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Abstract—Most of existing techniques to estimate camera
motion is based on analysis of the optical flow. However, such
methods can be inaccurate and/or inefficiently when applied in
video sequences which have a large amount of motion or a large
number of scene changes. In this paper, we present an approach
to estimate camera motion based on analysis of local invariant
features. Such features are robust across a substantial range of
affine distortion. Experiments on synthesized video clips with
a fully controlled environment show that our technique is more
effective than the optical flow-based approaches for estimating
camera motion with a large amount of scene motion.
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I. I NTRODUCTION

The estimation of camera motion is one of the most im-
portant aspects for video processing, analysis, indexing, and
retrieval. Most of existing techniques to estimate camera motion
is based on analysis of the optical flow [1]–[6]. However, such
methods can be inaccurate and/or inefficiently when applied in
video sequences which have a large amount of motion or a large
number of scene changes [7], [8].

To address this problem, we present an approach for the
estimation of camera motion with a large amount of scene mo-
tion. Our technique relies on analysis of local invariant features
obtained from extrema in the scale space rather than on analysis
of the optical flow. Such features are robust across a substantial
range of affine distortion.

In order to validate our approach, we use synthetic videos
sequences based on POV-Ray scenes including all kinds of
camera motion and many of their possible combinations. The
main advantage of such a synthetic test set is that the camera
motion parameters can be fully controlled. Further, we have
conducted several experiments to show that our technique is
more effective than the optical flow-based ones for estimating
camera motion with a large amount of scene motion.

The remainder of the paper is organized as follows. Sec-
tion II presents our approach for the estimation of camera
motion. The experimental settings and results are discussed in
Section III. Finally, Section IV presents conclusions and direc-
tions for future work.
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II. OUR APPROACH

In presence of a substantial range of affine distortion, the
methods for estimating camera motion by analysis of the optical
flow can fail [3]. To address this problem, we present an ap-
proach for the estimation of camera motion based on the analysis
of the local invariant features. It consists of three main steps:
(1) feature matching; (2) motion model fitting; and (3) robust
estimation of the camera parameters.

A. Feature Matching

The first step for estimating camera motion in video se-
quences is to extract and match features between consecutive
frames. Here, we use a framework to detect and describe local
invariant features in images, calledScale Invariant Features
Transform(SIFT) [9]. This approach is composed by four major
stages: (1) scale-space peak selection; (2) keypoint localization;
(3) orientation assignment; and (4) keypoint description.

The scale-invariant features are efficiently identified by us-
ing a staged filtering approach. The first stage identifies key
locations in scale space by looking for locations that are max-
ima or minima of a difference-of-Gaussian function. Next, for
each candidate keypoint, interpolation of nearby data is used
to accurately determine its position. Moreover, this information
allows to reject candidate keypoints that have low contrast or are
poorly localized along an edge. Thereafter, it identifies the dom-
inant orientations for each keypoint using local image gradient
directions. Finally, the method builds a local descriptor for each
keypoint based on the image gradients in its local neighborhood.
To match keypoints from two images, we use the Euclidean
distance between the local descriptors. To ensure correct match,
the ratio of the distance for the best match and the second best
match must be less than 0.6 [9].

B. Motion Model Fitting

A camera projects a 3D world point into a 2D image point.
The motion of the camera may be limited to a single motion such
as rotation, translation, or zoom, or some combination of these
three motions. Such camera motion can be well categorized by
few parameters.

In our case, we use a two-dimensional affine model to
estimate a parametric form for describing the displacement
of the video frame content from the correspondence between
local invariant features. The affine model was employed in the
following considerations. First, the affine model is more resilient
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to noisy data. In addition, it can represent all of the basic camera
motions often used in video indexing.

If we denote the position in the first image by(x, y) and the
corresponding position in the second image by(x̂, ŷ), we can
formulate the two-dimensional affine motion model as
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where{aik}, tx, andty are the motion parameters.

The parameter-estimation problem consists in finding a good
estimate of the six parameters ({aik}, tx, ty) based on a set of
measured point correspondences. We denote a set of points in
the first image as{(xi, yi)} and their corresponding points in
the second image as{(x̂i, ŷi)}. Since the point measurements
are not exact, we cannot assume that they will all fit perfectly to
the motion model. Hence, the best solution is to compute a least-
squares fit to the data. We consequently define the model errorE

as the sum of squared distances between the measured positions
(x̂i, ŷi) and the positions obtained from the motion model:

E =
∑

i

((a00xi+a01yi+tx)−x̂i)
2+((a10xi+a11yi+ty)−ŷi)

2.

(1)

To minimize the model errorE, we can take its partial
derivatives with respect to the model parameters ({aik}, tx, ty)
and set them to zero. This gives two independent equation
systems

H X = X̂, H Y = Ŷ , (2)
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The first equation system determines the parameters for
the horizontal motion component (a00, a01, tx), while the sec-
ond one determines parameters for the vertical component
(a10, a11, ty).

Finally, we can express the estimated parameters in another
form more directly related to the physically meaningful camera
motion, as follows:

pan = tx, div =
1

2
(a00 + a11),

tilt = ty, rot =
1

2
(a10 − a01),

where the termspan, tilt, div, androt represent the motion in-
duced by the camera operations of panning (or tracking), tilting
(or booming), zooming (or dollying), and rolling, respectively.

C. Robust Estimation of the Camera Parameters

The direct least-squares approach for parameter estimation
works well for a small number of outliers that do not deviate
too much from the correct motion. However, the result is sig-
nificantly distorted when the number of outliers is larger, or the

motion is very different from the correct camera motion. Espe-
cially if the video sequence shows independent object motions,
a least-squares fit to the complete data would try to include all
visible object motions into a single motion model.

To reduce the influence of outliers, we apply a well-known
robust estimation technique called RANSAC (RANdom SAmple
Consensus) [10]. The idea is to repeatedly guess a set of model
parameters using small subsets of data that are drawn randomly
from the input. The hope is to draw a subset with samples that
are part of the same motion model. After each subset draw, the
motion parameters for this subset are determined and the amount
of input data that is consistent with these parameters is counted.
The set of model parameters with the largest support of input
data is considered the most dominant motion model visible in
the image.

III. E XPERIMENTS AND RESULTS

In order to evaluate our approach, we create a synthetic
test set with four MPEG-4 video clips1 (640 × 480 pixels of
resolution) based on well textured POV-Ray scenes of a realistic
office model (Fig. 1), including all kinds of camera motion and
many of their possible combinations. The main advantage is that
the camera motion parameters can be fully controlled which
allows us to verify the estimation quality in a reliable way.

The first step for creating the synthetic videos is to define the
camera’s position and orientation in relation to the scene. The
world-to-camera mapping is a rigid transformation that takes
scene coordinatespw = (xw, yw, zw) of a point to its camera
coordinatespc = (xc, yc, zc). This mapping is given by [11]

pc = Rpw + T, (3)

whereR is a3 × 3 rotation matrix which defines the camera’s
orientation, andT defines the camera’s position.

The rotation matrixR is formed by a composition of three
special orthogonal matrices (known asrotation matrices)

Rx =

[

cos(α) 0 − sin(α)
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,
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,

whereα, β, γ are the angles of the rotations.

We consider the motion of a continuously moving camera as
a trajectory where the matricesR andT change according to the
time t, in homogeneous representation,

[
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]
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1

]

. (4)

Thus, to perform camera motions such as tilting (gradual
changes inRx), panning (gradual changes inRy), rolling (grad-
ual changes inRz), and zooming (gradual changes in focal dis-
tancef ), we define a functionF (t) which returns the parameters

1All video clips and ground truth data of our synthetic test set are
available at http://www.liv.ic.unicamp.br/∼minetto/videos/.
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(a) (b) (c)

Fig. 1. The POV-Ray scenes of a realistic office model used in our synthetic test set.

(α, β, γ, andf ) used to move the camera at the timet. We use a
smooth and cyclical function

F (t) = M∗
1 − cos(2πt/T )(0.5 − t/T )

0.263
, (5)

whereM is the maximum motion factor andT is the duration of
camera motion in units of time. We create all video clips using
the maximum motion factorM equals to3o for tilting (α), 8o

for panning (β), 90o for rolling (γ), and1.5 for zooming (f ).

Fig. 2 shows the main characteristics of each resulting video
sequence (Mi). The terms P, T, R, and Z stand for the motion
induced by the camera operations of panning, tilting, zooming,
and rolling, respectively. Videos M3 and M4 have combinations
of two or three types of camera motions. In order to represent a
more realistic scenario, we modify videos M2 and M4 to have
occlusions due to object motion.

Furthermore, we change the artificial illumination of lamps
and the reflection of the sunrays in some parts of the scene
according to the camera motion. In addition, all the objects
present in the scene have complex textures, which are very
similar to the real ones.

Moreover, we are very severe in the intensity of the camera
movements. Fast camera motions and combinations of several
types of motion at the same time are rare to occur. Our goal
in these cases is to measure the response of our algorithm in
adverse conditions, and not only with simple camera operations.

We assess the effectiveness of the proposed method using the
well-known Zero-mean Normalized Cross Correlation (ZNCC)
metric [14], defined by

ZNCC(F ,G) =

∑

t
((F(t) − F̄) × (G(t) − Ḡ))

√
∑

t
(F(t) − F̄)2 ×

∑

t
(F(t) − Ḡ)2

(6)

where F(t) and G(t) are the estimate and the real camera
parameters, respectively, at the timet. It returns a real value
between−1 and+1. A value equals to+1 indicates a perfect
estimation; and−1, an inverse estimation.

We compare our approach with the techniques proposed by
Kim et al. [12] and Minetto et al. [3]. The former estimates
camera motion by using a least-squares fit to the motion vectors
extrated from MPEG stream. The latter uses a weighted least-
squares fit to the optical flow computed by using the well-known
Kanade-Lucas-Tomasi (KLT) algorithm [13].

The purpose of our experiments is to evaluate the effective-
ness of different approaches in estimating camera motion on a
substantial range of affine distortion. We can vary the amount
of scene motion by using a sampling rate. Thus, we estimate
camera motion between temporally sparse frames.

Fig. 3 shows the effectiveness achieved by all approaches
in varying the amount of scene motion by a proportion of the
maximum motion factorM. Table I presents the average time
spent to estimate camera motion between two video frames. We
performed all experiments on Intel Core 2 Quad Q6600 (four
cores running at 2.4 GHz), 2GB memory DDR3.

Table I
AVERAGE TIME SPENT TO ESTIMATE CAMERA MOTION BETWEEN

TWO VIDEO FRAMES.

Method Our Approach Minetto et al. Kim et al.
Time (s) 0.234 0.423 0.006

In fact, the use of local invariant features for estimating
camera motion with a substantial range of affine distortion is
more effective than the optical flow-based approaches. More-
over, our approach is almost two times faster than the KLT-
based method [3] to estimate camera motion between two video
frames.

Despite of the high computational efficiency presented by
techniques based on MPEG motion vectors, they support only
a very small amount of scene motion. In addition, they cannot
be applied on all video formats neither for estimating camera
motion in real-time applications. In order to show that our
technique is suitable for real-time applications, we implement
a video player able to characterize different types of camera
motions at playing time2.

IV. CONCLUSIONS

In this paper, we have presented an approach to estimate
camera motion based on analysis of local invariant features.
Such features are robust across a substantial range of affine
distortion.

We have provided several experiments showing that our
technique is more effective than two baselines (one based on
the KLT algorithm [3] and other based on MPEG motion vec-
tors [12]) for estimating camera motion with a large amount of
scene motion.

Future work includes the evaluation of other interest point
detectors, motion models, and robust estimation techniques. In
addition, we want to investigate the effects of embedding the
proposed method into video recording devices for real-time
applications.

2The compiled binaries for Linux on Intel compatible processors are
available at http://www.liv.ic.unicamp.br/∼jurandy/pub/mcplayer.tar.gz.
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Fig. 2. The main characteristics of each video sequence (Mi) in our synthetic test set.
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(a) Video sequence M1.
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(b) Video sequence M2.
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(c) Video sequence M3.
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(d) Video sequence M4.

Fig. 3. Effectiveness achieved by all approaches in varyingthe amount of scene motion.
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