
IWSSIP 2010 - 17th International Conference on Systems, Signals and Image Processing

Node Level Primitives for Exact Inference using
GPGPU

Hyeran Jeon, Yinglong Xia, Viktor K. Prasanna
University of Southern California, Los Angeles, CA 90089

Email: {hyeranje, yinglonx, prasanna}@usc.edu

Abstract—Exact inference is a key problem in exploring prob-
abilistic graphical models in a variety of multimedia applications.
In performing exact inference, a series of computations known
as node level primitives are performed between the potential
tables in cliques and separators of a given junction tree. The
computation complexity increases dramatically with the clique
width and the number of states of random variables. In this
paper, we propose a conflict-free data layout for potential tables
on GPU. We map the algorithms for the primitives to the
GPU architecture based on the proposed data layout. Several
optimization techniques are presented to improve the perfor-
mance. We implemented the proposed method on NVIDIA Tesla
C870. Experimental results exhibit scalability over a wide range
and show superior performance compared with state-of-the-art
multicore CPUs such as Intel Xeon and AMD Opteron.

Keywords-Node level primitives,GPGPU,Exact inference

I. INTRODUCTION

A full joint probability distribution for any real-world sys-
tem can be used for inference. However, such a distribution
increases dramatically with the number of variables used
to model the system. It is known that independence and
conditional independence relationships can greatly reduce the
size of the joint probability distributions. This property is
utilized by Bayesian networks [1]. Bayesian networks have
been widely used in multimedia applications especially in
speech recognition [2][3][4].

Given updated distribution of a set of variables in the
Bayesian network, exact inference is the computation of updat-
ing all the remaining variables in the network. Exact inference
is NP hard [5]. The most popular exact inference algorithm,
proposed in [1], converts a Bayesian network into a junction
tree, and then performs a series of computations, known as
node level primitives, in the junction tree. The complexity
of the primitives increases dramatically with the number of
variables of the cliques, the number of states of the random
variables in the cliques, and the number of children of each
clique. In many cases exact inference must be performed in
real time.

General-Purpose computation on Graphics Processing Units
(GPGPU) is a promising computing method using GPU’s high
performance parallel computing power to accelerate a wide
range of applications [6]. Compared with other existing mul-
ticore processors, GPU provides significantly more processing

This research was partially supported by the National Science Foundation
under grant number CNS-0613376. NSF equipment grant CNS-0454407 is
gratefully acknowledged.

units and achieves higher throughput. However, due to its
distinctive architecture, it remains a fundamental challenge in
parallel computing to efficiently map algorithms onto GPU.

Our contributions in this paper include: (1) Mapping node
level primitives onto GPU architecture using CUDA, (2)
Design of optimization techniques, (3) Implementing the node
level primitives and experimentally evaluating them on a state-
of-the-art GPGPU platform.

The paper is organized as follows: Section II discusses the
background of exact inference and GPGPU. We propose node
level primitives and optimizations on GPU in Section III and
show experimental results in Section IV. We conclude the
paper in Section V.

II. BACKGROUND

A. Node Level Primitives
As discussed in Section I, the most popular exact inference

algorithm converts Bayesian network into a junction tree. A
junction tree is defined as J = (T, P̂), where T represents a
tree and P̂ denotes the parameter of the tree. Each vertex Ci,
known as a clique of J, is a set of random variables. Assuming
Ci and Cj are adjacent, the separator between them is defined
as Ci ∩ Cj . P̂ is a set of potential tables(POT). The POT of
Ci, denoted ψCi , can be viewed as the joint distribution of the
random variables in Ci. For a clique with w variables, each
having r states, the number of entries in Ci is rw.

Exact inference in a junction tree requires propagating
evidence at an arbitrary clique to all the other cliques. Math-
ematically, evidence propagation can be represented as [1]:

ψ∗S =
∑
Y\S

ψ∗Y , ψ∗X = ψX
ψ∗S
ψS

(1)

where S is a separator between cliques X and Y; ψS (ψ∗S)
denotes the original (updated) POT of S; ψ∗X is the updated
POT of CX .

Equation 1 implies three types of node level primitives:
Multiplication(i.e. ψX

ψ∗S
ψS

in Eq 1) and Division(i.e. ψ∗S
ψS

in
Eq 1) between two POTs and Marginalization(i.e.

∑
Y\S ψ

∗
Y

in Eq 1) that obtain the POT for separators using a clique
POT [7]. The details are discussed in Section III.

B. GPGPU
Tera Flop/s of peak performance of recent GPUs and

GPGPU infrastructures supported by GPU vendors to uti-
lize GPUs as general purpose computing architectures makes

1

IWSSIP 2010 - 17th International Conference on Systems, Signals and Image Processing

GPUs to be one of the most promising high performance
architectures. NVIDIA Tesla architecture and CUDA pro-
gramming model [8], the representative GPGPU programming
environment, have been stimulating various studies of parallel
processing. Tesla consists of a scalable number of streaming
multiprocessors(SMs), each comprising of eight streaming
processor(SP) cores and 16 KB shared memory. In C870, one
of the latest models of Tesla, up to 768 hardware threads are
supported by each SM and 12288 threads can be supported
as a whole. A bunch of threads(32 in C870), named warp is
scheduled concurrently. This massive thread level parallelism
achieves 512 GFlop/s, which is much higher peak performance
than that of any other multicore CPU [9]. Tesla, which is
an accelerator cooperate with Host CPU, provides a large,
but slow off-chip global memory that can be accessed by
all GPU thread blocks and Host CPU, while providing small
but fast on-chip shared memories that are individually shared
among threads in the same thread block. During the past few
years, matrix computations on GPU have been studied. For
example, Sengupta et.al. [10] proposed segmentation tech-
nique to fit scan primitive into GPU architecture. Williams
et.al. [11] showed several optimization techniques such as
thread mapping and data reuse to reduce memory access
latency and minimize global memory access for sparse matrix-
vector multiplication on GPU. However, to the best of our
knowledge, there have not been any studies on exact inference
using GPGPU.

III. NODE LEVEL PRIMITIVES USING GPGPU

A. Table Multiplication and Table Division

In exact inference, Table Multiplication occurs between a
clique POT and its separators. For each entry in a separator,
Table Multiplication multiplies the data in the entry with data
in another entry of the clique POT, where the random variables
shared by the separator and the clique have identical states.

Table Multiplication requires the identification of the rela-
tionship between entries in the separator and those in the clique
POT [7]. We resolve this issue by using mapping vectors. A
mapping vector has as many entries as the number of variables
of the corresponding separator and indicates each variable’s
index in the clique POT. For each entry of a separator POT,
we can find the associated entries in the clique POT using
mapping vector in O(Ws) time, where Ws is the number
of variables in a separator POT. The computation of Table
Multiplication itself can be executed in O(dc×|ψC|×Ws

#hardware threads)
time, where dc is the number of children of a clique and |ψC |
is the size of clique POT.

However, if the code is composed of a loop which deals
with one child’s separator table in each iteration, the control
branch overhead at every iteration will significantly impact the
execution time. To reduce this overhead, we unrolled the loop
by the number of children of a node. Detailed explanation is
in Section III-D2.

Table Division occurs between two separator POTs which
always have the same size. In this case, the implementation

is straightforward if we use as many threads as the sepa-
rator POT size. By letting each of the threads divide one
entry of a separator POT by the corresponding entry of the
other separator POT, Table Division can be performed in
O(|ψS |

#hardware threads) time.

B. Table Marginalization
Table Marginalization is used to obtain separator POTs

from a given clique POT [7]. In Marginalization, we resolve
index calculation by using the same technique in the Table
Multiplication.

The clique POTs are typically much larger than separator
POTs as discussed in the previous section. Hence, the mapping
vector maps multiple entries in the clique POT to a single entry
in the separator POT. If as many threads as the clique POT
size are used for Marginalization like the other primitives,
write conflict would occur. Since CUDA does not support
synchronization APIs except a barrier, syncthread(), the only
way to solve the write conflict issue is to use as many threads
as the separator POT size.

To offset the limited degree of parallelism, we let Marginal-
ization between a clique and all its children be executed
concurrently, by assigning as many threads as the sum of all
children separators POT. Furthermore, by using the proposed
mapping vector, we only need to use |ψC|

|ψS | entries of the
clique POT to update an entry of a separator POT in Table
Marginalization. Consequently, Marginalization for a clique

can be performed in O(
dc×

|ψC|
|ψS|

MIN(dc×|ψS |,#hardware threads)) time.

C. Computation kernels of exact inference
For each clique in a junction tree, we will execute node

level primitives in certain order: 1) marginalizing the clique
POT using the given separator POT, 2) dividing the separator
POT by the marginalized clique POT, and 3) multiplying the
result of the division with the original clique POT. We call this
composition of primitives as computation kernel [12]. During
the execution of a computation kernel at a node, the results of
primitive computation do not have to be moved to Host CPU
because they are used by the following primitives.

D. Optimization techniques
1) Conflict-free POT organization: All table computations

are assumed to be done by using shared memories. Since a
shared memory consists of 16 banks, bank conflict occurs
whenever more than two threads in the same warp try to
access the same bank. To avoid bank conflicts, we assign
data to threads column-major order. As Figure 1 shows, row-
major data structure brings about bank conflicts unless all
threads in the same warp always access offsets different from
each other’s. The conventional method to resolve the bank
conflict is to use padding [13]. However, as padding insertion
requires complex calculations, we resolved the bank conflict
issue by simply converting each thread’s POT from row-major
to column-major order. As the threads in the same warp never
access the same bank with the column-major POT, the bank
conflict problem can be solved without any further index

2

IWSSIP 2010 - 17th International Conference on Systems, Signals and Image Processing

calculations. We represent all the input data of primitives in
column-major order.

Figure 1. column-major POT vs. row-major POT

Figure 2. Mapping vector and the possible loop unrolling degree

2) Loop unrolling: To account for the limited parallelism
as in Table Marginalization, we use loop unrolling to exploit
additional parallelism. Loop unrolling is applied to the fol-
lowing three cases: 1) when the input data is copied from
global memory to shared memory, 2) when the same table
computation is conducted across the children nodes, and 3)
when multiple adjacent source addresses are mapped to the
same destination address like in Table Marginalization. In case
1), the unrolling depth is limited by the share memory size.
As the thread blocks on the same SM have to share a 16
KB shared memory, each thread can have data array up to

16KB
#thread blocks×#threads in block×float type in byte . We spread
as many data copy operations as each thread’s data array size.
The unrolling depth of case 2) is the number of children of a
clique. In case 3), which is applied to Table Marginalization, if
the least significant variable of a separator is the Nth variable
of the corresponding clique and r is the number of states of
variables, we can unroll at least rN iterations because every
rN entries of the clique POT are mapped to the same element
of the separator POT as shown in Figure 2.

IV. EXPERIMENTS
To evaluate the optimized primitives, NVIDIA Tesla D870

Deskside system was used. D870 has two C870 GPUs. We
used one of them in our experiments. Salient features of C870
is shown in Table I. Clique POTs were created by generating
random numbers. The parameters are shown in Table I. The
thread block size was determined empirically to be 96. The
execution times were measured while increasing the number
of thread blocks having the same size from 1 to 128 to
evaluate scalability. Note that as C870 used in the experiments
comprises of 16 SMs, where each has 768 hardware threads,
128 thread blocks each containing 96 threads achieve the

maximum occupancy [14]. We measured the execution time
for performing the primitive computations on the GPU, so the
time taken for transferring data between CPU and GPU was
not included.

TABLE I
EXPERIMENTAL ENVIRONMENT

NVIDIA Tesla C870
of Processing Cores 128 SPs(16 SMs)
Peak Performance 430 GFlops
Total Dedicated Memory 1.5 GB GDDR3 at 800MHz
Memory Interface 384 bit GDDR3
Memory Bandwidth 76.8 GB/sec peak

PARAMETER SETTINGS
Parameter Default Range Description
Wc 15 15, 20, 25 Width of clique POT
r 2 2, 3 # of states of each variables
Ws 2 1, 2, 4 Width of separator POT
d 2 1, 2, 4 # of children of a clique

A. Performance improvement due to optimizations

Figure 3 shows the effect of the proposed optimization
techniques by comparing performance of three versions of
Table Division: 1) Naive Code which is the baseline code
without any optimizations, 2) code with loop unrolling, and
3) code with loop unrolling and the proposed POT structure.
The execution time improved by upto 88% and further by 18%
when loop unrolling and the conflict-free POT are employed,
respectively.

Figure 3. Performance improvement due to optimizations

B. Scalability of Primitives

Figure 4 shows the scalability of each primitive. As shown
in Figure 4(c) and (d), the execution times were not affected
by the clique degree(the number of children) and the separator
width(the number of variables). This is because the loops
traversing all the children were unrolled in Table Multipli-
cation and Division and, the Table Marginalization for all
children separator POTs were performed concurrently.

In Figure 4(a) and (b), the execution times increased in
proportion to the number of states of variables and clique
width and decreased as the number of thread blocks increases.
The execution times tapered off when the thread block is
greater than 16 due to the limited loop unrolling depth caused
by the lack of shared memory available to each thread block.

3

IWSSIP 2010 - 17th International Conference on Systems, Signals and Image Processing

(a) (b)

(c) (d)
Figure 4. Scalability of Primitives with respect to various parameters: (a) clique width, (b) number of states, (c) separator width, and (d) clique degree

Figure 5. Comparison of execution time for performing a computation kernel
on various platforms

C. Scalability of Computation Kernel
Figure 5 shows the performance comparison among C870

and two state-of-the-art multicore CPUs when a computation
kernel for one clique(Wc=20, Ws=2, r=2, d=4) is executed. A
Quad-Core AMD Opteron 2350 and a Quad-Core Intel Xeon
5335 were used in the experiments. The number of processing
units is the number of hardware cores for Opteron and Xeon
and the number of thread blocks for C870. The massive
thread level parallelism allowed C870 to achieve almost 100×
Speedup.

V. CONCLUSION
In this paper, we examined the performance improvements

for node level primitives for exact inference using GPGPU. We
optimized node level primitives (i.e. Table Multiplication, Di-
vision, and Marginalization) to take advantage of the massive
thread level parallelism that the GPU provides. 88% and 18%
of performance enhancements were achieved by using loop
unrolling and conflict-free POT organization, respectively.
Additionally, we showed that GPGPU outperforms state-of-
the-art multicore CPUs for the computation kernels. Based on
the results of this study, we are planning to explore exact

inference in an entire junction tree using GPGPU using a
scheduler running on the CPU.

REFERENCES

[1] S. L. Lauritzen and D. J. Spiegelhalter, “Local computation with
probabilities and graphical structures and their application to expert
systems,” J. Royal Statistical Society B, vol. 50, pp. 157–224, 1988.

[2] A. V. Nefian, L. Liang, X. Pi, X. Liu, and K. Murphy, “Dynamic
bayesian networks for audio-visual speech recognition,” EURASIP J.
Appl. Signal Process., vol. 2002, no. 1, pp. 1274–1288, 2002.

[3] S. Wachsmuth and G. Sagerer, “Bayesian networks for speech and image
integration,” in Eighteenth national conference on Artificial intelligence.
Menlo Park, CA, USA: American Association for Artificial Intelligence,
2002, pp. 300–306.

[4] L. Xie and H. Yang, “Dynamic bayesian network inversion for robust
speech recognition,” IEICE - Trans. Inf. Syst., vol. E90-D, no. 7, pp.
1117–1120, 2007.

[5] D. Pennock, “Logarithmic time parallel Bayesian inference,” in Pro-
ceedings of the 14th Annual Conference on Uncertainty in Artificial
Intelligence, 1998, pp. 431–438.

[6] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable parallel
programming with CUDA,” Queue, vol. 6, no. 2, pp. 40–53, 2008.

[7] Y. Xia and V. K. Prasanna, “Node level primitives for parallel exact
inference,” in Proceedings of the 19th International Symposium on
Computer Architecture and High Performance Computing, 2007, pp.
221–228.

[8] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym, “Nvidia tesla:
A unified graphics and computing architecture,” IEEE Micro, vol. 28,
no. 2, pp. 39–55, 2008.

[9] “NVIDIA Tesla C870.” [Online]. Available: http://www.nvidia.co.in/
page/tesla gpu processor.html

[10] S. Sengupta, M. Harris, Y. Zhang, and J. D. Owens, “Scan primitives
for gpu computing,” in Graphics Hardware 2007. ACM, August 2007,
pp. 97–106.

[11] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, and J. Demmel,
“Optimization of sparse matrix-vector multiplication on emerging mul-
ticore platforms,” Parallel Comput., vol. 35, no. 3, pp. 178–194, 2009.

[12] Y. Xia and V. K. Prasanna, “Scalable node-level computation kernels
for parallel exact inference,” IEEE Trans. Comput., vol. 59, no. 1, pp.
103–115, 2010.

[13] H. Nguyen, GPU Gems 3. Addison-Wesley Professional, August 2007.
[14] “CUDA programming guide, version2.1.” [Online]. Available: http:

//developer.nvidia.com/object/cuda 2 1 downloads.html

4

