
Maude MSOS Tool
Fabricio Chalub and Christiano Braga

fchalub@ic.uff.br / cbraga@ic.uff.br

Universidade Federal Fluminense

Maude MSOS Tool – p. 1/43

Acknowledgements

• CNPq and EPGE-FGV for support;

Maude MSOS Tool – p. 2/43

Outline

• Quick introduction to SOS and MSOS

• Overview of MSOS-SL and Maude MSOS Tool

• Rewriting logic

• MSOS-SL

• Example of simulation with MMT

• Behind the scenes

• Evolution of the language

• Developments and future work

• Conclusion

Maude MSOS Tool – p. 3/43

Modularity in SOS (i)

• SOS (Plotkin, 1981) is a simple yet mathematically

rigorous generic semantic framework.

• Some practical problems with SOS: retracting previous

rules.

Semantics of • with an environment (ρ)

ρ ` e0 → e′
0

ρ ` e0 • e1 → e′
0
• e1

Semantics of • with an environment (ρ) and a store (σ, σ′)

ρ ` 〈e0, σ〉 → 〈e′
0
, σ′〉

ρ ` 〈e0 • e1, σ〉 → 〈e′
0
• e1, σ

′〉

Maude MSOS Tool – p. 4/43

Modularity in operational semantics (ii)

Mosses’ MSOS solves the modularity problem in structural

operational semantics.

• Transition labels carry the semantic information associated

with computations and configurations are only value-added

abstract syntax trees.

e0 −X→ e′
0

e0 • e1 −X→ e′
0
• e1

• Components and are accessed through indices

e −{ρ = ρ1[ρ0], . . .}→ e′

let ρ0 in e end −{ρ = ρ1, . . .}→ let ρ0 in e′ end

Maude MSOS Tool – p. 5/43

Modularity in operational semantics (iii)

More about labels and configurations in MSOS.

• Indexed components in labels are of three different types

(more can be defined, actually)

◦ read only (e.g. environments of bindings)

◦ read write (e.g. stores)

◦ write only (e.g. output)

• Transitions are composable when their labels are

composable (which is defined based on the information in

the label)

• Unobservable transitions are the transitions where

read-write components don’t change, and write-only

components emit no new information.

Maude MSOS Tool – p. 6/43

Maude MSOS Tool and MSOS-SL

MSOS-SL: the MSOS specification language, an extension of

Maude system modules.

Maude MSOS Tool: the MSOS-SL executable environment,

written in Maude.

The Maude MSOS Tool provides an executable environment for

MSOS specifications where, by giving the semantics of a

language L in MSOS, we get the ability to execute programs,

and to perform formal analysis of programs in L.

Maude MSOS Tool – p. 7/43

Maude and Rewriting Logic (RWL)

• A logical framework which can represent in a natural way

many different logics, languages, operational formalisms,

and models of computation;

• Parameterized by an equational logic, membership

equational logic;

• Specifications in rewriting logic are executable with

CafeOBJ, ELAN, and Maude;

• Formal verification tools available in Maude: model

checker, breadth-first search, theorem prover,

Church-Rosser checker, and termination checker;

Maude MSOS Tool – p. 8/43

MSOS-SL

The MSOS-SL specification of a language L has three distinct

parts:

• syntax definition: where we specify the

(abstract/concrete) syntax of L

• label declaration: where we specify the label composition.

• transition rules: where the dynamic semantics of the

language is specified.

Maude MSOS Tool – p. 9/43

MSOS-SL modules

MSOS-SL modules are written as:

(msos MODULE is [...] sosm)

MSOS-SL modules may include other modules with the

including keyword, such as:

(msos A is

including B .

including C .

[...]

sosm)

Maude MSOS Tool – p. 10/43

MSOS-SL: syntax definition

The (abstract/concrete) syntax definition in MSOS-SL comes

directly from Maude. Constructions: sort, subsort, op (for the

declaration of operators).

Maude has a number of builtin datatypes available for use, such

as the naturals, rationals, floating-point numbers, strings, etc.

Maude MSOS Tool – p. 11/43

MSOS-SL: syntax definition

Let us specify a simple ML-like let-in-end, as in:

let val x = 10 in x end

We need a sort Exp for expressions and Dec for declarations in

general.

sorts Dec Exp .

The let expression is declared in mixfix form:

op let in end : Dec Exp -> Exp [ctor] .

ctor means that this operation is a constructor of terms.

Maude MSOS Tool – p. 12/43

MSOS-SL: syntax definition

Identifiers are terms of the sort Id.

sort Id .

Declarations include bindings from identifiers to values

(ValueBinds) obtained from the evaluation of expressions.

sort ValueBind .

op val_ : ValueBind -> Dec [ctor] .

op _=_ : Id Exp -> ValueBind [ctor] .

Maude MSOS Tool – p. 13/43

MSOS-SL: syntax definition

Value is the sort of the values expressible in our language.

Expressions evaluate to values, so we subsort Value to Exp.

Identifiers can appear in expressions also.

sort Value .

subsort Value < Exp .

subsort Id < Exp .

By subsorting Nat to Value we make the naturals a primitive

value of our programming language.

subsort Nat < Value .

We may now write:

op x : -> Id .

let val x = 10 in x end .

let_in_end(val_(_=_(x, 10)), x)

Maude MSOS Tool – p. 14/43

MSOS-SL: syntax definition

Operators may have associativity (assoc), commutativity

(comm) and identity (id) attributes.

op ; : Exp Exp -> Exp [ctor assoc prec 100] .

Other possibilities: frozen arguments, gather patterns,

evaluation strategies (for example to create lazy-evaluation

operations), and so on.

Maude MSOS Tool – p. 15/43

MSOS-SL: label declaration

Label indices are declared using the following keywords:

read-only i : τ .

read-write i : τ .

write-only i : τ (e, bop) .

i is the index name, and τ the sort of the values indexed by i,

referred to as components.

For WO indices, we must describe a monoid: identity element

(e) and binary operation (bop).

read-only env : Env .

write-only out : Output (nil, append) .

Maude MSOS Tool – p. 16/43

MSOS-SL: label components

Label components are also specified as algebraic data types. In

this example Env is the sort of environments, and BVal is the

sort of “bindable values”, along with associated operations.

sorts Env BVal .

op _|->_ : Id BVal -> Env [ctor] .

op __ : Env Env -> [Env] . --- disjoint union

op find : Env Id -> [BVal] .

op _/_ : Env Env -> Env . --- overriding

Writing [S] as the image sort of an operator makes this a

partial function.

Maude MSOS Tool – p. 17/43

MSOS-SL: transitions

Transitions: ctr γ =α=> γ′ if 〈condition〉 .

γ: the value-added syntax tree. α: the label expression.

〈condition〉: consists of a conjunction of transitions, written in

the general form γ =α=> γ′, together with membership

assertions and equational conditions, separated by ‘/\’.

Unconditional transitions: tr γ =α=> γ′ .

Unobservable transitions: γ ==> γ′.

Maude MSOS Tool – p. 18/43

MSOS-SL: label expressions

Labels (sort Label) are formed by a set of fields of the form:

(i : C).

The sort Fields is defined as a subsort of a Label. This opens

the possibility to create label expressions as in MSOS.

{(env : rho), (st : sigma), (st’ : sigma’), FS},

the variable FS, of sort Fields, matches against any

unspecified set of fields.

Unobservable labels are identity labels of the sort ILabel, a

subsort of Label, and their subsets are of the sort IFields, a

subsort of Fields.

Maude MSOS Tool – p. 19/43

MSOS-SL: transitions

As an example, let us give the semantics of the let expression

defined earlier:

var X : Label . var FS : Fields .

var v : Value . vars D D’ : Dec .

vars E E’ : Exp . vars b rho rho’ : Env .

ctr let D in E end = X => let D’ in E end

if D = X => D’ .

Maude MSOS Tool – p. 20/43

MSOS-SL: transitions

As an example, let us give the semantics of the let expression

defined earlier (cont.):

var X : Label . var FS : Fields .

var v : Value . vars D D’ : Dec .

vars E E’ : Exp . vars b rho rho’ : Env .

ctr let b in E end ={(env : rho), IS}=> let b in E’ end

if rho’ := rho / b /\ E ={(env : rho’), IS}=> E’ .

Maude MSOS Tool – p. 21/43

MSOS-SL: transitions

As an example, let us give the semantics of the let expression

defined earlier (cont.):

var X : Label . var FS : Fields .

var v : Value . vars D D’ : Dec .

vars E E’ : Exp . vars b rho rho’ : Env .

tr let b in v end ==> v .

Maude MSOS Tool – p. 22/43

MSOS-SL: concurrency example

Simulation. This search must find two final states (concurrent

access to a memory location).

(search exec (let val x "=" ref $(1)

in (spawn fn y "=>" x ":=" $(2) ;

spawn fn y "=>" x ":=" $(3))

end) =>! C:Conf .)

Maude MSOS Tool – p. 23/43

MSOS-SL: concurrency example

Solution 1

C:Conf <- < cml(proc(pide(0),pide(2)) ||

proc(pide(1),empty-tuple)||

proc(pide(2),empty-tuple)),

{...(st : <[[loc(1),$(3)]]>)} >

Solution 2

C:Conf <- < cml(proc(pide(0),pide(2))||

proc(pide(1),empty-tuple)||

proc(pide(2),empty-tuple)),

{...(st : <[[loc(1),$(2)]]>)} >

No more solutions.

Maude MSOS Tool – p. 24/43

MSOS-SL: concurrency example

Simulation. Concurrent sending / receiving.

(search exec (let val c "=" channel !()

in (spawn fn x "=>" send !(c, $(10))) ;

spawn fn x "=>" send !(c, $(11))) ;

recv c)

end) =>! C:Conf .)

Maude MSOS Tool – p. 25/43

MSOS-SL: concurrency example

Again, two final outcomes possible.

Solution 1

C:Conf <- < cml(

proc(pide(0),$(10)) ||

proc(pide(1),empty-tuple) ||

proc(pide(2), let ... in send tuple(chn(1),$(11) end),

{...} >

Solution 2

C:Conf <- < cml(

proc(pide(0),$(11)) ||

proc(pide(1),let ... in send tuple(chn(1),$(10)) end)||

proc(pide(2), empty-tuple)),{...} >

Maude MSOS Tool – p. 26/43

Implementing Maude MSOS Tool

Braga and Meseguer created Modular Rewriting Semantics

(MRS), a novel method for the modular specification of

programming language semantics and defined (and proved

correct) a mapping from MSOS to MRS. The work is based on

the joint work of Braga, Haeusler, Meseguer, and Mosses.

The Maude MSOS Tool was implemented based on this

mapping and also by extending Full Maude, a Maude

application that makes heavy use of Maude’s reflective

capabilities to create executable environments for languages,

logics, etc.

Maude MSOS Tool – p. 27/43

Evolution of the language

The development of MSOS-SL coincided with the development

of Mosses’ own MSDF and tool in Prolog. MSDF was

influenced by ASDF, created on colaboration with Jørgen

Iversen.

Our visit to Aarhus focused on the usability of the Maude

MSOS Tool and its MSOS-SL language, based on Mosses’

MSDF experience.

The idea is to bring MSOS-SL closer to the domain of

MSDF/MSOS specifications than the domain of

Maude/algebraic specifications.

Our aim is to use the same language on both the Prolog and

Maude tools.

Maude MSOS Tool – p. 28/43

BNF syntax

Instead of something like:

op local : Dec Exp -> Exp .

we should use, as in MSDF:

Exp ::= local(Dec, Exp) .

More flexible productions are possible:

Exp ::= if Exp then Exp else Exp .

Maude MSOS Tool – p. 29/43

Implicit importation of modules

Exp ::= local(Dec, Exp) .

From that production, we can also assume that the user needs

to access the modules that declare the sets Dec and Exp.

Maude MSOS Tool – p. 30/43

Automatic metavariables and derived types

From the creation of a set, say Exp, we would have any

metavariable implicitly declared that begins with the name of

the set. Example: Exp, Exp’, Exp1, Exp2

This prevents the re-declaration of the same metavariables on

every module that is needed and also make sure that we are

consistent on the use of metavariable names.

Also, we should get derived types: Exp+, Exp*, etc.

Maude MSOS Tool – p. 31/43

Complete example

msos EXP/LOCAL is

Exp ::= local Dec Exp .

Label = {env : Env, ...} .

...

Maude MSOS Tool – p. 32/43

Complete example

...

Dec -{...}-> Dec’

-- ---

(local Dec Exp):Exp -{...}-> local Dec’ Exp .

Env’ := Env / Env0, Exp -{env = Env’, ...}-> Exp’

-- --

(local Env Exp):Exp -{env = Env0, ...}-> local Env Exp’ .

(local Env Value):Exp --> Value .

sosm

Maude MSOS Tool – p. 33/43

Developments and future work

• We are in the process of implementing the new language.

• Huge state space problem, due to small-step semantics.

• Verification problem. In rewriting logic, transitions on the

conditions are “scratch pad” transitions.

• We will investigate if reduction semantics and evaluation

contexts can offer in this respect. Also related is the work

in the conversion of conditional to unconditional rewrite

rules.

Maude MSOS Tool – p. 34/43

Conclusion

• Now, specifications can be written in a language closer to

MSOS than Maude.

• This ease of use is combined with a high-performance

engine (soon a compiler) gives us a efficient executable

environment for languages defined with MSOS.

• Several formal tools available with Maude via the Maude

MSOS Tool

Maude MSOS Tool – p. 35/43

MSOS-SL: concurrency example

Syntax definition

sorts Prog Procs .

op cml_ : Procs -> Prog [ctor] .

op _||_ : Procs Procs -> Procs [ctor comm assoc] .

op proc : PIde Exp -> Procs [ctor] .

ops spawn channel send recv : -> Value [ctor] .

comm and assoc create a multiset of processes.

Label declaration

read-write pides : PIdes .

read-write chans : Channels .

write-only create : Create (nilc, appendc) .

write-only offer : Offers (nilo, appendo) .

Maude MSOS Tool – p. 36/43

MSOS-SL: concurrency example

Creation of processes.

ctr (spawn f) = {(create’ : C), (pides : PDS),

(pides’ : PDS’), IIS} => PI

if PI := newPIde (PDS) /\

PDS’ := addPIde (PDS, PI) /\

C := new-create (proc (PI, (f !()))) .

ctr proc (PI1, E1) ={(create’ : nilc), IS }=>

proc (PI1, E’1) || P

if E1 ={(create’ : C), IS}=> E’1 /\ P := get1 (C) .

Maude MSOS Tool – p. 37/43

MSOS-SL: concurrency example

Interleaving of processes.

ctr P1 || P2 = X => P’1 || P2

if P1 = X => P’1 .

Maude MSOS Tool – p. 38/43

MSOS-SL: concurrency example

Creation of channels.

ctr channel !()

={(chans : chs), (chans’ : chs’), IIS}=> ch

if ch := newChannel (chs) /\

chs’ := addChannel (chs, ch) .

Maude MSOS Tool – p. 39/43

MSOS-SL: concurrency example

Sending/receiving information.

op snd : Channel Value -> Offer [ctor] .

op rcv : Channel -> Offer [ctor] .

ctr send tuple (ch, v) ={(offer’ : O), IIS}=> !()

if O := new-offer (snd (ch, v)) .

ctr recv ch ={(offer’ : O), IIS}=> recv-ph (ch)

if O := new-offer (rcv (ch)) .

Maude MSOS Tool – p. 40/43

MSOS-SL: concurrency example

Sending/receiving information

ctr P1 || P2 ={(offer’ : nilo) , IIS}=>

P’1 || update-recv (P’2, v)

if P1 ={offer’ = O1, IIS}=> P’1 /\

P2 ={offer’ = O2, IIS}=> P’2 /\

o1 := get-offer (O1) /\

o2 := get-offer (O2) /\

agree (o1, o2) /\

v := agree-value (o1, o2) .

Maude MSOS Tool – p. 41/43

MSOS-SL: concurrency example

Filtering unmatched offers.

ctr cml P ={(offer’ : nilo), IS}=> cml P’

if P ={(offer’ : nilo), IS}=> P’ .

Maude MSOS Tool – p. 42/43

From concrete to abstract syntax

Concrete syntax: if then else, let in end, “application of

expressions”

Abstract syntax: cond(), local(), app()

...

eq convert (if E1 then E2 else E3)

= cond (convert (E1), convert (E2), convert (E3)) .

eq convert (let D in E end)

= local (convert (D), convert (E)) .

eq convert (E1 E2)

= app (convert (E1), convert (E2)) .

...

Maude MSOS Tool – p. 43/43

	Acknowledgements
	Outline
	Modularity in SOS (i)
	Modularity in operational semantics (ii)
	Modularity in operational semantics (iii)
	Maude MSOS Tool and MSOS-SL
	Maude and Rewriting Logic (RWL)
	MSOS-SL
	MSOS-SL modules
	MSOS-SL: syntax definition
	MSOS-SL: syntax definition
	MSOS-SL: syntax definition
	MSOS-SL: syntax definition
	MSOS-SL: syntax definition
	MSOS-SL: label declaration
	MSOS-SL: label components
	MSOS-SL: transitions
	MSOS-SL: label expressions
	MSOS-SL: transitions
	MSOS-SL: transitions
	MSOS-SL: transitions
	MSOS-SL: concurrency example
	MSOS-SL: concurrency example
	MSOS-SL: concurrency example
	MSOS-SL: concurrency example
	Implementing Maude MSOS Tool
	Evolution of the language
	BNF syntax
	Implicit importation of modules
	Automatic metavariables and derived types
	Complete example
	Complete example
	Developments and future work
	Conclusion
	MSOS-SL: concurrency example
	MSOS-SL: concurrency example
	MSOS-SL: concurrency example
	MSOS-SL: concurrency example
	MSOS-SL: concurrency example
	MSOS-SL: concurrency example
	MSOS-SL: concurrency example
	From concrete to abstract syntax

