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Abstract— Magnetic resonance imaging (MRI)  may be 
used to measure the volumes of muscle and fat from 
patients. In this paper we develop a method for 
automatic segmentation of adipose and muscular tissue 
in human being body. Due to enhanced MR image 
resolution , our algorithm proves to be more efficient 
than a regular one. Magnetic Resonance Imaging (MRI) 
image reconstruction based on a frequency domain 
Super-Resolution (SR) algorithm, is also presented in 
the paper. It is shown that the approach improves MRI 
spatial resolution in cases when Periodically Rotated 
Overlapping Parallel Lines with Enhanced 
Reconstruction (PROPELLER) sequences are used. The 
PROPELLER MRI method collects data in rectangular 
‘blades’ rotated around the origin of the k-space. Inter-
blade patient motion is the premise for the use of SR 
technique. Images obtained from sets of irregularly 
located frequency domain samples are combined into 
the high resolution MRI image. Our algorithm covers a 
cardiac and respiratory movements. The improvements 
resulted in lower approximation error and higher 
convergence speed.  

Keywords-MRI, MR image automatic segmentation, fat tom 
muscle ratio estimation 

I.  INTRODUCTION 

Magnetic resonance imaging (MRI) is well known as 
a non-invasive method routinely used to produce high-
quality images of the body’s internal tissues. The Motion 
of a subject during the MRI acquisition generates 
artifacts and blurring in the resulting image. The 
PROPELLER technique usually reduces motion artifacts 
in MRI. Algorithms applied by PROPELLER MRI to 
estimate and compensate for rigid-body patient motion 
has been extensively analyzed [19]. MRI technique may 
be utilized to measure the volumes of fat and muscle 
from these patients in order to evaluate therapies to 
reduce fat and increase muscular mass [23]. The high 
spatial resolution and risk-free feature that offers MRI 
compared to other technologies based on ionizing 
radiation are determinant in its daily use. Due to the 
large amount of data a segmentation method that needs 
the minor degree of intervention would be useful. The 

usage of unsupervisioned analysis tool MR images 
resolution is one of the key feature here. Super-
resolution (SR) is a group of methods aimed at obtaining 
high resolution images from sets of low-resolution ones. 
The motion between low-resolution images is the key 
premise here. In case of MRI if the imaging volume is 
acquired two or more times with small spatial shifts 
between acquisitions, a combination of data sets by an 
iterative SR algorithm gives improved resolution and 
better edge definition in the slice-select direction than 
simple low-resolution images averaging. For the first 
time some SR techniques have been applied to MRI in 
[18]. R. Peeters proposed MRI SR algorithm to reduce 
slice thickness in functional MRI [14]. Greenspan et al. 
[13] proposed MRI reconstruction using SR which 
improved spatial resolution in cases when spatially-
selective RF pulses are used for localization. In this 
paper frequency domain SR image reconstruction 
method is used for improving PROPELLER MRI. Low-
resolution images are obtained from frequency-domain 
blades by the conjugate gradient method with non-
uniform FFT (NUFFT) at its core [12]. It is shown that, 
indeed, the new technique enhances the PROPELLER 
MRI images.  The majority of previous SR papers have 
considered only global, relative displacements between 
set of low resolution images. In [8] authors proposed a 
super-resolution method reconstructing tracked objects. 
However, effective tracking is not always possible. In 
this paper we are trying to over-come these limitations. 
We describe a super-resolution method for images 
containing tissues motion. The motion information is 
evaluated by a nested motion trajectories scheme. First 
of all, multiple moving segments are isolated. The 
motion trajectory models may be characterized by 
parametric model, such as affine transformations. In 
other words, such extracted image parts are related by 
coherent relative, global, locally constant parametric 
motion vector. Such approach allowed us to think about 
dynamic scenes as if they were static. Very high 
accuracy parametric motion estimation and simultaneous 
segmentation of the motion field is realized by 3D 
orientation tensors with respect to the affine motion 
model. The introductory processing part to be presented 
consists of: estimation of 3D orientation tensors,  
estimation of motion models parameters, and 
simultaneous segmentation of the motion field, 



 

respectively. The algorithm is a generalized version of 
that of Irani and Peleg’s one. 

II. PROPELLER DATA ACQUIZITION 

The data acquisition procedure for Diffusion Tensor 
Tomography MRI (DTT MR) imaging is based on the 
PROPELLER method proposed in Cheryauka (2004).             
Here, the resulting k-space trajectories are called blades, 
as frequency-domain image is acquired along collections 
of straight lines forming rectangular patterns (“blades”), 
see Figure 1. K-space is covered by rotating those blades 
around the centre of the k-space. The key idea of 
PROPELLER is that the circular region at the centre of 
the k-space is covered by many blades. Due to data 
redundancy, effective information correction can be 
performed to reduce patient motion artifacts and to 
improve the SNR. The PROPELLER technique offers an 
opportunity to choose the diffusion gradient direction 
while acquiring each k-blade. The conventional 
procedure is to acquire a full set of PROPELLER data 
with a fixed direction of the diffusion gradient and to 
reconstruct the corresponding component of the tensor. 

 
Figure 1.  PROPELLER blades, dash lines show a single data blade 

(see online version for colours). 

III.  MRI IMAGE RECONSTRUCTION  

Recently, sampling of MR signals on a rectangular 
regularly sampled grid in k-space has been the most 
popular acquisition method. This regularity was 
motivated by the use of an easy image reconstruction 
technique based on the Fast Fourier Transform. 
Presently, non-uniform sampling patterns of the k-space, 
such as radial, spiral, or PROPELLER, are gaining 
importance in various MRI applications. The image 
reconstruction techniques for arbitrary irregularly 
sampled grids may be divided into two groups. The first 
one, called regridding, consists of computationally 
inexpensive resampling and interpolation of a kernel 
function into a regularly sampled grid. The next group 
employs numerical optimization methods that minimize 
a least-squares cost function. Optimization procedures 
may consider nonuniform coil sensitivity and off-
resonance effects, improve noise suppression, and 
provide a robust solution within a larger parametric 
domain [14]. These methods have proved their 
effectiveness in many clinical applications and imaging 
methods, while non-uniform acquisition schemes show 
their capability to suppress noise and to reduce artifacts 
caused by motion and by eddy currents in functional 
[15], cardiac [19], arterial [17], and spine [21] imaging 
as well as others. In the iterative method of 
reconstructing field-corrected MR images presented in 

the paper we use a min–max criterion to derive the 
temporal interpolator [12]. This interpolator provides 
fast, accurate, field-corrected image reconstruction even 
when the field map is not smooth. There are two major 
steps in most methods for field-corrected MR image 
reconstruction. Firstly, it is necessary to obtain an 
estimate of the field map that deals with the spatial 
distribution of magnetic field inhomogeneities. In this 
paper, field-corrected MR image reconstruction uses the 
field map to form the reconstructed image of the 
transverse magnetization. An accurate, spatially 
undistorted field map is assumed to be available. When 
the field map is obtained, one of methods of field-
corrected image reconstruction, the conjugate phase 
method [12] tries to compensate for the phase accrual 
due to the off-resonance at each time point. Sutton et al. 
[12] focused on field inhomogeneities, one can also 
apply iterative image reconstruction methods to 
compensate for other physical phenomena such as 
deviations in k-space trajectory and relaxation effects. 
The degradation model applied in the paper does not 
require any assumption about its nature, and is therefore 
applicable to intersecting k-space trajectories such as 
PROPELLER’s blades. The major disadvantage of 
iterative reconstruction methods has been their 
computational complexity. Fessler and Sutton [12] 
developed accurate and fast non-uniform fast Fourier 
transform (NUFFT), then, the method has been applied 
to MRI data with spiral k-space trajectories. Namely, the 
MR image reconstruction problem is closely related to 
the problem of reconstructing a band-limited signal from 
nonuniform set of samples in the frequency domain 
space. Strohmer suggested the use of complex 
exponentials for finite-dimensional approximations in 
such problems, and proposed to use an iterative CG 
reconstruction method with the NUFFT approach at its 
core [22]. In the algorithm presented below NUFFT-
“reverse gridding” and conjugate gradient iterative 
scheme were combined. It should be noted, that standard 
NUFFT method by itself does not allow for the 
compensation of field inhomogeneity effects because the 
integral signal equation for MR is not a Fourier 
transform when field inhomogeneities are included. 
Fessler and Sutton [12] inspired by the time-segmented 
conjugate-phase reconstruction approach proposed a fast 
time-segmented forward projector, and its adjoint, that 
accounts for field effects and uses the NUFFT. We 
applied this concept in the PROPELLER blade images 
reconstruction scheme. 

IV.  PARTIAL MRI IMAGE RECONSTRUCTION         

FROM A SINGLE BLADE 

In MRI, ignoring relaxation effects, the z-th blade 
signal equation is given by Sutton et al. [12]: 
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where )(tsz is the complex baseband signal at time t  
during the z -th blade readout, ET is the echo time,  
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rf  is a continuous function of the object’s 
transverse magnetization at location r immediately 
following the spin preparation step,  )(rc is the 
sensitivity map of the receiver coil,  ( )rω is the field 



 

inhomogeneity present at r , and ( )tk  is the k -space 
trajectory. For simplicity we let  

( ) ( ) ( ) ( ) ETrercrfrf ω−= ~
.                       (2) 

After discretization z -th blade signal equation is as 
follows: 
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where ( )( )tkΦ denotes Fourier transform of )(rφ , the 
voxel indicator function [12]. In PROPELLER MRI 
blade measurements are noisy samples of the signal (1): 

iii tsy ε+= )( , Mi ,...,1= ,                   (4) 

where iε denotes noise. Assuming that the dominant 
noise is the white Gaussian, we estimate iy  by 
minimizing the following penalized least-squares cost 
function 
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Computation of Af corresponds to evaluation of (3). 

The ( )fR  is a regularization function, that penalizes 
the roughness of the estimated image. This regularization 
can decrease the condition number of the image 
reconstruction problem and, therefore, speed up the 
convergence. Minimization of cost function is realized 
iteratively by the conjugate gradient algorithm [12].                                        

As PROPELLER trajectories in k -space are not 
Cartesian grids, multiplication by the matrix A  is the 
most computationally demanding operation of the 
conjugate gradient algorithm. Nevertheless, a NUFFT 
can be used for this purpose to rapidly and accurately 
evaluate the discrete signal (3). However, the NUFFT 
method is not directly applicable when the field 
inhomogeneity is included because (1) is then not a 
Fourier transform integral. 

V. MR BLADE BASED SEQUNCE PARTITIONING 

Being accurate and powerful, the iterative 
backprojection SR algorithm [1] have some drawbacks, 
e.g. only globally static scenes may be processed. Then, 
if we want to apply the IBP scheme directly, images or 
video frames should be segmented into areas with 
uniform motion.  We have devised such segmentation 
scheme for coherent tissues motion areas [4], see Figure 
2. 

Simultaneous segmentation and velocity estimation 
 
For best results, estimation of affine motion field 

should be done over a region with coherent motion. In 
[4] authors proposed a different approach, weighted 
neighbourhoods around each pixel have been interpreted 

as regions. In this section an efficient algorithm for 
simultaneous segmentation and velocity estimation, 
given an orientation tensor field for only one frame, is 
presented. The task for the segmentation is to partition 
the image into a set of disjoint regions, so that each 
region is characterized by a uniform motion described 
by affine model. In this section a region R is defined to 
be a nonempty, connected set of pixels. The 
segmentation algorithm has been based on a competitive 
region growing approach [11]. 

 
Figure 2.  The proposed SR MRI image reconstruction scheme. 

A cost function ( )xCR is associated with each region 
defined for all pixels in the image. Regions are growing 
by adding one pixel at a time. To preserve connectivity 
the new pixel must be closest to the region, and to 
preserve disjointedness it must not be already assigned 
to some other region. The new pixel should be as 
“inexpensive” as it is possible. The details are as 
follows. Let the border R∆  of region R be the set of 
unassigned pixels in the image which are adjacent to 
some pixel in R. For each region R, the possible 
candidate, N(R), to be added to the region is the least 
expensive pixel bordering to R, i.e. 

( )xCRN R
Rx ∆∈

= minarg)(                       (5) 

The corresponding minimum cost for adding the 

candidate to the region is denoted ( )RCmin . In the 
case of an empty border, N(R) is undefined and 

( )RCmin  is infinite. Assuming that a number of 

regions { }nR  have been obtained in some way, the 
rest of the image is partitioned as follows. 

1. Find the region iR  for which the cost to add a new 

pixel    is the least, i.e. let )(minarg min nn RCi = .  

   2. Add the least expensive pixel ( )iRN  to iR .  
   3. Repeat first 2 steps until no unassigned pixels 
remain.  

 
Figure 3.  Illustration of the competitive algorithm [4] 



 

Regrowing is performed for one candidate region at a 
time, which means that there is no competition between 
regions but rather between pixels. At the beginning the 
candidate region contains only one point, its starting 
point, which is also the centre point of the initial 
rectangle surrounding it. The cost function used is 

( ) trTvTv /ˆˆ  where v is the velocity of the candidate 
region's current motion model. The competitive 
algorithm is then running until the candidate region has 
grown to a specified size. This size is called the 

candidate region size, 0m  and is a design parameter of 
the segmentation algorithm. The result of the regrowing 
scheme is that the candidate region consists of 

0m connected pixels, that are most consistent with the 
candidate region's motion model. When the candidate 
region has been regrown, new optimal parameters are 
computed. Each candidate region is regrown twice [11], 
a number which seems to be sufficient to obtain 
reasonably coherent regions. 

VI.  MODIFIED IBP SR  

Starting with an initial guess 0f  [1] for the high 
resolution image, the imaging process is simulated to 

obtain a set of low resolution images 
( ){ }0
kg  

corresponding to the observed input images { }kg  If 0f  
were the correct high resolution image (1), then the 

simulated images { }kg  should be identical to the 

observed images. The difference images ( )n
kk gg −  are 

used to improve the initial guess by "back projecting" 
each value in difference images onto its coresponding 

field in 0f , yielding an improved high resolution image 

1f . This process is repeated iteratively to minimize the 
remaining error. This iterative update scheme can be 
expressed by:  
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where K is the number of low resolution images 

↑ arrow an upsampling operator by a factor s and p is a 
back projection kernel determined by h and Tk. Taking 
the average of all discrepancies has the effect of reducing 
noise. 

VII.  SEGMENTATION [23] 

Adipose tissue typically presents higher intensity level 
than muscle tissue in thigh MRIs, while background is 
supposed to be darker. Therefore, intensity thresholding 
seems the most reasonable approach to perform this 
segmentation. However, the intensity source in 
resonance images is not homogenic and its pixels 
corresponding to the same tissue suffer significant 
variations of intensity. The main technique employed in 
utilized approach is adapted thresholding [23], where 
the image is splited into a group of smaller subimages 
and then the thresholding is applied independently to 

each subimage. As a final point the results of the 
different segmentations have to be joined in an overall 
segmentation. Bones tissues also present in MRI scans 
have usually lighter intensity levels than muscle tissue, 
and comparable to that of fat. Thus, an appropriate 
procedure should be included to isolate the image region 
corresponding to the bone. The overall scheme is 
implemented in four stages, explained thereafter: 
a) Image division and segmentation of subimages, b) 
Creation of templates c) Bone extraction, d) Final 
segmentation. This algorithm has been successfully 
applied [23] giving average results were above 90 % of 
success in most of the regular resolution images.   

VIII.  EXPERIMENT 

In this experiment twenty MRI GE 1.5 T scanner’s 
blade based partial frequency images have been taken. 
Coherent tissues motion has been included. At the 
beginning the motion parameters in the frequency 
domain space have been calculated. The next step 
involved MRI image reconstruction procedure from 
single blades.  

Twenty shifted images were acquired in order to 
reconstruct an SR image with doubled resolution. It is 
clearly visible that there are many more details in the 
high-resolution image obtained in this way, see Figure 4. 

These SR resolution images have been segmented. 
The segmentation algorithm is fully automatic in the 
sense that specialist intervention is not required. Due to 
improved  input resolution higher accuracy of the 
segmentation has been achieved.  

  

 
Figure 4.  From left to right: (upper row) patient suffering from 

obesity image obtained by “typical” PROPELLER-MRI procedure, 
the super reconstructed MRI-PROPELLER image, (lower row) 

regular resolution segmented image (small adipose tissue areas not 
detected), SR segmented image (improved segmentation) 

IX.  CONCLUSION  

The new PROPELLER MRI super resolution algorithm, 
based on tissues movements analysis, has been 
presented. In general, when applying SR to MRI we can 
break down limits on inherent resolution of existing MR 
imaging hardware. The same can be told about the 
proposed algorithm, which in addition does not add 
significant time to data reconstruction, if compared to 
the typical PROPELLER procedure. When using the 
new algorithm the overall spatial accuracy and stability 
in the field of view of MRI machines are increased. It 
has been proved that higher image definition makes the 
segmentation part easier and more accurate. Thus, the 



 

proposed technique may find applications in all 
PROPELLER MRI machines. Moreover, the proposed 
scheme takes into account tissues movements. The new 
SR technique and more robust segmentation may find 
applications in unsupervised measurement systems of 
fat and muscle tissues. 
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