
IWSSIP 2010 - 17th International Conference on Systems, Signals and Image Processing 

15 

 

A novel computational framework for Electrical 

Impedance Tomography 
 

Panos Liatsis and Panagiotis Kantartzis 

School of Engineering and Mathematical Sciences, City University 

London, United Kingdom 

p.liatsis@city.ac.uk 

 

 

 

 

 

 

Abstract—  Electrical Impedance Tomography is an 

emerging imaging modality, where boundary data (e.g. 

surface voltages) are used to image (interior) passive 

electromagnetic properties, i.e., conductivity and 

permittivity, of a body. In view of modern literature, 

EIT is classified as a promising portable, inextensive, 

and fast means of functional imaging. In this research, 

we propose a new framework based on B-Splines for 

the discretisations of the forward problem in EIT, due to 

their attracting features and inherent polynomial 

simplicity. The associated challenge however, is that B-

Splines can be defined in polygonal domains at most, 

limiting their applicability. In order to overcome this 

issue, we investigate the use of Domain Embedding 

Methods suitably configured to result in a mesh-free 

formulation. This is of crucial importance to EIT as it 

overcomes the tedious and time consuming re-meshing 

procedure. 

 
Keywords-Electrical Impedance Tomography,B-splines, 

domain embedding methods. 

I.  INTRODUCTION 

EIT along with Electrical Capacitance Tomography 
(ECT), Magnetic Induction Tomography (MIT) and 
Magnetic Permeability Tomography (MPT) form a 
family of non-invasive and non-intrusive soft-field 
electromagnetic (ET) imaging techniques (see [6], [5] 
and references therein for a comprehesive review). 
Conceptually, the same, low frequency, biologically 
safe, operational strategy, is applied in order to generate 
an image; a known stimulation is applied to the 
boundary of the body and the developed (surface) fields 
are recorded, serving as the observable input to extract 
the unobservable distribution x. 

 

What differs between the methods however, is the 
individual source of excitation on the boundary and the 
type of information x one may recover from each 
modality. For instance, in EIT a sequence of alternating 
current patterns i:=Y (typically below 100KHz) is 
applied through some electrodes to the surface of the 
body and sets of the de-veloped boundary potentials 
u:=U are recorded in some others. 

 

On the other hand, since the applied excitation 
patterns are of low frequency and amplitude, the 
resulting fields are expected to hold weak values, which 
does not necessarily pose a problem in a simulation 
environment. Under a realistic data collection protocol 
however, measurements are highly contaminated with 
noise originating from different sources, in contrast to 
the well-known case of X-ray Computed Tomography 
(CT) applications belonging to the class of ‘Hard-Field’ 
imaging. 

 

In CT, an ionising beam is used as the excitation 
pattern. Due to the high operating frequency (10

15
 10

18
 

Hz), the driving beam sinks in and out of the body with 
very little attenuation paving the way for high Signal-to-
Noise-Ratio (SNR) observations independent from 
(internal) body variations, obviously, at the cost of the 
(long-term) harmful side-effects of the method. In 
contrast, the non-ionizing, ‘non-invasive’ nature of low-
frequency driving patterns used in EIT cannot be 
confined to a plane and thus ‘diffused’ excitations are 
applied resulting, in turn, to weaker boundary fields. 

 

That said, an internal variation (perturbation) either 
close or far away from the measurement pair can indeed 
affect not only the near-by data acquisition process but in 
fact all readings. In effect, given the ‘diffusion’ in 
measurements, one shall seek for changes off-the-
driving-plane, a claim implying more indicative readings 
and reconstructions under 3D models and 3D 
measurement protocols. Therefore, an accurate 
geometric model is of paramount importance for EIT. In 
fact, model misfits are known to generate significant 
artefacts in the reconstructed images. 

 

The simplicity of FEM, for the solution of the 
forward problem modelling arising from non-standard, 
complex geometries, coupled with some additional 
desired numerical features e.g., sparsity, can hardly be 
beaten in moderate imaging systems. The main 
drawback of FEM however, is the laborious and time-
consuming (re-)meshing procedure which poses a 
fundamental problem when it comes to large scale and 
evolving domains. The key contribution of this research 
is the derivation of a mesh-free alternative framework to 
the conventional FEM forward formulation of EIT, 
which preserves all the desired properties of the FEM 
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approach, as for instance sparsity, whilst offering some 
additional advantages e.g. a mesh-free paradigm. 

 

In the next section, we give a quick overview of the 
imaging principles of EIT. This is followed by the 
crucial forward problem modelling. Next, Domain 
Embedding Methods (DEM) are introduced to 
accommodate (potential) boundary variations and Spline 
basis function discretisation. A mesh free formulation 
can be obtained and condition numbers for the system 
matrix are presented. We conclude this study by 
addressing the condition number results and by 
discussing future work. 

II. BACKGROUND 

In an abstract soft-field imaging framework, given 
the assumed electromagnetic stimulations (e.g., current), 
a known initial distribution x (e.g., conductivity), interior 
fields (e.g., potentials) and surface measurements y (e.g., 
voltages), the image formation process can be 
summarized by means of a non-linear operator 

yx =Λ )(   (1) 

where Λ:X→Y and X, Y are some Hilbert spaces. A 

‘forward problem’ can be stated as given x∈X is 

determine y∈Y. In a reverse manner, one may define an 

‘inverse problem’ in which x∈X is inferred from 

knowledge of  y∈Y. Of particular importance is the 
determination of x when only partial knowledge of the 
full database y is accessible as there is no immediate 
promise about successful recover (see [3] for more 
sophisticated reconstructions). 

Assuming that Λ is continuously differentiable, the 

simplest possible approach in order to extract x from Λ is 

to linearise Λ around a known point x0 and to ignore 
higher order terms, effectively resulting to the familiar 
formula 

yxx δδ =Λ )( 0

)1(
  (2) 

where 

0xxx −=δ    (3) 

and 

)(:, 000 xyyyy Λ=−=δ  (4) 

and Λ(1)
(x0) is the first-order derivative of Λ 

evaluated at x0. 

Although this is hardly the case, assuming for 

convenience that Λ(x0) is invertible (in the truncated 
Singular Value Decomposition sense), the simplest 
possible inverse imaging problem can be derived as 

( ) yxx δδ
1

0

)1( )(
−

Λ=   (5) 

In this respect, in order to image a body under an 
inverse problem formulation, that is to recover x from y, 
a simple multiplication of the inverse (linearised) 
forward operator with a set of measurements y suffices to 

estimate the unknown distribution x. As such the core of 
the EIT imaging problem boils down to a ‘precise 
forward operator’ and eventually forward modelling. 

III. MODELLING: THE FORWARD EIT PROBLEM 

Without loss of generality, assume a bounded 

domain Ω ⊂ Π ⊂ R
2
  where L electrodes are attached on 

its Lipschitz boundary surface ∂Ω [7]. Γ ⊂ ∂Ω denotes 
the union of areas under each electrode, assumed to be 
open connected subsets 

U
L

l

l

1=

Γ=Γ   (6) 

whose closures are disjoint, 

0
1

I
L

l

l

=

=Γ   (7) 

And Θ := ∂Ω \Γ is the union of the remaining areas. 

Assuming low-frequency stimulations patterns, 
Maxwell’s equations can be simplified to a generalised 
Laplacian of the form 

0)( =∇⋅∇ uσ   (8) 

Boundary conditions on Γ are defined as 

Γ=⋅∇ onivuσ   (9) 

lll onUvuzu Γ=⋅∇+ σ  (10) 

where σ, u, Ul, v, I, zl are the admittivity, interior 
potential distribution, surface potential on the l-th 
electrode, the outward unit normal vector, current 
density and surface impedance, respectively. Note that 
on the inter-electrode gaps we assume no flux 

Θ=⋅∇ onvu 0σ   (11) 

Multiplying (8) with a test function ω  and 

integrating over the Ω  (along with the application of 
vector identities and the divergence theorem) yields 

∫∫
Ω∂Ω

Γ⋅∇=Ω∇⋅∇ dvudu ωσωσ  (12)  

Plugging in boundary conditions (1) and (11) in (12) 
yields 

∑ ∫∑ ∫∫
= Γ= ΓΩ

Γ−Γ=Ω∇⋅∇
L

l

l

l

ll

L

l l

du
z

dU
z

du
11

11
ωωωσ

     (13) 

On the other hand, the boundary conditions for the 
current density (9) require that 

∫ ∫
Γ Γ

Γ=Γ⋅∇ jdvduσ  (14) 

Or electrode-wise using (10) 



IWSSIP 2010 - 17th International Conference on Systems, Signals and Image Processing 

17 

 

∫
Γ

=Γ−
l

ll

l

YduU
z

)(
1

 (15) 

Now considering the sesquilinear form [7] 

l

L

l

ll

l

dWV
z

dWVa

l

Γ−−+

Ω∇⋅∇=

∑∫

∫

= Γ

Ω

Ω

1

))((
1

:)),(),,((

ωυ

ωυσωυ

(16)  

As such, the weak formulation of the EIT problem 

on the original domain Ω can be stated as follows: 
Given the stimulation patterns (right hand sides) Y=(Y1, 

…, YL)
T
 ∈ R

L
, with YL denoting the current applied to the 

l-th electrode, fund (u, U) ∈ 
1

ΩH such that 

∑
=

Ω∈=
L

l

ll HVallforVYVUua
1

1),(,)),(),,(( υυ

     (17) 

where 
LCHH ⊕Ω=Ω )(11

is the associated 

Sobolev space and )'( 1

ΩH  denotes its dual. 

Equation (17) is known to satisfy existence and 

uniqueness requirements as long as ∑ =
l lU 0 and 

∑ =
l lY 0 . 

 

IV. FICTITIOUS DOMAIN Π 

A desired feature in many FEM oriented numerical 
schemes is to bypass the meshing process and come up 
with a mesh-free formulation. A typical example is the 
Finite Difference Method (FDM), where uniform grid 
discretisation is applied. Practically, however, FDM is 
limited to very simple rectangular domains, far from the 
ones encountered in EIT. 

Alternatively, one may derive appropriate forms to 
map the original domain to a more numerically 
appealing one. Such formulations appear to tick the 
above requirements, apart from accommodating evolving 
boundaries, which is, for instance, appropriate in the case 
of continuous patient monitoring. 

In this research, we opt for a mathematically 
challenging methodology, however, capable of fulfilling 
the problem specifications, by means of Domain 

Embedding Methods: the original domain Ω is extended 
to a larger one, yet of a simpler shape, in such a way that 
antipated perturbations of the evolving boundary surface 
can still be registered in the new ‘fictitious’ domain 

denoted as Π [4]. In view of the use of Spline functions 
and mesh-free methods, an appropriate methodology is 

to opt for a suitable square domain for Π (as in the case 
of Finite Differences). 

A. Mathematical equivalence 

The crucial part of this work is to ensure that the 

solutions for Π and Ω are equivalent. Taking suitable 

extensions for all functions from Ω to Π, the sesquilinear 

form in Π, denoted as aΠ(⋅,⋅) is defined as 

∑∫

∫

= Γ

Π

Π

Γ−−+

Π∇⋅∇=

L

l

lll

l
l

dWV
z

dWVa

1

))((
1

:)),(),,((

ωυ

ωυσωυ

(18) 

By comparing (16) and (18), it may appear that the 
sesquilinear forms are equivalent. However, this is not 
the case. The theoretical pitfall here originates from the 

fact that in the (inter-electrode gaps Θ), the flux 

condition (11) in the original domain Ω is implicitly 

encapsulated in aΩ (but vanishes). The same condition is 

not fulfilled by aΠ. In other words, there is no restriction 
about the flux of the potentials in the new fictitious 

domain Π. 

In mathematical terminology, the natural boundary 

conditions on Ω translate to an essential boundary 

condition in Π. Such a claim entails that if equivalence 
between the two domains is desired, one needs to 

explicitly enforce the flux condition in the gaps Θ 
between the electrodes. 

B. Enforcing zero flux on the interelectrode gaps 

We opt for the Langrange multiplier technique to 
enforce the essential boundary condition in the fictitious 

domain Π  by setting the appropriate functional 

)},(

)),(),,((
2

1
{supinf

1

))'((),( 2/1
1

qbVY

VVa

L

l

ll

HqHV

υ

υυ
υ

+−∑
=

Π
Θ∈∈ Π

(19) 

where 

∫
Θ

⋅∇= vdsqqb υσυ :),(   (20) 

Consider now the standard first order optimality 
conditions, where the standard saddle point formulation 
can be considered as 

∑
=

Π =+
L

l

llVYpbVUua
1

),()),(),,(( υυ     (21) 

0),( =qub    (22) 

These give rise to an equivalent operator form 
system as 














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
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


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p
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B
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where A: 
1

ΠH → )'( 1

ΠH is a self-adjoint (domain) 

operator and B: )(1 ΠH → ))'(( 2/1 Θ−H is the 

appropriate boundary (trace) operator. Note that we 
denote its adjoint by B’. 

C. Existence and Uniqueness 

For existence and uniqueness, one needs to 
demonstrate continuity and coercivity for the operator A, 
which is trivially known by recalling [7]. However, 
demonstrating that the operator B fullfils the necessary 
inf-sup conditions is mathematically more involved and 
out of the scope of the current contribution. The actual 

proof of existence and uniqueness in domain Π is 
established and will be published in a future 
contribution. 

V. LINEAR B-SPLINE DISCRETISATIONS 

Having derived the DEM formulation for the EIT 
problem in the continuous domain, we now proceed with 

Spline discretisation. In broad terms, Splines ϕ  are Riesz 
polynomial basis functions exhibiting compact support. 
The functions considered in this work are piecewise 
linear hat functions. 

Assuming a finite subspace Sj := S(ϕ) ⊂ L2 the EIT 
functions can be assumed to be linear combinations of 
Spline functions as 

∑ −=
k

jk k
x

cxu )
2

()( ϕ  (24) 

)
2

()( k
x

x
j

−= ϕυ   (25) 

where h = 2
-j
. The sesquilinear form Π can now be 

discretised as 

∑ −−

=

Π

Π

k
jjk k

x
k

x
ca

WUua

))1),
2

((),1),
2

(((

)),(),,((

ϕϕ

ω

 (26) 

The discretisation of b(⋅,⋅) is somewhat more 

involved. Assuming that the complex conductivity σ 

(admittivity) near Π is fixed (e.g., tissue under the skin), 
one obtains 

∫
Θ

⋅∇≈ vdsqqb υυ ),(   (27) 

Assuming traces for the domain functions and 
suitable Spline-boundary functions [2], denoted as 

)
2

(:)( m
x

x
j

−= ϕϕθ , the sesquilinear form b(⋅,⋅) can 

be discretised 

))
2

(),
2

((),( m
x

k
x

bqb
jj

−−= ϕϕυ  (28) 

The uniform grid discretisation concept perfectly fits 
the use of Splines. Additional advantages when 
employing these functions is that domain integrals and 

correspondingly, the associated derivatives have fixed, 
non-zero entries, which can be pre-calculated. This 
enables a banded structure for the system matrix as 
opposed to scattered matrix entries in typical FEM 
matrices. Note that the above are independent of the 
linear B-splines chosen here and hold valied for higher-
order B-Splines, if desired. The computation of contour 
intergrals however is more involved, and as in FEM, 
requires a mapping to a specific interval. 

A. Domain Discretisation 

For functions defined in the domain Π, discretisation 
can be performed in a rather trivial way due to the square 
(fictitious) domain, allowing for uniform grid 
discretisation (discretisation pitch h). Naturally, we opt 
for a square fictitious domain of unit side for 

computational convenience. Next, we register in Π, a 

circular domain (Ω) of radius 1/4, centred at (0.5, 0.5) 
with 4 electrodes attached, holding fixed contact 
impedance values set to z=10 Ohm. 

Note that since the Laplacian operator is singular, 
operator A is anticipated to hold arbitrary high condition 
numbers. In order to address this deficiency, we need to 

include a boundary condition for ∂Π. We will refer to 
these conditions as c0. The simplest setting is to assume 

zero boundary condition on ∂Π. Note that as long as the 

radius of the original domain is not overlapping with ∂Π, 
the approach is valid. The actual determination of the 
optimal distance between the original and the fictitious 
domains is a subject for further study. In practice, 

however, one assumes some distance ε from ∂Π such 

that h>>ε. 

B. Boundary Discretisation 

The discretisation of the boundary contour is a 
delicate issue. Following the dyadic discretisation of the 

domain Π, we opt for a dyadic discretisation ∂Ω by 
splitting the boundary curve into an equivalent number 
of linear elements. Given the c0 boundary conditions, the 
domain functions are equivalently discretised with zero 
boundary conditions. Having said this, for the boundary 

functions ϕθ, there are two options. One could assume 
zero boundary functions or special boundary functions 
with adapted boundary conditions as in [2].  

TABLE I.  CONDITION NUMBERS OF A WITH CO BOUNDARY 

CONDITIONS 

j A 

3 1.76e+001 

4 4.35e+000 

 

TABLE II.  CONDITION NUMBERS OF B WITH CBC AND CO 

BOUNDARY CONDITIONS, ξ=3 

l BBC B0 

01 3.13e+000 2.39e+000 

02 2.71e+000 2.71e+000 

03 3.14e+000 2.39e+000 

04 2.71e+000 2.71e+000 
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VI. NUMERICAL RESULTS 

As iterative solvers are employed in EIT, it is of 
primary interest to report on the associated condition 
numbers. The condition number is determined as the 
ratio of the largest to the smallest singular value and 
practically is of paramount importance for any kind of 
iterative solver; the smaller the condition number, the 
faster the convergence of the iterative scheme. Thus, we 
focus our numerical results in the determination of the 
condition numbers for the various configurations. 

TABLE III.  CONDITION NUMBERS OF B WITH CBC AND CO 

BOUNDARY CONDITIONS, ξ=4 

l BBC B0 

01 1.39e+001 7.28e+000 

02 5.19e+000 5.09e+000 

03 1.43e+001 7.30e+000 

04 5.18e+000 5.08e+000 

 

TABLE IV.  CONDITION NUMBERS OF B WITH CBC AND CO 

BOUNDARY CONDITIONS, ξ=5 

l BBC B0 

01 2.82e+016 1.69e+003 

02 1.42e+016 1.20e+002 

03 2.29e+016 4.10e+003 

04 1.35e+017 1.20e+002 

 

The condition numbers for the discrete counterparts 
of operators A and B, denoted as A and B are computed 
and presented in Tables I-IV. We use an iterative saddle 
point solver (e.g., Uzawa) to calculate A and B. The 
condition numberof matrix A holds a steady growth, 
which is proportional to the discretisation level j. The 
condition number of matrix B appears to be less trivial to 
interpret. This is due to the so called LLB condition 
originating from the inf-sup condition that B must meet 
(see [1], [4]). In simple terms, this accounts to different 

discretisation levels, denoted as ξ, for the spaces 
associated with the functions defined on the boundary, 
rather than the traces of the ones defined on the 
boundary. It turns out that the condition number 

maintains a low value as long as ξ<j. This implies the 

use of a smaller pitch on Π for a finer discretisation on 
the fictitious domain than the one used to discretise the 
boundary contour. In the results presented, the values are 

j=06, ξ=3, 4, 5 for Π and Θ, respectively. 

The simplicity of the proposed formulation can easily 
be ruined if care is not exercised in the numerical 
discretisation. This can lead to misinterpretations of the 
results and numerical instability. Hence, it is crucial to 
study the discretisation effects by means of condition 
numbers. This is in line with the goals of the application 
at hand, i.e., EIT. 

VII. CONCLUSIONS AND FURTHER WORK 

In this research, the forward problem in EIT was 
considered. The main imaging principles were addressed 
and the importance of the forward problem became 
apparent. The weak formulation of the forward problem 
was derived and DEM were considered for EIT. The 
suggested formulation was presented in the continuous 
space and the theoretical equivalence between original 
and fictitious domains was addressed. Discretisation was 
performed by means of linear B-Splines. Increasing 
condition numbers were reported, in line with theoretical 
studies. 

Since splines admit multi-resolution, it would be 
natural to extend this formulation to accommodate 
wavelet functions. Such a study would be rather 
interesting due to the inherent preconditioning properties 
of wavelets. This approach can also be extended to other 
imaging modalities. 
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