show an example of anonymous functions—or lambda functions—and pattern
matching rules in the semantics of the Mini-Freja language, Section 6.2). The new option
for the ‘dec’ nonterminal shows the syntax of recursive functions: the first ‘vid’ is the
name of the function, the second is the single argument, and the ‘exp’ is the body. It is
converted into the binding of the function name to a closure.

〈 dec 〉→ ‘fun’ 〈 vid 〉 〈 vid 〉 ‘=’ 〈 exp 〉

[[fun i0 i1 = e]] = rec (bind [[i0]] (close (abs (bind [[i1]]) [[e]])))

157

B.5 Concurrency

Finally, let us present the concurrency primitives of ML. The following module, ‘Lang/ML/Conc’,
gathers the necessary MSDF modules.

msos Lang/ML/Conc is

see Lang/ML/Cmd’, Lang/ML/Abs .

see Cons/Cmd, Cons/Cmd/send-chan-seq,

Cons/Cmd/start .

see Cons/Exp, Cons/Exp/recv-chan,

Cons/Exp/alloc-chan .

see Cons/Sys, Cons/Sys/Cmd, Cons/Sys/conc,

Cons/Sys/conc-chan, Cons/Sys/quiet .

sosm

I Creating new threads

The operation ‘spawn’ creates a new thread of execution, and is equivalent to the
‘start’ construction from CMSOS.

〈 exp 〉→ ‘spawn’ 〈 exp 〉

[[spawn e]] = seq (start [[e]])

I Creating new channels

The declaration ‘chan’ creates a new channel and binds to the identifier passed as its
argument.

〈 dec 〉→ ‘chan’ 〈 vid 〉

[[chan i]] = bind [[i]] alloc-chan

I Sending and receiving through channels

The operations ‘send’ and ‘receive’ transmit information over a channel and are im-
plemented, respectively, by the CMSOS constructions ‘send-chan-seq’ and ‘recv-chan’.

〈 exp 〉→ ‘send’ ‘(’ 〈 exp 〉 ‘,’ 〈 exp 〉 ‘)’ | ‘receive’ 〈 exp 〉

158

[[send (e0 , e1)]] = seq (send-chan-seq [[e0]] [[e1]]) tup()

[[receive e]] = recv-chan [[e]]

I Complete concurrent ML programs

Now, the final rule. All ML programs that are concurrent must be prefixed by ‘cml’.
It is converted to the ‘quiet’ CMSOS construction.

〈 exp 〉→ ‘cml’ 〈 exp 〉

[[cml e]] = quiet (effect [[e]])

159

APPENDIX C -- MiniJava specification

This Chapter contains the complete MiniJava specification that was described in Sec-
tion 6.1.3.

C.1 Expressions

Expressions consist of mathematical operations, identifiers, method invocations (that al-
ways return a value), literals, and objects themselves.

〈 exp 〉→ 〈math operation 〉 | 〈 id 〉 | 〈method invocation 〉
| 〈 literal 〉 | 〈 this 〉 | 〈 new 〉

I Math operations

〈math operation 〉→ 〈 exp 〉 〈math op 〉 〈 exp 〉
〈math op 〉→ ‘&&’ | ‘<’ | ‘+’ | ‘/’ | ‘%’ | ‘-’ | ‘*’ | ‘>’ | ‘<=’ | ‘>=’ | ‘=’

Let ei range over 〈 exp 〉, and m range over 〈math op 〉.

[[e0 m e1]] = app [[m]] tup-seq ([[e0]], [[e1]])

I Identifiers

Let i range over 〈 id 〉. When i is not the left-hand side of an assignment:

[[i]] = assigned (deref i)

Otherwise, it is as follows:

[[i]] = deref i

160

I Method invocations

〈method invocation 〉→ 〈 exp 〉 ‘.’ 〈 id 〉 ‘(’ 〈 exp 〉∗‘)’

[[e . i (e ∗)]] = app (app nth(n) [[e]]) (tup-seq p)

The evaluation of e must return an object; n is the method number in the class of
the object returned by e, obtained by looking up the method name i in the metaclass
information generated in the static analysis phase of the compilation process; and p is
constructed as a sequence of ref (alloc [[ei]]) which allocates a new memory entry for
each parameter ei in e∗.

I Literals

〈 literal 〉→ 〈 boolean literal 〉 | 〈 integer literal 〉
〈 boolean literal 〉→ ‘true’ | ‘false’

Literals are converted verbatim to CMSOS constructions.

I Self-reference

〈 this 〉→ ‘this’

[[this]] = app self tup()

I Object instantiations.

〈 new 〉→ ‘new’ 〈 id 〉 ‘()’

[[new i ()]] = app i tup()

C.2 Statements

MiniJava contains the usual statements of imperative programming languages: condition-
als, loops, output, assignment, etc.

〈 statement 〉→ 〈 if 〉 | 〈while 〉 | 〈 block 〉 | 〈 print 〉 | 〈 assign 〉 | 〈 empty 〉

161

I Conditionals

〈 if 〉→ ‘if’ 〈 exp 〉 ‘then’ 〈 statement 〉 ‘else’ 〈 statement 〉

Let si range over 〈 statement 〉.

[[if e then s0 else s1]] = cond [[e]] [[s0]] [[s1]]

I Loops

〈while 〉→ ‘while’ ‘(’ 〈 exp 〉 ‘)’ 〈 statement 〉

[[while (e) s]] = while [[e]] [[s]]

I Block statements

〈 block 〉→ ‘{’ (〈 statement 〉)∗‘}’

[[{ s ∗ }]] = seq [[s∗]]

I Output

〈 print 〉→ ‘System.out.println’ ‘(’ 〈 exp 〉 ‘)’

[[System.out.println (e)]] = print [[e]]

I Assignment

〈 assign 〉→ 〈 exp 〉 ‘=’ 〈 exp 〉

[[e0 = e1]] = effect (assign-seq [[e0]] [[e1]])

I Empty statement

〈 empty 〉→ ‘;’

[[;]] = skip

162

C.3 Classes

I Class declaration

As described at the beginning of this Section a class declarations defines a “prototype”
object, which is a closure where the fields become bindings and the methods become
projections of a tuple.

〈 class declaration 〉→ ‘class’ 〈 identifier 〉 ‘{’ (〈 field declaration 〉)∗

(〈method declaration 〉)∗‘}’

Let fi range over 〈 field declaration 〉 and mi over 〈method declaration 〉.

[[class i { f ∗ m ∗ }]] =

local

(accum (accum [[f∗]])
(rec (bind self

close (abs (bind dummy) tup-seq ([[m]])))))

app self tup()

I Main class declaration

〈main class declaration 〉→ ‘class’ 〈 identifier 〉
‘{’ 〈main method declaration 〉 ‘}’

[[class i { m }]] =

local

(accum void

(rec (bind self

close (abs (bind dummy) tup-seq ([[m]])))))

app self tup()

The main difference is the lack of field declarations and the existence of a single
method.

I Field declarations

The type information is used only on the static analysis phase. Since the only primitive
type is the integer, we bind the identifier i to a newly allocated cell, with the default value
of zero.

〈 field declaration 〉→ 〈 type 〉 〈 identifier 〉

163

Let t range over 〈 type 〉.

[[t i]] = bind i (ref (alloc 0))

I Method declaration

A method declaration is converted into a closure with parameters being bound simul-
taneously by the ‘tup’ construction. The closure body is a ‘local’ definition with the
variable declarations as the declaration part the method body as the expression being
evaluated. We use the ‘seq-Cmd-Exp’ command so that the last expression evaluated is
returned as the method return value.

〈method declaration 〉→ 〈 type 〉 〈 identifier 〉 ‘(’ (〈 parameter 〉)∗‘)’
‘{’ (〈 var declaration 〉)∗(〈 statement 〉)∗‘return’ 〈 expression 〉 ‘}’

Let pi range over 〈 parameter 〉.

[[t i (p ∗) { v ∗ s ∗ return e }]] =

close (abs tup([[p∗]]) (local (accum [[v∗]]) (seq (seq [[s∗]]) e)))

I Main method declaration

〈main method declaration 〉→ ‘public static void main (String arg[]) {’
(〈 statement 〉)∗‘}’

[[public static void main (String arg[]) { s ∗ }]] =

close (abs tup(@) (local void (seq (seq [[s∗]]) 0)))

The main method is similar to the generic method declaration, except that it does
not take arguments, variables declarations, nor has any return expression. In this case
the return expression is assumed to be zero.

I Complete program

Now we must close this specification by creating the main body of the program. It
consists of a series of bindings from the class names to the prototype objects obtained
from the class declarations. The body is a call to the zeroth projection of the main class,
which is exactly the main method.

Let cdi be a class, not the main, declaration and exec the body of the main program.

[[goal]] = local (accum [[cd∗]]) [[exec]]

164

The conversion of the class declarations is a series of bindings from class names (rep-
resented by ni) to the prototype objects (represented by oi). Thus, for some class decla-
ration i, [cdi] is as follows:

[[cdi]] = bind n oi

Now, the equation for exec. It is a call to the main method of the main class. Even
though this method does not receive any arguments, an empty tuple with a single reference
is passed as a “dummy” parameter. The prototype object of the main class is represented
by om.

[[exec]] =

(app (app nth(0) om)

(tup-seq (ref (alloc 0))))

To complete the semantics and show an example of execution we show next the
MSDF module that gathers all relevant CMSOS constructions necessary for the MiniJava
language:

msos MiniJava is

see Cons/Prog, Cons/Prog/Exp .

see Cons/Exp, Cons/Exp/Boolean, Cons/Exp/Int, Cons/Exp/local,

Cons/Exp/Id, Cons/Exp/cond, Cons/Exp/app-Op,

Cons/Exp/app-Id, Cons/Exp/tup, Cons/Exp/tup-seq .

see Cons/Arg, Cons/Arg/Exp .

see Cons/Op .

see Cons/Id .

see Cons/Prog, Cons/Prog/Dec .

see Cons/Dec, Cons/Dec/bind, Cons/Dec/simult-seq,

Cons/Dec/accum, Cons/Dec/local .

see Cons/Exp, Cons/Exp/local .

see Cons/Cmd, Cons/Cmd/seq-n, Cons/Cmd/effect, Cons/Cmd/while,

Cons/Cmd/print .

see Cons/Exp, Cons/Exp/seq-Cmd-Exp, Cons/Exp/seq-Exp-Cmd,

Cons/Exp/assign-seq, Cons/Exp/ref, Cons/Exp/assigned .

see Cons/Var, Cons/Var/alloc, Cons/Var/deref .

see Cons/Exp/ref .

see Cons/Exp, Cons/Exp/Abs, Cons/Exp/close, Cons/Exp/app-seq .

see Cons/Abs, Cons/Abs/abs-Exp, Cons/Abs/closure .

see Cons/Par, Cons/Par/bind, Cons/Par/tup .

see Cons/Dec, Cons/Dec/app, Cons/Dec/rec .

Bindable ::= Value | Op .

Op ::= nth (Int) | plus | times | minus | eq | lt | gt .

Passable ::= Value .

Storable ::= Value .

sosm

165

Next, the following code defines the initial basis for MiniJava programs, with the
initial record and the ‘apply-op’ and ‘new-cell’ equations. We also define an ‘output’
function which receives a configuration as argument and that, once the computation end
with a ‘skip’ command, it removes the output that appears on the write-only component
‘out’.

mod MiniJava’ is

including MiniJava .

var I : Int .

var V : Value .

var VL : Seq‘(Value‘) .

op init-rec : -> Record .

eq init-rec = { out’ = (()).Seq‘(Value‘),

env = (void).Map‘(Id‘|‘Bindable‘),

store = (void).Map‘(Cell‘|‘Storable‘) } .

vars i1 i2 : Int .

eq apply-op (plus, (i1, i2)) = i1 + i2 .

eq apply-op (minus, (i1, i2)) = i1 - i2 .

eq apply-op (times, (i1, i2)) = i1 * i2 .

eq apply-op (eq, (i1, i2)) = if i1 == i2 then tt else ff fi .

eq apply-op (lt, (i1, i2)) = if i1 < i2 then tt else ff fi .

eq apply-op (gt, (i1, i2)) = if i1 > i2 then tt else ff fi .

eq apply-op (nth (0), (V, VL)) = V .

ceq apply-op (nth (I), (V, VL))

= apply-op (nth (I - 1), (VL))

if I > 0 .

op ide : Qid -> Id .

op ide : Op -> Id .

eq init-env = (ide(eq) |-> eq +++ ide(lt) |-> lt +++

ide(gt) |-> gt +++ ide(plus) |-> plus +++

ide(times) |-> times +++ ide(minus) |-> minus) .

var Store : Store .

eq new-cell (Store) = cell (length (Store) + 1) .

sort Output .

op output : Conf -> Output .

op output : Seq‘(Value‘) -> Output .

rl output(< V:Value ::: ’Exp, { out’ = VL:Seq‘(Value‘),

PR:PreRecord } >) => output(VL:Seq‘(Value‘)) .

endm)

166

APPENDIX D -- Mini-Freja specification

This Chapter contains the complement to the Mini-Freja semantics that was described in
Section 6.2, with addition of the rules for pattern matching.

Mini-Freja has pattern matching capabilities similar to those of Standard ML. The
pattern matcher is the ‘case Exp of Rules’ construction, where ‘Rules’ is a sequence of
options to be matched, each with a resulting expression.

Rules .

Rule .

Rule ::= Pat => Exp .

Rules ::= Rule

| Rules || Rules [assoc] .

Each rule is a pattern to be matched against, and the resulting expression. Patterns
follow the same syntax of expressions: we may match against variables, constants, and
lists.

Pat .

Pat ::= Pat :: Pat [assoc] .

Pat ::= p Const | p Var .

Unfortunately, due to preregularity issues, we need the coercion function ‘p_’ that
lifts constants and variables into the set of patterns. The problem happens with the list
operator ‘Pat :: Pat’: had we not used the coercion function ‘p_’, a term like ‘3 :: 5’
would not have a least sort, since it could be either a ‘Pat’ or a ‘Exp’.

The following rules implement the pattern matcher of the Mini-Freja language. We
begin by creating an additional operation ‘case(v,R)’, that matches a value v (obtained
from an expression) against a set R of rules.

Value ::= case (Value, Rules) .

Exp ==> Value,

case (Value, Rules) ==> Value’

[case] -- ---------------------------------

case Exp of Rules : Exp ==> Value’ .

167

Matches are defined according to the following signature. When a match is successful,
it evaluates to ‘myes(ρ)’, where ρ is the binding resulting from the match. Otherwise, it
evaluates to ‘mno’.

Match .

Match ::= myes (Env) | mno .

First, the base case, where the set R of rules consists of a single rule. The function
‘match(v,p)’ matches v against pattern p and returns either ‘myes(ρ)’, if the match is
successful, or ‘mno’ otherwise. If the value ‘Value’ matches the pattern ‘Pat’, then the
expression ‘Exp’ is evaluated by overriding the current environment with ρ.

Match ::= match (Value, Pat) .

match (Value, Pat) ={env = Env, -}=> myes(Env’),

Env’’ := Env’ / Env, Exp ={env = Env’’, -}=> Value’

[case1] -- --

case (Value, Pat => Exp) : Value

={env = Env, -}=> Value’ .

Now let us see the general case, in which there is at least two rules in R. The rule
below specifies the following: the result of the matching of ‘Value’ against ‘Pat’ is given
on to the ‘case-choose’ function, which will return a value ‘Value’’

match (Value, Pat) ==> Match,

case-choose (Match, Exp, Value, Rules) ==> Value’

[case2] -- ---

case (Value, ((Pat => Exp) || Rules)) : Value

==> Value’ .

Let’s see how the auxiliary function ‘case-choose(m,e,v,R)’ works. If the match
m is ‘mno’, it means that the matching against the first rule of R was unsuccessful, so the
value must be matched against the remainder of the rules.

Value ::= case-choose (Match, Exp, Value, Rules) .

case (Value, Rules) ==> Value’

[case-choose] -- ---

case-choose (mno, Exp, Value, Rules) : Value

==> Value’ .

Otherwise, if the matching is successful, ‘case-choose’ works in a similar way to the
rule ‘[case1]’. The environment ‘Env’’ obtained from the successful match overrides the
current environment to evaluate ‘Exp’ to a final value ‘Value’’.

168

Env’’ := Env’ / Env,

Exp ={env = Env’’, -}=> Value’

[case-choose] -- ---

case-choose (myes(Env’),Exp,Value,Rules) : Value

={env = Env, -}=> Value’ .

The following rules specify each possible case of matching of values against patterns.
First, matching a value against a pattern that is a variable is always successful and creates
a binding from the variable to the value.

[match-var] match (Value, p Var) : Match

={env = Env, -}=> myes (Var |-> Value / Env) .

Matching a constant against a constant is successful only if both constants are equal.

Match := if Const1 == Const2

then myes (Env)

else mno fi

[match-const-const] -- -------------------------------

match (Const1, p Const2) : Match

={env = Env, -}=> Match .

Matching a ‘cons’ against a list makes needs an auxiliary function
‘match-pair(m,v,p)’ that will iterate through the list, gathering the bindings, if
the matches are successful.

Match ::= match-pair (Match, Value, Pat)

Rule ‘[match-cons-cons]’ states that, when matching a list against another we first
attempt to match the elements at the beginning of both lists, and then use ‘match-pair’
to, in a big-step manner, match the remainder of both lists.

match (Value1, Pat1) ==> Match1,

match-pair (Match1, Value2, Pat2) ==> Match2

[match-cons-cons] -- ---

match (cons (Value1, Value2),

Pat1 :: Pat2) : Match ==> Match2 .

Notice that, on rule ‘[match-cons-cons]’, ‘match-pair’ receives the matching of the
first elements of both lists (‘Match1’). If this matching is unsuccessful, then the entire list
matching fails also.

[match-pair] match-pair (mno, Value, Pat) : Match ==> mno .

Otherwise it recursively matches against the remainder of the list, gathering the bind-
ings during the process

169

Env’’ := Env’ / Env,

match (Value, Pat) ={env = Env’’, -}=> Match

[match-pair] -- ---

match-pair (myes (Env’), Value, Pat) : Match

={env = Env, -}=> Match .

Matching a constant against a list or a list against a constant always fails.

[match-const-cons] match (Const, Pat1 :: Pat2) : Match

==> mno .

[match-cons-const] match (cons(Value1,Value2),p Const) : Match

==> mno .

170

APPENDIX E -- Distributed algorithms

This Appendix completes Chapter 6.3 with more examples of distributed algorithms.
Section E.1 describes a specification of a mutual exclusion algorithm using semaphores;
Section E.2 continues the specification of the Dining Philosophers on Section 6.3.2.2 with
some additional specifications and verifications; Section E.3 shows Lamport’s Bakery
Algorithm for mutual exclusion, verified using an equational abstraction [46, 47]; finally,
Section E.4 shows more examples of model checking by specifying an algorithm for leader
election on an asynchronous ring.

E.1 Mutual exclusion using semaphores

This Section specifies a mutual exclusion algorithm using semaphores. It is also an intro-
ductory example that shows how a process keeps is internal state using the ‘St’ set.

Let us begin with a specification without semaphores and check the race condition
problem, in this specification processes have two possible states: either they are inside
the critical region (‘cric’) or not, the remainder region (‘rem’).

St .

St ::= crit | rem .

Proc .

Proc ::= pid (Int, St) .

Processes keep entering and leaving their critical region.

prc (Int, rem) : Proc --> prc (Int, crit) .

prc (Int, crit) : Proc --> prc (Int, rem) .

This is specification is simple enough and we may search for all possible states. A
simple ‘search’ command suffices to show all four options:

(search

(< (prc (0, rem) prc (1, rem)) ::: ’Soup,

{ null } >) =>* C:Conf .)

171

Solution 1

C:Conf <- <(prc(0,rem) prc(1,rem))::: ’Soup,{null}>

Solution 2

C:Conf <- <(prc(0,crit) prc(1,rem))::: ’Soup,{null}>

Solution 3

C:Conf <- <(prc(0,rem) prc(1,crit))::: ’Soup,{null}>

Solution 4

C:Conf <- <(prc(0,crit) prc(1,crit))::: ’Soup,{null}>

To avoid the race condition shown on the fourth solution, let us rewrite our rules
with a semaphore semantics: before entering the critical region, a process will go through
intermediate states ‘down’ and ‘up’, represented by the read-write component ‘sem’.

Label = { sem : Int, sem’ : Int, ... } .

We need to at ‘down’ and ‘up’ to our set of possible states, ‘St’:

St ::= down | up .

Before entering a critical region, a process first go to its ‘down’ state:

prc (Int, rem) : Proc --> prc (Int, down) .

Following the semaphore semantics, a process will only access its critical region when
the semaphore is zero.

Int’ == 0

-- --

prc (Int, down) : Proc -{sem = Int’, sem’ = Int’, -}->

prc (Int, down) .

Int’ > 0, Int’’ := Int’ - 1

-- ---

prc (Int, down) : Proc -{sem = Int’, sem’ = Int’’, -}->

prc (Int, crit) .

Moving from the critical region to the remainder, the process first executes its ‘up’
action, incrementing the value of the semaphore by one.

172

prc (Int, crit) : Proc --> prc (Int, up) .

Int’’ := Int’ + 1

-- --

prc (Int, up) : Proc -{sem = Int’, sem’ = Int’’, -}->

prc (Int, rem) .

Now, a search for a configuration where a race condition occurs is unsuccessful.

search : <(prc(0,rem)prc(1,rem))::: ’Soup,{sem = 1}> =>*

<(prc(0,crit)prc(1,crit))::: ’Soup,R:Record > .

No solution.

Let us use the model checker to confirm this result. We begin by creating an auxiliar
operation ‘create-conf(i)’ that creates a configuration with i processes. The proposition
‘race-condition’ holds whenever is more than one process is its critical zone.

rewrites: 817190 in 7638ms cpu (7638ms real)

(106978 rewrites/second)

reduce in CHECK :

modelCheck(create-conf(10), [] ~ race-condition)

result Bool :

true

It is interesting to observe that, since the system does not have justice, there is a
possibility that a process may never enter its critical region. Let us add a new proposition
‘in-crit(i)’ that holds when a process i is in its ‘crit’ state. The following verification
fails with a counterexample where process ‘1’ is “stuck” on its ‘down’ state.

reduce in CHECK :

modelCheck(create-conf(3), <> in-crit(1))

result ModelCheckResult :

counterexample

{prc (1, rem) prc (2, rem) prc (3, rem)}

{prc (1, down) prc (2, rem) prc (3, rem)}

{prc (1, down) prc (2, down) prc (3, rem)}

{prc (1, down) prc (2, crit) prc (3, rem)}

{prc (1, down) prc (2, up) prc (3, rem)}

{prc (1, down) prc (2, up) prc (3, down)}

{prc (1, down) prc (2, rem) prc (3, down)}

{prc (1, down) prc (2, down) prc (3, down)},

{prc (1, down) prc (2, crit) prc (3, down)}

173

E.2 Dining Philosophers

This Section completes Section 6.3.2.2 with the following additional material: the remain-
der for the rules for the specification of Dining Philosophers; a variant of the specification
in which the philosophers only eat once; another variant of the algorithm with a fair
scheduling; and an incorrect specification which is analyzed and verified to be incorrect
using Maude’s formal tools.

E.2.1 Remainder of the rules

This Section shows the remainder of the rules not shown in Section 6.3.2.2, that is, the
rules for the states ‘stest-left’, ‘sleave-try’, ‘scrit’, and ‘srem’.

The rule for the ‘stest-left’ state is similar to the rule for ‘stest-right’. The
difference is that, when the left fork is acquired, the process moves to ‘sleave-sty’.

odd (Int),

Pids := lookup (((Int + 1) rem n), Queue),

Pids’ := if (not Int in Pids)

then insert-back (Int, Pids)

else Pids fi,

Queue’ := ((((Int + 1) rem n)) |-> Pids’) / Queue,

first (Pids’) == Int

-- --

prc (Int, stest-left) : Proc

-{q = Queue, q’ = Queue’, -}-> prc (Int, sleave-try) .

One in the ‘sleave-sty’ state, a process moves to is critical region.

odd (Int)

-- ---

prc (Int, sleave-try) : Proc --> prc (Int, scrit) .

After accessing its critical region, a process moves to the ‘sexit’ state, in which it
first puts the right fork down, and then the left.

odd (Int)

-- ---

prc (Int, scrit) : Proc -{-}-> prc (Int, sexit) .

odd (Int)

-- ---

prc (Int, sexit) : Proc --> prc (Int, sreset-right) .

In order to put the right fork down, it must remove itself from the queue on that fork.
Since the queue only had the pid of the process, it will be empty after this operation.

174

odd (Int), Pids := lookup (Int, Queue),

Pids’ := remove (Int, Pids),

Queue’ := (Int |-> Pids’) / Queue

-- -----------------------------------

prc (Int, sreset-right) : Proc

-{q = Queue, q’ = Queue’, -}->

prc (Int, sreset-left) .

The same process is make for the left fork.

odd (Int), Pids := lookup (((Int + 1) rem n), Queue),

Pids’ := remove (Int, Pids),

Queue’ := ((((Int + 1) rem n)) |-> Pids’) / Queue

-- ---

prc (Int, sreset-left) : Proc

-{q = Queue, q’ = Queue’, -}-> prc (Int, sleave-exit) .

One the left fork is taken down, a process goes to its ‘srem’ state, which models the
philosopher thinking.

odd (Int)

-- ---

prc (Int, sleave-exit) : Proc --> prc (Int, srem) .

After thinking for a while a philosopher gets hungry again and returns to its ‘stry’
state.

odd (Int)

-- ---

prc (Int, srem) : Proc --> prc (Int, stry) .

E.2.2 Dining Philosophers, terminating specification

This Section presents a variant of the specification in which each philosopher, after eating,
prints out its pid and stops. This specification was inspired by the one present on [20].

The specification is similar to the one shown in Sections 6.3.2.2 and E.2.1 with some
modifications. The first is the addition of a write-only component ‘Int*’, indexed by
‘out’’, to model the output of information by the processes.

Label = {out’ : Int*, q : Queue, q’ : Queue, ...} .

We also change the rule for the ‘scrit’ state, making the process output its pid.

175

odd (Int)

-- --

prc (Int, scrit) : Proc -{out’ = Int, -}-> prc (Int, sexit) .

The following rule for the ‘srem’ state is removed, since, a philosopher no longer gets
hungry again after thinking.

odd (Int)

-- ---

prc (Int, srem) : Proc --> prc (Int, stry) .

This slight modification of the algorithm allows for more interesting verifications.
Searching for all final states using the ‘search’ command, we must arrive in states in
which the ‘out’’ component contains all the pids of the processes in the configuration.

search in SEARCH : initial-conf =>! C:Conf .

Solution 1

C:Conf <- <(prc(0,srem) prc(1,srem) prc(2,srem) prc(3,srem))

{..., out’ = 0,1,2,3}>

Solution 2

C:Conf <- <(prc(0,srem) prc(1,srem) prc(2,srem) prc(3,srem))

{...,out’ = 0,1,3,2}>

Solution 3

C:Conf <- <(prc(0,srem) prc(1,srem) prc(2,srem) prc(3,srem))

{...,out’ = 0,3,1,2}>

...

There are several possible variations of the contents of the ‘out’’ component, since
the order in which a philosopher eats is non-deterministic.

Following the example in [20] let us model check this specification using a proposition
‘check(i)’ which holds when the component ‘out’’ contains all numbers less than i.

rewrites: 505248 in 2450ms cpu (2440ms real)

(206223 rewrites/second)

reduce in MODEL-CHECK :

modelCheck(initial-conf,<> check (n - 1))

result Bool :

true

In this case, since a process eventually stops, all processes eventually eat. The example
below shows the case of process ‘0’. Recall that ‘state(i,s)’ holds then process i is in
state s.

176

rewrites: 176389 in 1750ms cpu (1750ms real)

(100793 rewrites/second)

reduce in MODEL-CHECK :

modelCheck(initial-conf,<> state (0,scrit))

result Bool :

true

E.2.3 Fair scheduling

It is interesting to see what is the effect of adding a fair scheduling, according to the
discussion on Section 6.3.1.2, on the specification. Let us make these changes to the
terminating specification (Section E.2.2), but they are easily adapted to the looping spec-
ification. Besides the scheduling rules, of course, the only change to that specification is
the addition of the following rule:

odd (Int)

-- ---

prc (Int, srem) : Proc --> prc (Int, srem) .

This is necessary because a process needs to pass its turn to the next process when it
is in its stopped mode.

The interesting result of this change is that the verification capacity is greatly en-
hanced. For example, let us check a 200-philosopher configuration for a deadlock. Notice
that there is no final state, now that, upon termination, process keep “passing the turn”
indefinitely.

rewrites: 86864 in 10442ms cpu (10501ms real)

(8318 rewrites/second)

search in SEARCH : initial-conf =>! C:Conf .

No solution.

The model checking of the ‘check(i)’ proposition is also successful.

rewrites: 1661019 in 42601ms cpu (43419ms real)

(38989 rewrites/second)

reduce in MODEL-CHECK :

modelCheck(initial-conf,<> check(n - 1))

result Bool :

true

As it was expected with a fair scheduling of the execution, a process will now eventu-
ally eat.

177

reduce in MODEL-CHECK :

modelCheck(initial-conf,<> state(0,scrit))

result Bool :

true

...

reduce in MODEL-CHECK :

modelCheck(initial-conf,<> state(199,scrit))

result Bool :

true

E.2.4 An incorrect specification

This Section shows how a deadlock is detected in an incorrect specification, which, as
we outlined on Section 6.3.2.2, is one that does not break the symmetry on the order on
which each philosopher acquire its fork.

We may “break” any of the specifications described so far by removing the subset of
the rules that applies to odd (or even) processes and, of course, removing the predicate
‘odd(i)’ (or ‘even(i)’) from the condition on the rules. Clearly, this should lead to a
deadlock. In what follows we attempt to verify this deadlock with each of the several
variants of the solution we developed.

Let us begin with the looping specification, in which each philosopher gets hungry
again after thinking. A search for a final state with the ‘search’ command with a con-
figuration with four philosophers finds the deadlocked state: all philosophers are “stuck,”
holding their left forks.

search in SEARCH : initial-conf =>! C:Conf .

Solution 1

C:Conf <-

< prc (0,stest-left) prc (1,stest-left)

prc (2,stest-left) prc (3,stest-left))

{ q = (0 |->[0] +++ 1 |->[1] +++

2 |->[2] +++ 3 |->[3]) } >

No more solutions.

With the terminating specification, the search finds not only the states in which the
philosophers successfully eat, but also the deadlock state (‘Solution 1’).

search in SEARCH : initial-conf =>! C:Conf .

Solution 1

C:Conf <-

< prc (0, stest-left) prc (1, stest-left)

prc (2, stest-left) prc (3, stest-left)),

178

{ fair = 0,out’ = (),

q = (0 |-> [0] +++ 1 |-> [1] +++

2 |-> [2] +++ 3 |-> [3]) }>

Solution 2

C:Conf <-

< prc (0, srem) prc (1, srem)

prc (2, srem) prc (3, srem),

{ fair = 0, out’ = 0,1,2,3,

q =(0 |-> [] +++ 1 |-> [] +++

2 |-> [] +++ 3 |-> []) }>

Solution 3

C:Conf <-

< prc (0, srem) prc (1, srem)

prc (2, srem) prc (3, srem),

{ fair = 0, out’ = 0,1,3,2,

q =(0 |-> [] +++ 1 |-> [] +++

2 |-> [] +++ 3 |-> []) }>

...

The specification with the round-robin scheduling is also prone to the deadlock.

rewrites: 671 in 20ms cpu (20ms real) (33550 rewrites/second)

search in SEARCH : initial-conf =>! C:Conf .

Solution 1

C:Conf <-

< prc (0,stest-left) prc (1,stest-left)

prc (2,stest-left) prc (3,stest-left)),

{ fair = 0, out’ = (),

q =(0 |->[0]+++ 1 |->[1]+++ 2 |->[2]+++ 3 |->[3]) }>

Recall that, with a fair scheduling policy, the model checking of a proposition that
states that eventually a process will enter its critical region succeeds. The following shows
that this is no longer the case, and presents as counterexample the same deadlocked
situation, omitted here for brevity.

rewrites: 2520 in 50ms cpu (50ms real) (50400 rewrites/second)

reduce in MODEL-CHECK :

modelCheck(initial-conf,<> state(0,scrit))

result ModelCheckResult :

counterexample(...)

179

E.3 Bakery algorithm

This Section presents a specification of Lamport’s Bakery Algorithm, described in [36].
Its primary objective it to give a verification example of an unbounded algorithm using
an abstraction [46, 47]. Intuitively, the algorithm simulates a bakery (in Lamport’s con-
ception of how a bakery works) where customers wait for their turn by drawing tickets
when they enter and are served in the order of their ticket numbers.

Let us begin the formal description by defining two read-write components: ‘ch’
models whether a process is choosing its number or not; ‘nm’ holds the chosen number.
Both components are of the same type, ‘IntM’, which is a map from integers (the pids)
to integers (the chosen numbers).

IntM = (Int, Int) Map .

Label = {ch : IntM, ch’ : IntM,

nm : IntM, nm’ : IntM, ...} .

A process may go through the following states, explained throughout the transition
rules.

St .

St ::= choosing (Int, Int)

| waiting (Int)

| rem

| crit

| try

| exit .

When a process wants to go into its critical region, it tells others that it is doing
so by changing its entry on the ‘ch’ component to ‘1’. The process then choose a num-
ber that is greater than all the number chosen by other processes. This is done in the
‘choosing(i,m)’ state, which i contains the number of processes left to check and m the
greatest number found so far. Let us assume that the constant ‘n’ will be bound, by an
equation, to the number of processes currently running.

180

IntM’ := (Int |-> 1) / IntM

-- --

prc (Int, try) : Proc -{ch = IntM, ch’ = IntM’, -}->

prc (Int, choosing (n - 1, -1)) .

(Int1 >= 0), (Int1 =/= Int), (Int2’ := lookup (Int1, IntM)),

Int3 := if Int2’ > Int2 then Int2’ else Int2 fi

-- ---

prc (Int, choosing (Int1, Int2)) : Proc

-{nm = IntM, nm’ = IntM, -}->

prc (Int, choosing (Int1 - 1, Int3)) .

During the choosing process, a process must ignore its own number.

prc (Int, choosing (Int, Int2)) : Proc -->

prc (Int, choosing (Int - 1, Int2)) .

When i = −1, the greatest number found is m. The process then chooses as its own
number m+ 1 and goes to the next phase of the algorithm.

Int’’ := (Int’ + 1), IntM’1 := (Int |-> 0) / IntM1,

IntM’2 := (Int |-> Int’’) / IntM2

-- --

prc (Int, choosing (-1, Int’)) : Proc

-{ch = IntM1, ch’ = IntM’1,

nm = IntM2, nm’ = IntM’2, -}->

prc (Int, waiting (0)) .

On this phase, a process keeps a constant watch on the other processes, iterating
through the ‘waiting(i)’ state, where 0 ≤ i ≤ n − 1 (recall that n is the number of
processes). It waits until its number if the lowest of all in order to access its critical
region and avoids comparing with any process that is currently choosing its own number.

Since there is a possibility that several processes begin the choosing process at the
same time, it may happen that processes choose the same number. In order to deal with
this, the comparison to find the lowest number is made lexicographically using (i, p) where
i is the process number and p its pid. This is formalized by the transition below, which
specifies that process ‘Int’ is comparing its number with process ‘Int’’. The predicate
‘Int1’ == 0’ first makes sure that process ‘Int’’ is not choosing a number. If the chosen
number of process ‘Int’’ is zero (‘Int2’ == 0’), process ‘Int’’ just left the critical region
and process ‘Int’ may access it directly, otherwise the lexicographical comparison is made.

181

prc (Int, waiting (Int)) : Proc -->

prc (Int, waiting ((Int + 1) rem n)) .

Int’ =/= Int,

(Int1’ := lookup (Int’, IntM1)),

(Int2’ := lookup (Int’, IntM2)),

(Int2 := lookup (Int, IntM2)),

St := if Int1’ == 0 and

(Int2’ == 0 or

((Int2 < Int2’) or

(Int2 == Int2’ and Int < Int’)))

then crit else waiting ((Int’ + 1) rem n)

fi

-- ---

prc (Int, waiting (Int’)) : Proc

-{ch = IntM1, ch’ = IntM1,

nm = IntM2, nm’ = IntM2, -}->

prc (Int, St) .

Upon exiting its critical region, a process, as we said, changes its chosen number to
zero and moves to its ‘rem’ state. Once in its ‘rem’ state, a process attempts to access the
critical region again by moving to its ‘try’ state.

IntM2’ := (Int |-> 0) / IntM2

-- ---

prc (Int, crit) : Proc -{nm = IntM2, nm’ = IntM2’, -}->

prc (Int, rem) .

prc (Int, rem) : Proc --> prc (Int, try) .

Unfortunately, this algorithm does not have an upper bound on the chosen number.
Also, the apparently trivial solution of using integers modulo some very large b also fails.

We may verify that there is no upper bound on the chosen number using a ‘search’,
showing that, with two processes, the chosen number can easily reach ten (or any other
natural). The problem happens when a process chooses a number while the other process
is in its critical region. A process only zeroes its chosen number after leaving the critical
region. It works as follows: process ‘0’, with a chosen number of 2, is in its critical region;
process ‘1’ chooses 3 as its number; when this process is in its critical region, process ‘0’
gets another number, which is 4, and so on.

search [1] in BAKERY : initial-conf =>*

< S:Soup,{PR:PreRecord,n = (0 |-> 10 +++ 1 |-> I:Int)} > .

...

< (prc(0, waiting(1)) prc(1, crit)),

{n = (0 |-> 2 +++ 1 |-> 1)} >

182

< (prc(0, waiting(1)) prc(1, rem)),

{n = (0 |-> 2 +++ 1 |-> 0)} >

...

< (prc(0, crit) prc(1, choosing(-1, 2))),

{n = (0 |-> 2 +++ 1 |-> 0)} >

...

< (prc(0, waiting(1)) prc(1, crit)),

{n = (0 |-> 4 +++ 1 |-> 3)} >

...

< (prc(0, crit) prc(1, choosing(-1, 4))),

{n = (0 |-> 4 +++ 1 |-> 0)} >

...

< (prc(0, waiting(1)) prc(1, crit)),

{n = (0 |-> 6 +++ 1 |-> 5)} >

...

< (prc(0, crit) prc(1, choosing(-1, 6))),

{n = (0 |-> 6 +++ 1 |-> 0)} >

...

< (prc(0, waiting(1)) prc(1, crit)),

{n = (0 |-> 8 +++ 1 |-> 7)} >

...

< (prc(0, crit) prc(1, choosing(-1, 8))),

{n = (0 |-> 8 +++ 1 |-> 0)} >

...

< (prc(0, choosing(1, -1)) prc(1, waiting(0))),

{n = (0 |-> 0 +++ 1 |-> 9)} >

< (prc(0, choosing(0, 9)) prc(1, waiting(0))),

{n = (0 |-> 0 +++ 1 |-> 9)} >

< (prc(0, choosing(-1, 9)) prc(1, waiting(0))),

{n = (0 |-> 0 +++ 1 |-> 9)} >

< (prc(0, waiting(0)) prc(1, waiting(0))),

{n = (0 |-> 10 +++ 1 |-> 9)} >

Let us naively modify the algorithm so that the chosen number is incremented modulo,
say, 2267. The algorithm fails for the same reason: chosen numbers gets increasingly
high and, using arithmetic modulo 2267, they will eventually be zero, a number that is
obviously smaller than all other numbers, as the following search for a race condition
shows:

search [1] in BAKERY : initial-conf =>*

< (prc(0, crit) prc(1, crit)) ::: ’Soup,{PR:PreRecord} > .

Solution 1 (state 183534)

states: 183535 rewrites: 5607219 in 34110ms cpu

(34130ms real) (164386 rewrites/second)

PR:PreRecord --> ch = (0 |-> 0 +++ 1 |-> 0),

n = (0 |-> 2266 +++ 1 |-> 0)

183

...

< (prc(0, try) prc(1, choosing(-1, 2264))) ,

{n = (0 |-> 0 +++ 1 |-> 0)} >

< (prc(0, choosing(1, -1)) prc(1, choosing(-1, 2264))),

{n = (0 |-> 0 +++ 1 |-> 0)} >

< (prc(0, choosing(1, -1)) prc(1, waiting(0))),

{n = (0 |-> 0 +++ 1 |-> 2265)} >

< (prc(0, choosing(0, 2265)) prc(1, waiting(0))),

{n = (0 |-> 0 +++ 1 |-> 2265)} >

< (prc(0, choosing(-1, 2265)) prc(1, waiting(0))),

{n = (0 |-> 0 +++ 1 |-> 2265)} >

< (prc(0, waiting(0)) prc(1, waiting(0))),

{n = (0 |-> 2266 +++ 1 |-> 2265)} >

< (prc(0, waiting(1)) prc(1, waiting(0))),

{n = (0 |-> 2266 +++ 1 |-> 2265)} >

< (prc(0, waiting(1)) prc(1, crit)),

{n = (0 |-> 2266 +++ 1 |-> 2265)} >

< (prc(0, waiting(1)) prc(1, rem)),

{n = (0 |-> 2266 +++ 1 |-> 0)} >

< (prc(0, crit) prc(1, rem)),

{n = (0 |-> 2266 +++ 1 |-> 0)} >

< (prc(0, crit) prc(1, try)),

{n = (0 |-> 2266 +++ 1 |-> 0)} >

< (prc(0, crit) prc(1, choosing(1, -1))),

{n = (0 |-> 2266 +++ 1 |-> 0)} >

< (prc(0, crit) prc(1, choosing(0, -1))),

{n = (0 |-> 2266 +++ 1 |-> 0)} >

< (prc(0, crit) prc(1, choosing(-1, 2266))),

{n = (0 |-> 2266 +++ 1 |-> 0)} >

< (prc(0, crit) prc(1, waiting(0))),

{n = (0 |-> 2266 +++ 1 |-> 0)} >

< (prc(0, crit) prc(1, crit)),

{n = (0 |-> 2266 +++ 1 |-> 0)} >

In order to make this algorithm amenable to verification, we must create an abstrac-
tion that captures the essence of the algorithm, but does not have the infinite number of
states of the original. The solution follows the ideas described in [46], in which a two-
process abstraction is defined and proved to correctly simulate the original specification.

The key to find the correct abstraction in this case is to realize that the actual absolute
value of the chosen number is not important, but its relative value with regard to the
other numbers.

We begin with the following two equations: a process changes its number to zero after
leaving the critical zone, so the number chosen by the other process in this case does not
need to grow indefinitely: choosing number one is sufficient.

ceq (< S:Soup, { n = (0 |-> 0 +++ 1 |-> I), PR } >)

= < S:Soup, { n = (0 |-> 0 +++ 1 |-> 1), PR } >

184

if I > 1 .

ceq (< S:Soup, { n = (0 |-> I +++ 1 |-> 0), PR } >)

= < S:Soup, { n = (0 |-> 1 +++ 1 |-> 0), PR } >

if I > 1 .

Next, the following equations keep the chosen numbers of both processes from growing
indefinitely, while keeping their relative values.

ceq (< S:Soup, { n = (0 |-> I +++ 1 |-> I’), PR } >)

= < S:Soup, { n = (0 |-> 2 +++ 1 |-> 1), PR } >

if (I’ < I) /\ not (I’ == 1 and I == 2) .

ceq (< S:Soup, { n = (0 |-> I +++ 1 |-> I’), PR } >)

= (< S:Soup, { n = (0 |-> 1 +++ 1 |-> 1), PR } >)

if not (I’ < I) /\ not (I’ == 1 and I == 1) .

With these abstractions we may now try a search for a race condition.

rewrites: 4195 in 61ms cpu (61ms real) (67671 rewrites/second)

search in CHECK :

initial-conf =>* <(prc(0,crit)prc(1,crit))::: ’Soup,

{PR:PreRecord}> .

No solution.

Also, both processes eventually reach their critical region, according to the results of
the two searches below:

rewrites: 3463 in 36ms cpu (36ms real) (93609 rewrites/second)

search in CHECK :

initial-conf =>* <(prc(0,crit)prc(1,St:St))::: ’Soup,

{PR:PreRecord}> .

Solution 1

PR:PreRecord <- ch =(0 |-> 0 +++ 1 |-> 0),

n =(0 |-> 1 +++ 1 |-> 1);

St:St <- waiting(0)

rewrites: 3376 in 26ms cpu (26ms real) (125055 rewrites/second)

search in CHECK :

initial-conf =>* <(prc(1,crit)prc(0,St:St))::: ’Soup,

{PR:PreRecord}> .

Solution 1

PR:PreRecord <- ch =(0 |-> 0 +++ 1 |-> 0),

n =(0 |-> 2 +++ 1 |-> 1);

St:St <- waiting(0)

Bye.

185

E.4 Leader election on an asynchronous ring

This Section specifies the algorithm for leader election on an unidirectional, asynchronous
ring. It is used as an example of a specification that uses the message-passing model
and provides us with more complex model checking examples. The intuitive idea behind
this algorithm is to elect as leader the process that has the highest pid of all processes in
the ring. Each process forwards its own pid to its neighbor. A process, upon receiving
a pid that is greater than its own, forwards it to its neighbor. The greatest pid will
eventually circle the ring arriving back at its origin. When a process receives its own pid
from a neighbor, it knows it is the leader. It may initiate now, for example, a broadcast
announcing the leader election.

Let us begin the formal description of the algorithm by defining the format of the
messages. It contains as first argument a pid and as the second argument the destination
of the message. There is no need to keep track of the source of the message, as we are
dealing with a known network topology.

Msg ::= m Int to Int .

The ring network is modelled in this specification by having each process knowing
the pid for its neighbor. Only one neighbor is known, hence communication in this
specification is made in only one direction throughout the ring.

Proc ::= prc (Int, Int’, St) .

As usual, we show the states of a process, while explaining their meaning on the
subsequent transitions.

St ::= start

| waiting

| leader .

At the beginning of the algorithm, each process sends its pid to its neighbor.

prc (Int, Int’, start) : Soup -->

prc (Int, Int’, waiting) (m Int to Int’) .

When a process receives a message from a neighbor, it compares its pid i with the
pid i ′ received from its neighbor. If i ′ > i, it forwards the message to its own neighbor.

Int’’ > Int

-- ---

prc (Int, Int’, waiting) (m Int’’ to Int) : Soup -->

prc (Int, Int’, waiting) (m Int’’ to Int’) .

If i ′ < i, it removes the message from the ring.

186

Int’’ < Int

-- ---

prc (Int, Int’, waiting) (m Int’’ to Int) : Soup -->

prc (Int, Int’, waiting) .

When i ′ = i the process know it is the leader.

Int’’ == Int

-- --

prc (Int, Int’, waiting) (m Int’’ to Int) : Soup -->

prc (Int, Int’, leader) .

In order to verify the correctness of the specification, let us make some verifications
using Maude’s model checker on a configuration with four processes. We begin by creating
an operation ‘leaders(S)’ that computes the number of leaders in a soup S.

op leaders : Soup -> Int .

eq leaders (S S’) = leaders (S) + leaders (S’) .

eq leaders (prc (I, I’, leader)) = 1 .

eq leaders (prc (I, I’, waiting)) = 0 .

eq leaders (prc (I, I’, start)) = 0 .

eq leaders (m I to I’) = 0 .

The proposition ‘one-leader’ holds when there is exactly one leader on the configu-
ration, while ‘no-leader’ holds when there is no leader on the configuration.

op one-leader : -> Prop .

op no-leader : -> Prop .

eq < S ::: ’Soup, R > |= one-leader = (leaders (S) == 1) .

eq < S ::: ’Soup, R > |= no-leader = (leaders (S) == 0) .

We may now model check our first formula: in all executions of the specification, there
is always one leader.

rewrites: 7339322 in 56444ms cpu (56447ms real)

(130027 rewrites/second)

reduce in CHECK :

modelCheck(init, <> [] one-leader)

result Bool :

true

There is no execution in which a leader is not elected.

187

rewrites: 7204804 in 56551ms cpu (57278ms real)

(127402 rewrites/second)

reduce in CHECK :

modelCheck(init, ~ [] no-leader)

result Bool :

true

In all executions, there is no leader until a leader is selected.

rewrites: 7340679 in 57867ms cpu (58915ms real)

(126853 rewrites/second)

reduce in CHECK :

modelCheck(init, [] (no-leader U one-leader))

result Bool :

true

188

APPENDIX F -- Combinatory Logic in Maude

The purpose of this Chapter is to demonstrate that, depending on the characteristics
of the specification, the Maude engine can reach rewrite speeds on the order of 106

rewrites/second. As an example, we will specify a simple combinatory logic interpreter.
The literature on combinatory logic is vast, and we opted to follow the description and
examples in [9].

We begin by defining the primitive combinators S and K and their semantics.

fmod CL is

sort Exp .

op S : -> Exp [ctor] .

op K : -> Exp [ctor] .

op __ : Exp Exp -> Exp [gather(E e)] .

vars x y z : Exp .

eq K x y = x .

eq S x y z = x z (y z) .

endfm

The module ‘CL-EXT’ extends this very basic set of combinators with Curry’s B, C,
and I combinators, defined in terms of Shönfinkel’s S and K.

fmod CL-EXT is including CL .

op B : -> Exp . eq B = ((S(K S))K) .

op C : -> Exp . eq C = ((S(K((S S)(K K))))((S(K K))S)) .

op I : -> Exp . eq I = ((S K)K) .

endfm

This combined set is then used to define the positive integers as the following pro-
gression shows:

1 ≡ ((SB)(KI))

2 ≡ ((SB)((SB)(KI)))

3 ≡ ((SB)((SB)((SB)(KI))))

· · ·

189

Module ‘CL-NATURALS’ implements this idea with the operator ‘$(n)’ that converts
the natural n into its equivalent expression. We also define some additional operators
that implement addition, multiplication, and exponentiation: respectively, ‘pl’, ‘ti’, and
‘ex’.

fmod CL-NATURALS is including CL-EXT .

op $: Nat -> Exp .

var n : Nat .

eq $(s(n)) = (S B) $(n) .

eq $(0) = (K I) .

op pl : -> Exp .

op ti : -> Exp .

op ex : -> Exp .

eq pl = ((C I) (S B)) .

eq ti = ((B((C C)(K I)))((C B) pl)) .

eq ex = (C((B(C((C C)((S B)(K I))))) ti)) .

endfm

With ‘CL-NATURALS’ it is possible to calculate, for example, 1+ 1.

Maude> red pl $(1) $(1) .

reduce in CL-NATURALS : pl $(1) $(1) .

rewrites: 28 in 0ms cpu (0ms real) (~ rewrites/second)

result Exp: S (S (K S) K) (S (S (K S) K) (K (S K K)))

We would like to find a way of converting back this sequence into its equivalent
number, for obvious reasons. The key for this conversion is to notice that numbers,
when seen as combinators, have an interesting property: if ε1 and ε2 are expressions,
and n̂ is the combinator expression equivalent to number n, then, 1̂ε1ε2 = ε1ε2, 2̂ε1ε2 =

ε1ε1ε2, 3̂ε1ε2 = ε1ε1ε1ε2, . . . Module ‘NATURALS-CL’ implements this idea.

fmod NATURALS-CL is including CL-NATURALS .

vars x y : Exp .

ops eqv eqv-aux : Exp -> Nat .

ops i j : -> Exp .

eq eqv (x) = eqv-aux (x i j) .

eq eqv-aux (x y) = eqv-aux(x) + eqv-aux(y) .

eq eqv-aux (i) = 1 .

eq eqv-aux (j) = 0 .

endfm

190

Finally, the following reduction achieves the announced order of a million rewrites
per second. This is certainly caused by the huge repetitive patterns of S and K constants
on the juxtaposition operator, facilitating the matching algorithm implemented by the
Maude interpreter.

Maude> reduce in NATURALS-CL : eqv(ti $(500) $(500)) .

reduce in NATURALS-CL : eqv(ti $(500) $(500)) .

rewrites: 2506069 in 2178ms cpu (2184ms real)

(1150275 rewrites/second)

result NzNat: 250000

