
Motivation
Modularity in Operational Semantics

Rewriting Logic
Implementing MSOS in Maude

Case studies
Assessment and design decisions

Conclusion

Implementing Modular SOS in Maude

Fabricio Chalub Barbosa do Rosário

May 26, 2005

Fabricio Chalub Barbosa do Rosário Implementing Modular SOS in Maude

Motivation
Modularity in Operational Semantics

Rewriting Logic
Implementing MSOS in Maude

Case studies
Assessment and design decisions

Conclusion

Why modular specifications?

essential in large-scale specification projects (ease of
extension);

leads to a better design and easier understanding;

education.

Fabricio Chalub Barbosa do Rosário Implementing Modular SOS in Maude

Motivation
Modularity in Operational Semantics

Rewriting Logic
Implementing MSOS in Maude

Case studies
Assessment and design decisions

Conclusion

Why tool support for operational semantics?

“interpreter for free”;

verification;

prettyprinting (documentation).

Fabricio Chalub Barbosa do Rosário Implementing Modular SOS in Maude

Motivation
Modularity in Operational Semantics

Rewriting Logic
Implementing MSOS in Maude

Case studies
Assessment and design decisions

Conclusion

Why a formal tool?

precise axiomatization of MSOS;

why Rewriting Logic and Maude?

Fabricio Chalub Barbosa do Rosário Implementing Modular SOS in Maude

Motivation
Modularity in Operational Semantics

Rewriting Logic
Implementing MSOS in Maude

Case studies
Assessment and design decisions

Conclusion

Structural Operational Semantics
Modular Structural Operational Semantics

SOS is not modular

(Structural Operational Semantics.) Lack of modularity: earlier
rules must be replaced if new components are added to the
specification.

f (t0, . . . , tn) → t

ρ ` f (t0, . . . , tn) → t

ρ ` f (t0, . . . , tn), σ → t, σ

ρ ` f (t0, . . . , tn), σ
τ→ t, σ

Fabricio Chalub Barbosa do Rosário Implementing Modular SOS in Maude

Motivation
Modularity in Operational Semantics

Rewriting Logic
Implementing MSOS in Maude

Case studies
Assessment and design decisions

Conclusion

Structural Operational Semantics
Modular Structural Operational Semantics

MSOS is modular

(Modular SOS.) Components moved from configurations to labels.
Labels only need to explicit the components needed for a certain
transition.
Modularity in MSOS:

Semantically: generalized transition systems where labels are
morphisms of a category;

Syntactically: labels are structured as records.

Transitions have labels with “unspecified components”.

Fabricio Chalub Barbosa do Rosário Implementing Modular SOS in Maude

Motivation
Modularity in Operational Semantics

Rewriting Logic
Implementing MSOS in Maude

Case studies
Assessment and design decisions

Conclusion

Structural Operational Semantics
Modular Structural Operational Semantics

Modular SOS Specification Formalism, MSDF

Mosses’s specification language for MSOS. Three main parts:

abstract syntax declaration (using sets and functions);

label declaration;

transitions.

Id . Env = (Id, Int)Map .

Exp . St = (Loc, Int)Map .

Exp ::= Id | if Exp then Exp else Exp | tup Exp* .

Label = { env : Env, st : St, st’ : St, ... }

St’ := f(St), Exp -{ st = St, st = St’, ...}-> Exp’

-- --

tup(Exp*,Exp,Exp*) -{ st = St, st = St’, ...}-> tup(Exp*,Exp’,Exp*) .

Fabricio Chalub Barbosa do Rosário Implementing Modular SOS in Maude

Motivation
Modularity in Operational Semantics

Rewriting Logic
Implementing MSOS in Maude

Case studies
Assessment and design decisions

Conclusion

Structural Operational Semantics
Modular Structural Operational Semantics

Modular SOS Specification Formalism, MSDF

Mosses’s specification language for MSOS. Three main parts:

abstract syntax declaration (using sets and functions);

label declaration;

transitions.

Id . Env = (Id, Int)Map .

Exp . St = (Loc, Int)Map .

Exp ::= Id | if Exp then Exp else Exp | tup Exp* .

Label = { env : Env, st : St, st’ : St, ... }

St’ := f(St), Exp -{ st = St, st = St’, ...}-> Exp’

-- --

tup(Exp*,Exp,Exp*) -{ st = St, st = St’, ...}-> tup(Exp*,Exp’,Exp*) .

Fabricio Chalub Barbosa do Rosário Implementing Modular SOS in Maude

Motivation
Modularity in Operational Semantics

Rewriting Logic
Implementing MSOS in Maude

Case studies
Assessment and design decisions

Conclusion

Structural Operational Semantics
Modular Structural Operational Semantics

Modular SOS Specification Formalism, MSDF

Mosses’s specification language for MSOS. Three main parts:

abstract syntax declaration (using sets and functions);

label declaration;

transitions.

Id . Env = (Id, Int)Map .

Exp . St = (Loc, Int)Map .

Exp ::= Id | if Exp then Exp else Exp | tup Exp* .

Label = { env : Env, st : St, st’ : St, ... }

St’ := f(St), Exp -{ st = St, st = St’, ...}-> Exp’

-- --

tup(Exp*,Exp,Exp*) -{ st = St, st = St’, ...}-> tup(Exp*,Exp’,Exp*) .

Fabricio Chalub Barbosa do Rosário Implementing Modular SOS in Maude

Motivation
Modularity in Operational Semantics

Rewriting Logic
Implementing MSOS in Maude

Case studies
Assessment and design decisions

Conclusion

Structural Operational Semantics
Modular Structural Operational Semantics

Modular SOS Specification Formalism, MSDF

Mosses’s specification language for MSOS. Three main parts:

abstract syntax declaration (using sets and functions);

label declaration;

transitions.

Id . Env = (Id, Int)Map .

Exp . St = (Loc, Int)Map .

Exp ::= Id | if Exp then Exp else Exp | tup Exp* .

Label = { env : Env, st : St, st’ : St, ... }

St’ := f(St), Exp -{ st = St, st = St’, ...}-> Exp’

-- --

tup(Exp*,Exp,Exp*) -{ st = St, st = St’, ...}-> tup(Exp*,Exp’,Exp*) .

Fabricio Chalub Barbosa do Rosário Implementing Modular SOS in Maude

Motivation
Modularity in Operational Semantics

Rewriting Logic
Implementing MSOS in Maude

Case studies
Assessment and design decisions

Conclusion

Rewriting Logic
Maude
MSOS and RWL: Modular Rewriting Semantics

Why rewriting logic?

RWL unifies different computational systems and logics.

Reflection: a mapping from a logic L to RWL is reified as
metafunction from DL (the data type representing
L-programs) to R (rewriting logic theories).

Executable environments: created with the extension and
composition of built-in metafunctions such as metaParse,
metaReduce, etc.

Fabricio Chalub Barbosa do Rosário Implementing Modular SOS in Maude

Motivation
Modularity in Operational Semantics

Rewriting Logic
Implementing MSOS in Maude

Case studies
Assessment and design decisions

Conclusion

Rewriting Logic
Maude
MSOS and RWL: Modular Rewriting Semantics

Why Maude?

High-performance implementation of RWL (O(106) rewrites/sec.)
with several formal tools available:

built-in: breadth-first search, LTL model checker

available through reflection: Inductive Theorem Prover,
Completeness Checker, Real Time Theories, etc.

Consistent support for the construction and interoperability of
formal tools

Fabricio Chalub Barbosa do Rosário Implementing Modular SOS in Maude

Motivation
Modularity in Operational Semantics

Rewriting Logic
Implementing MSOS in Maude

Case studies
Assessment and design decisions

Conclusion

Rewriting Logic
Maude
MSOS and RWL: Modular Rewriting Semantics

MSOS and Rewriting Logic

Braga/Meseguer defined Modular Rewriting Semantics (MRS) as
an extension of the work of Braga/Haeusler/Mosses/Meseguer for
defining MSOS in terms of Rewriting Logic.
Modularity techniques in MRS:

record inheritance: ‘RECORD’ theory capture the structure of
MSOS labels. Configurations in MRS are pairs (P,R) of
program text and records;

abstract interfaces: semantic components in specifications are
defined abstractly and need a “concrete” implementation for
the specification to be executable. (Useful when a series of
extensions to the data types are created.)

Fabricio Chalub Barbosa do Rosário Implementing Modular SOS in Maude

Motivation
Modularity in Operational Semantics

Rewriting Logic
Implementing MSOS in Maude

Case studies
Assessment and design decisions

Conclusion

Rewriting Logic
Maude
MSOS and RWL: Modular Rewriting Semantics

From MSOS to Rewriting Logic

We only needed the record inheritance technique for the
implementation of MSOS;

Transitions in MSOS are conditional rewrite rules where the
label is separated in pre and post;

The contents of pre and post depends on the types of
components on the label;

Fabricio Chalub Barbosa do Rosário Implementing Modular SOS in Maude

Motivation
Modularity in Operational Semantics

Rewriting Logic
Implementing MSOS in Maude

Case studies
Assessment and design decisions

Conclusion

Maude MSOS Tool (MMT)

MMT as an extension of Full Maude

“Maude way” of constructing formal tools: metafunction
‘convertMSOS’ over terms that represent MSDF specifications
to terms that represent MRS theories.

A front-end “plugs” ‘convertMSOS’ into Full Maude. Full
Maude’s module algebra was extended to support MSDF
modules.

Removal of the ‘Program’ and ‘Component’ sorts from the
‘RECORD’ theory in MRS: avoid collapsing all program and
component sorts.

Fabricio Chalub Barbosa do Rosário Implementing Modular SOS in Maude

Motivation
Modularity in Operational Semantics

Rewriting Logic
Implementing MSOS in Maude

Case studies
Assessment and design decisions

Conclusion

Maude MSOS Tool (MMT)

High-level view of the compilation process

From a MSDF module M = (D, L,T) to a system module
R = (Σ,E ,R)

Parsing user input (two-phase parsing with “bubbles”);

Extracting Σ from D;

Solving bubbles with Σ;

Compilation

Σ obtained from D (again);
E obtained from D;
R obtained from T .

Fabricio Chalub Barbosa do Rosário Implementing Modular SOS in Maude

Motivation
Modularity in Operational Semantics

Rewriting Logic
Implementing MSOS in Maude

Case studies
Assessment and design decisions

Conclusion

Maude MSOS Tool (MMT)

More details

implicit module inclusion: straightforward by looking up Full
Maude’s database;

implicit metavariables: naive approach;

source-dependency check: straightforward (after compilation
is done), requires attention to Maude’s “matching equations.”

Fabricio Chalub Barbosa do Rosário Implementing Modular SOS in Maude

Motivation
Modularity in Operational Semantics

Rewriting Logic
Implementing MSOS in Maude

Case studies
Assessment and design decisions

Conclusion

Maude MSOS Tool (MMT)

Compilation example

msos Id is

Exp .

Id .

Exp ::= Id | Int .

Env = (Id, Int) Map .

Label = { r : Env, ... } .

Int := lookup (Id, Env)

-- ----------------------------

Id : Id -{ r = Env, - }-> Int .

sosm

Fabricio Chalub Barbosa do Rosário Implementing Modular SOS in Maude

Motivation
Modularity in Operational Semantics

Rewriting Logic
Implementing MSOS in Maude

Case studies
Assessment and design decisions

Conclusion

Maude MSOS Tool (MMT)

Compilation example

mod Id is

including QID .

including MSOS-RUNTIME .

including SEQUENCE < Exp > .

including SEQUENCE < Id > .

including MAP < Id | Int > .

including @@INTEGER .

sorts Env ; Exp ; Id .

subsort Id < Exp .

subsort Int < Exp .

subsort eSort(Map, Id | Int) < Env .

subsort eSort(NeSeq, Id) < eSort(NeSeq, Exp) .

subsort eSort(NeSeq, Int) < eSort(NeSeq, Exp) .

subsort eSort(Seq, Id) < eSort(Seq, Exp) .

subsort eSort(Seq, Int) < eSort(Seq, Exp) .

Fabricio Chalub Barbosa do Rosário Implementing Modular SOS in Maude

Motivation
Modularity in Operational Semantics

Rewriting Logic
Implementing MSOS in Maude

Case studies
Assessment and design decisions

Conclusion

Maude MSOS Tool (MMT)

Compilation example

op <_,_> : Exp Record -> Conf [ctor] .

op _:::_ : Exp Qid -> Exp [none] .

op _=_ : [Index] [Env] -> [Field] [ctor prec(50)] .

op [_,_] : [Exp] [Record] -> [Conf] [ctor] .

op {_,_} : [Exp] [Record] -> [Conf] [ctor] .

op r : nil -> RO-Index [ctor] .

Fabricio Chalub Barbosa do Rosário Implementing Modular SOS in Maude

Motivation
Modularity in Operational Semantics

Rewriting Logic
Implementing MSOS in Maude

Case studies
Assessment and design decisions

Conclusion

Maude MSOS Tool (MMT)

Compilation example

mb r = E : ROField [none] .

eq I = C, PR1 ; I = C, PR2 = I = C, (PR1 ; PR2) .

eq duplicated (I = C, I = C’, PR) = true .

Fabricio Chalub Barbosa do Rosário Implementing Modular SOS in Maude

Motivation
Modularity in Operational Semantics

Rewriting Logic
Implementing MSOS in Maude

Case studies
Assessment and design decisions

Conclusion

Maude MSOS Tool (MMT)

Compilation example

vars Exp Exp’ : Exp . vars Id Id’ : Id .

var - : PreRecord . var Env : Env .

var Int : Int

crl < Exp ::: ’Exp, R > => < Exp’ ::: ’Exp, R’ >

if { Exp ::: ’Exp, R } => [Exp’ ::: ’Exp, R’] .

crl < Id ::: ’Id, R > => < Id’ ::: ’Id, R’ >

if { Id ::: ’Id, R } => [Id’ ::: ’Id, R’] .

crl { Id ::: ’Id, { r = Env, - } } =>

[Int ::: ’Id, { r = Env, - }]

if Int := lookup (Id, Env) .

endm

Fabricio Chalub Barbosa do Rosário Implementing Modular SOS in Maude

Motivation
Modularity in Operational Semantics

Rewriting Logic
Implementing MSOS in Maude

Case studies
Assessment and design decisions

Conclusion

Incremental SOS

A set of minimal modules that define a language neutral
construction each. Used on Mosses’s lecture notes and MSOS
Tool. We implemented 74 modules (800 LoC).

ML to IMSOS (based on Mosses’s lecture notes): 315 LoC of
flex/bison;

MiniJava to IMSOS: 1812 LoC of SableCC/Java. A
non-trivial mapping to IMSOS.

Fabricio Chalub Barbosa do Rosário Implementing Modular SOS in Maude

Motivation
Modularity in Operational Semantics

Rewriting Logic
Implementing MSOS in Maude

Case studies
Assessment and design decisions

Conclusion

Mini-Freja

Lazy functional language with a complete pattern matcher.
Implemented to compare performance with LETOS and RML (to
be discussed later). Two specifications:

recursion via unfolding (233 LoC) — LETOS/RML

recursion via fixed point operator (224 LoC)

Fabricio Chalub Barbosa do Rosário Implementing Modular SOS in Maude

Motivation
Modularity in Operational Semantics

Rewriting Logic
Implementing MSOS in Maude

Case studies
Assessment and design decisions

Conclusion

Distributed algorithms

Several algorithms from Lynch: bakery, dining philosophers
(several variants), leader election on asynchronous ring,
Peterson’s shared variable concurrency, semaphores, thread
Game: total 1737 LoC.

Developed to assess the use of MMT in the context of
distributed systems.

Fabricio Chalub Barbosa do Rosário Implementing Modular SOS in Maude

Motivation
Modularity in Operational Semantics

Rewriting Logic
Implementing MSOS in Maude

Case studies
Assessment and design decisions

Conclusion

User interface

parsing errors occurs at three levels: MSDF, Full Maude, and
Maude: confusing;

almost no static analysis of MSDF modules: can be
frustrating for a new user;

prettyprinting of analysis results currently only at Maude level;

analysis modules must be defined at the Maude level;

a more robust user interface at the MSOS domain for
querying properties of specifications.

Fabricio Chalub Barbosa do Rosário Implementing Modular SOS in Maude

Motivation
Modularity in Operational Semantics

Rewriting Logic
Implementing MSOS in Maude

Case studies
Assessment and design decisions

Conclusion

Implementation

parsing MSDF specifications is hard with Maude’s parser;

removal of the ‘Program’ and ‘Component’ sorts;

the step flag and strategies;

implementation of automatic metavariables;

preregularity and MSDF: should warn about preregular MSDF
modules;

long compilation time: due to the use of flat modules in Full
Maude

Fabricio Chalub Barbosa do Rosário Implementing Modular SOS in Maude

Motivation
Modularity in Operational Semantics

Rewriting Logic
Implementing MSOS in Maude

Case studies
Assessment and design decisions

Conclusion

Analysis of MSDF specifications

cannot query about terms that happen on conditions;
evaluation contexts may help?

fairness problems in distributed algorithms;

state explosion; use of abstractions?

Fabricio Chalub Barbosa do Rosário Implementing Modular SOS in Maude

Motivation
Modularity in Operational Semantics

Rewriting Logic
Implementing MSOS in Maude

Case studies
Assessment and design decisions

Conclusion

Much has been done since the original (2001) version of the
prototype. MMT’s usability has been assessed empirically with
several different specifications.
As for future work, we envision two different approaches:

enhancing the tool: (i) much “Maude” bleeding into the
MSOS domain; (ii) better performance: evaluation contexts
and the work of Roşu and Meseguer?; partial evaluation?

extending MMT: integration with available tools: Verdejo’s
Strategy Language; Palomino’s abstraction generator; Clavel’s
ITP (when it supports rewrite rules)

Fabricio Chalub Barbosa do Rosário Implementing Modular SOS in Maude

Motivation
Modularity in Operational Semantics

Rewriting Logic
Implementing MSOS in Maude

Case studies
Assessment and design decisions

Conclusion

Thank you! Obrigado!

Fabricio Chalub Barbosa do Rosário Implementing Modular SOS in Maude

Motivation
Modularity in Operational Semantics

Rewriting Logic
Implementing MSOS in Maude

Case studies
Assessment and design decisions

Conclusion

Source-dependent and Maude’s “matching equations”.

vars x y z w : Foo .

crl f(x, y) => w
if w := g (x, y) .

Fabricio Chalub Barbosa do Rosário Implementing Modular SOS in Maude

Motivation
Modularity in Operational Semantics

Rewriting Logic
Implementing MSOS in Maude

Case studies
Assessment and design decisions

Conclusion

Querying in conditions. In the main path of computation, ρ is
always empty!

e0 −X→ e ′0
let x = e0 in e1 end −X→ let x = e ′0 in e1 end

e1 −{env = ρ[m/x], . . .}→ e ′1
let x =m in e1 end −{env = ρ, . . .}→ let x=m in e ′1 end

let x=m in n end −U→ n

Fabricio Chalub Barbosa do Rosário Implementing Modular SOS in Maude

	Motivation
	Modularity in Operational Semantics
	Structural Operational Semantics
	Modular Structural Operational Semantics

	Rewriting Logic
	Rewriting Logic
	Maude
	MSOS and RWL: Modular Rewriting Semantics

	Implementing MSOS in Maude
	Maude MSOS Tool (MMT)

	Case studies
	Assessment and design decisions
	Conclusion

