Modular Structural Operational
Semantics — Modular Rewriting
Semantics

Fabricio Chalub Barbosa do Rosario
frosario@ic.uff.br

October 15, 2003

0-0

Outline

Structural Operational Semantics (SOS)

Modular Structural Operational Semantics (MSOS)

Translating MSOS rules to a ‘“concrete” language
Modular Rewriting Semantics (MRS)

Implementing an interpreter for the MSOS *“language”

SOS: Labelled Terminal Transition System

(A, —=,T)

{(p,e,0)}U{(p,c,0)}U{(p,d,0)}
{{p,con, o)} U{({p,nil, o)} U{(p,p’,0)}
— "'x AxT

(v, o,v') € = Y >y

“configurations are states of transitions systems, and
computations consist of sequences of transitions between
configurations”

SOS: environment

<p> eO> — <p) €6> P = €o — e(/)

(p,eoeer) = (p,ejeoer) phepee; — el ee;

SOS: environment -} store

<p,€o,0->%<p,€6,0-> p|_<eO>O—>H<66>O—>

(p,eo®er,0) — (p,eyeer, o) pF(epeer,0) = (ey®er,o)

MSOS: Generalized Transition System

(DA, —,T)

eUcUd
comU{niljup

MSOS: label components

- read-only (environments), read-write (stores), write-only
(exceptions, traces, logging)

- being a ternary relation, read-write indices must be primed
as indication of change

01 = f(O—O)t)

ot

MSOS: concrete language

- MSOS has some implicit assumptions: which indices are
RO, RW, WO: indices are functions in some A x B relation.

e —{p=pilpol,...}= e
let ppineend {p=p7,... > let ppin e’ end

index p: (i,v) € Id x DVal, read-only
operation p = pnlpm]

index o: (l,v) € Loc x SVal, read-write

MSOS concrete language: design questions

- do we need to declare what labels are in use (what about
modulartiy?)

- how to implement the functionality of the components?
declare rho is BC-ENVIRONMENT

- how to relate the abstract interface with the expected
functionality of the component?
{0 = 0op[l = V]}

sigma = update (sigmaO, 1, v)

- idea: let the user specify the component directly in
equational logic

MSOS concrete language: conditional rules

- how to describe MSOS rules (triples)?

u /
vV—>V

f(t) — t’

1) \RULE {v \OTRANS{uMv’}} {f(t) \OTRANS{ul}{t’}}
2) msos [f] : < f(t), u, t’> > if < v, u, v’ >

3) mr [f] c {ul}f@t) >t if {ul}tv-—>v

MSOS concrete language: language phrases

- how to specify language phrases?

let pp in e end

- idea: use Maude’'s algebraic capabilities:

sorts Decl Exp .
op let_in_end : Decl Exp -> Exp .

10

MSOS concrete language: preliminary
conclusion

R = (algebraic structure) 4 (rewriting rules)

MSOS = (algebraic structure*) 4+ (msos rules)

we may consider (record components) C (algebraic structure*)

11

MSOS concrete language: example

- two options:

1) declare labels and “bind” them to functional modules in
Maude

2) let the user declare and use the modules to her will

12

MSOS concrete language: example

01 = Op[x — V]

x:=v {0 =0p,0" = 07, PR}~ noop

13

MSOS concrete language: example

- user is bound to the previously written components
op _:=_ : Exp Exp -> Exp .
declare rho read-only, sigma read-write
declare rho is [’SML-ENVIRONMENT],
sigma is [’SML-STORE]

msos < x, { rho = rhoO, ... }, v > if v := f (rhoO, x)

msos < x := v, { sigma = sigmaO, sigma’ = sigmal, ... },

noop > if sigmal := update (sigmaO, x, V)

14

MSOS concrete language: example

- user is free to define her own label components

op _:=_ : Exp Exp -> Exp .

< x, { rho = rhoO, PR }, v > if v := lookup (rhoO, x)

< x :=v, { sigma = sigmaO, sigma’ = sigmal, PR },

noop > if sigmal := update-store (sigmaO, x, V)

15

Modular Rewriting Semantics

R =(%,E,Q,R)

- configuration

fmod PROGRAM-RECORD 1is
op <_,_> = Program Record -> ProgramRecord [ctor]

endfm

- record inheritance ({ (st: sigma), (env: rho), PR } a
special case of { PR })

crl < £f(t1,...,tn), u > => < t’, u’ > if C .

16

MRS: example

crl < el +> e2, { PR }> => < e’1 4+’ e2, { PR’ }
if < el, { PR} > =><e’1, {PR> } > /\ el =/=¢e’1 .

e1 # e{ added due to the reflexivity deduction rule

17

Mapping MSOS to MRS

crl : <P, R>=><P, R >if { P, R} =[P, R’]

RE (v,w) — (v ;1w

(v, W) = (vo,Wp) = -+ = (Vn_1,Wn_1) = (v, wn) = (v, w’)

- equality

- nested replacement

17

Mapping MSOS to MRS: example

crl : <P, R>=><P’, R>>if { P, R }=> [P’, R] .
rl { ’a, b }=> [’¢c, ’d] .
rl { ’c, ’d }=> [’e, ’f] .

rew < ’a, ’b > .

("a,"b) = (c," d) ({'a,"b} = ['c,” d])

("c,’d) = ("e,") ({’c,"d} — ['e," f])

('a,"b) — ("e,’ f)

18

Mapping MSOS to MRS

{f(t1,...,ta)} = [t U]
ifvi,wi} = Vi, wilA .. A v, wr = v, W IAC

19

Orthogonal vs. non-orthogonal changes

orthogonal: expressions, abstractions, imperatives

non-orthogonal extensions: modified behaviour of stores and
environments

20

Confluence

(MSOS + MRS) — Standard ML — Mini-Java

21

