
Interoperability of programming
languages: object oriented vs.

functional

Fabricio Chalub

1 de outubro de 2003

0-0



Outline

Functional ; Object-Oriented

Abstract Syntax: a concrete example

Interoperating Java with SML

1



Functional ; Object-Oriented

From THORUP, Lars and TOFTE, Mads. Object-Oriented

Programming and Standard ML.

object: set of encapsulated instance variables and a set of

methods.

messages: (methods) are allowed to access and update the

instance variables.

class: generator, which can generate objects containing

methods that share code but operate on separate, mutable

instance variables.

2



Functional ; Object-Oriented: objects and

classes

Three approaches:

1. objects as closures (Uday S. Reddy)

2. objects as structures, classes as meta-objects (MOP)

3. objects as structures, classes as modules (Thorup &

Tofte, Ierusalimschy)

4. objects as structures, classes as prototype objects

(cloning)

3



Functional ; Object-Oriented: method

invocation

Methods are messages sent to objects.

Two approaches:

1. functional: the method does not change the object, but

returns a modified copy (Pierce)

2. imperative: the method can change the state of the

object

4



Abstract syntax: a concrete example

public class factorial

{ public factorial () { }

public int return_one () { return 1; }

public int compute(int i)

{ int f = 1; while (i > 0) { f = f * i; i = i - 1; }

return f; }

}

seq (while (app-seq (>, tuple-seq (val (i), 0)),

stm (seq (stm (store-seq (f,

app-seq (*, tuple (val(f), val(i))))),

store-seq (i,

app-seq (-, tuple (val (i), 1)))))),

null-val)

5



Objects using Abstract Syntax

f = { return one = closure (NULL, 1)

compute = closure (x, ABSTRACT-COMPUTE) }

Method invokation

compute (f, 20) => (#compute f) (20)

f.compute(20) => (#compute f) (20)

6



Metaobjects: metaclasses

Factorial = { class = ‘‘factorial’’,

variables = { x1 = ref 0,

x2 = ref 1 },
methods = { return one = closure (NULL, 1),

compute = closure (x, COMPUTE) }
}

7



Objects: constructors

let val f = Factorial.new() in

f.compute(10)

end

let val f = new (Factorial) in

compute(f, 10)

end

8


