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Abstract—In two-level training of binary morphological 

operators, several operators based on different 

subwindows of a larger window are designed in the first 

level of training, and then their outcomes are combined 

in a second level of training. It has been shown that such 

training scheme yields two-level operators with better 

performance than the ones designed directly on the large 

window. A difficult part of the two-level training 

scheme is, however, to set up the number of first level 

operators and their respective windows. To avoid the 

need to specify these parameters, we propose the use of 

a genetic algorithm based approach. Experimental 

results show that the proposed method can find two-

level operators with better performance than those 

manually designed by experienced users.  
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I.  INTRODUCTION 

Morphological operators [1], [2] are widely used in 
image processing and analysis. Good morphological 
solutions depend on adequate composition of some 
simple operators, and also on the choice of appropriate 
structuring elements. Since such task requires an expert 
level knowledge and a considerable trial and error effort, 
it has motivated research on approaches based on 
training techniques. Several studies have already been 
developed in order to design morphological operators 
from training data [3], [4], [5]. In its basic formulation as 
presented in [4], the design problem is cast as a machine 
learning problem in which training data is obtained from 
input-output pairs of images through a window W. 
Window W delimits the local input information to be 
considered to determine the output value at the same 
pixel location. In the context of morphological operators, 
these operators based on a window W are called W-
operators and they are expressed as combinations of two 
basic operators, erosions and dilations. Window W is the 
parameter that defines the maximum size of the 
structuring elements. On one hand, large windows W are 
desirable because they can better discriminate local 
shapes. However, on the other hand, it has been observed 
that too large windows tend to present poorer 
performance due to precision issues. 

To overcome this difficulty, a recent work proposed 
a multilevel training model [6]. Considering two-level 
training, the model may be described as a procedure in 
which several operators are designed in the first level of 

training and then their outcomes are combined in the 
second level of training. The multilevel training model 
has proved to be an effective way of overcoming the 
difficulties for designing operators based on large 
windows. 

To design two-level operators, not only the number 
of operators but also their respective windows in the first 
level of training must be specified. These parameters 
define the two-level training architecture. In [6], the 
number of first level operators as well as their respective 
windows were chosen manually, based on previous 
experience. A first attempt, based on information theory 
concepts, to automatize the choice of these parameters 
was proposed in [7]. However, no conclusive results 
concerning comparison with human expert designed 
operators is presented. 

In this work, we propose the use of Genetic 
Algorithm (GA) for choosing a two-level architecture. 
More precisely, we would like to determine the number 
of first level operators and their respective windows, 
such that the corresponding two-level operator presents 
small error. Previous works that use GA based 
approaches for morphological operator design [8], [9], 
[10] are limited to a constrained class of operators 
(usually a subset of the W-operators, or a rather small 
window W). 

This paper is organized as follows. In Section II, we 
review the two-level training procedure of W-operators. 
In Section III, we present the details of the main idea of 
this work, namely how the two-level design problem is 
cast as a GA based search problem. In Section IV, we 
present some experimental results and discuss the 
results. In Section V, we present our concluding 
remarks. 

II. BINARY MORPHOLOGICAL OPERATOR TRAINING 

Let E=Z
2
. A binary image defined on E can be seen 

as a subset of E: if x ∈ E is in the set, it is a foreground 
pixel; otherwise it is a background pixel. 

Let W be a non empty subset of E containing the 

origin, P(W) the power set of W, and ψ: P(W) → {0,1}. 
A mapping Ψ between binary images can be defined, for 

all x ∈ E and S ⊆ E, by
 

x ∈ Ψ(S) ⇔  ψ( S-x ∩ W ) = 1,  (1) 

where S-x denotes the translate of set S by -x. Equation 
(1) means that a given point x will be in the foreground 
of the transformed image Ψ(S) if, and only if, the 
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neighborhood pattern around x in S, restricted to W, is 
mapped to 1 by function ψ (for convenience, we may 
also write [Ψ(S)](x)=1 ). Operators that can be defined 
as (1) are called W-operators. Designing such operators 
is equivalent to designing the local functions ψ. 

Given observed input images S and their respective 
ideal output images I, we would like to find an image 
operator Ψ such that Ψ(S) is as close as possible to I. The 
closeness is usually measured in terms of mean absolute 
error (MAE). Letting X denote a pattern observed 
through W on S at a given position, and y the 
corresponding pixel value in I, and assuming stationarity, 
the pair (X,y) can be seen as a random realization of a 
random vector (X,y). Then the MAE of a W-operator Ψ, 
characterized by function ψ, is given as the expected 
value:  

MAE〈Ψ〉 = E[ |ψ(X) – y| ].   (2) 

The optimal MAE operator can be characterized in 
terms of conditional probabilities P(y|X) as follows [3]: 
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In the basic training methodology [4], pairs of input-
output images are used to estimate the joint input-output 
conditional probabilities in (3). A simplified scheme of 
the procedure is shown in Fig. 1(a), where generalization 
aims to determine the output value for the patterns that 
are not observed in the training images.  

 

 

(a) (b) 

Figure 1.  (a) Basic training scheme for W-operators;  (b) A 7 × 5 

window (filled circles) within a  9 × 7 rectangle. 

All windows considered in this work are defined  
within a rectangular area, called window domain, 
centered at the origin of  E. Windows will be depicted as 
sets of filled circles as in Fig. 1(b). Non-filled circles 
help to show the position of the window relative to the 
origin (drawn as a square). 

In two-level training, operators in the first level are 
trained based on the training scheme shown in Fig. 1(a). 
Each of these operators is then applied to other training 
images, generating the images to be used in the second 
level of training. In the second level training, 
information from these images are combined and a 
second-level operator is generated. In this work, only 
one pixel of each image is considered in the second level 
of training. For example, if we consider three operators, 
Ψ1

(1)
, Ψ2

(1)
, and Ψ3

(1)
,  in the first level, and S as an image 

used in the second level of training, then the training 
examples are of the form ([Ψ1

(1)
(S)](x), [Ψ2

(1)
(S)](x), 

[Ψ3
(1)

(S)](x) ). Fig. 2 shows the scheme for two-level 
training of W-operators. 

 
Figure 2.  A scheme for two-level training of W-operators. 

III. CHOOSING A TRAINING ARCHITECTURE BASED ON 

A GENETIC ALGORITHM 

In [6], manually chosen two-level architectures with 
all the windows of the first-level operators defined 
within a larger window W are compared against one-
level operators designed on W. The size and shape of W 
are chosen to be the ones that presented the best results 
in previous experiments on the corresponding datasets. It 
is shown that, two-level architectures that result in 
operators with better performance than the single-level 
operators designed on the large window W is found 
without great effort.  

Nevertheless, choosing a single window W is already 
a task that requires some experience, and choosing the 
two-level architecture (i.e., how many first-level 
operators and their respective windows) is a more 
complex task. Our proposal is to use a GA based 
approach to determine a good training architecture.  

A. Algorithm description 

GA is a probabilistic search technique based on the 
natural evolutionary process. It is usually applied to 
solve optimization or search problems. Possible 
solutions are modeled as chromosomes and the 
optimality of the solution is characterized by a fitness 
function. An initial population of chromosomes is 
generated randomly or through constructive techniques, 
and then it is successively updated based on operators 
such as reproduction mechanisms, crossover and 
mutation [11]. 

The proposed method is described next. 

1) Structure of the chromosomes: A chromosome is 

represented as a set of windows, each one 

corresponding to a window of the first-level operators. 

An example of chromosome with three windows is 

shown in Fig. 3. We assume that the size of a 

chromosome (i.e., the number of windows) can vary 

between fixed values min and max. The second level 

operator is not encoded in the chromosome because a 

fixed way of combining outputs of the first-level 

operators is considered in this work (as described in 

Section II). 
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Figure 3.  A chromosome with three windows. 

2) Fitness Function:  Since the aim of the design 

process is to find operators with small error, we use the 

MAE as the fitness function. Given a chromosome, its 

fitness is evaluated by computing the MAE of the 

operator encoded by it. In order to do that, previoulsy 

computed results of the first level operators on a subset 

of training images are used to train a second level 

operator. The resulting two-level operator is applied on 

independent test images in order to estimate the MAE. 

We decided to consider a pool of windows and to 

precompute and keep the first level operators for these 

windows because training of W-operators is in general a 

time consuming process. Windows that compose a 

chromosome are chosen from this pool, and thus only 

the second-level operator is trained in order to compute 

the fitness function. Since only one pixel from the 

output of each first-level operator is considered, second-

level training is usually very fast. 

3) Population: Both initial population size as well 

as chromosome size range are parameters of the 

algorithm. Offspring for the next generation are results 

of replication, crossover or mutation. The fittest 

chromosome of a generation is always replicated to the 

next generation. Population size may vary from one to 

another generation. 

4) Crossover: Involves two chromosomes randomly 

selected according to the crossover probability (CP) 

which is the probability a given chromosome will 

undergo a crossover. A crossover point is randomly 

chosen in both chromosomes and the right parts of 

crossover points are exchanged between the pairs. If 

exchange duplicates a window, that window is not 

exchanged. 

5) Mutation: The mutation probability (MP) is the 

probability a given chromosome will suffer a mutation. 

Two types of mutation are considered. In the first type, 

a randomly chosen number (between 1 and chromosome 

size) of windows in the selected chromosome are 

chosen randomly to be replaced. They will be replaced 

respectively by windows selected randomly from the 

pool of windows. However, a replacement occurs only 

if the selected window is not yet in the chromosome. If 

no replacement is made, then the second type of 

mutation is applied: a random number of windows (up 

to complete max windows in the chromosome) chosen 

from the pool of windows are added to the chromosome. 

This increases the size of the chromosome. 

6) Stopping Criterion: Population is updated 

generation after generation until some stopping criterion 

is met. In our case, updating stops either when the 

maximum number of iterations is achieved or when the 

fittest individual is the same for a given number of 

consecutive generations. 

IV. EXPERIMENTAL RESULTS 

In order to assess the proposed approach, we 
performed some computational experiments on 
previously tested datasets. All experiments were run on a 
machine with four processors of 2.40GHz each, with 
Debian GNU/Linux operating system. 

A.  Experiment description 

The datasets considered in this work are described in 
Table I and correspond to four datasets previously cited 
in [6]. These datasets were chosen in order to compare 
our results with the results of manually chosen windows, 
presented in that work. We allowed the size of 
chromosomes to vary from min=3 to max=15. 

TABLE I.  DATASET DESCRIPTION 

Dataset Description 

Number of training 

images  
Number of 

test images 
Level 1 Level 2 

Text_s 
Recognition of 

character ''s'' 
6 4 5 

Map 

Segmentation of 

regions with a given 

texture 

2 1 5 

Circ 

Segmentation of 

circular objects from 

diagrams 

5 3 6 

Box 

Segmentation of 

rectangular objects 

from diagrams 

5 3 6 

 
Three types of experiments were performed: 

1) Experiment I (EI): the set of manual windows 

used in [6] were included in the pool of windows, and a 

chromosome formed with those windows were included 

in the initial population. By doing so, we guarantee that 

a result at least as good as the manual solution will be 

find. 

2) Experiment II (EII): the set of manual windows 

used in [6] were included in the pool of windows, but no 

individual corresponding to that set were included in the 

initial population. This experiment was designed to 

assess whether the algorithm would be able to find a 

solution equivalent to the manual solution. 

3) Experiment III (EIII): a larger pool of 315 

windows were considered. All manually chosen 

windows for the four datasets in [6] as well as other 

windows within the 12 × 7 domain, defined without any 

special criterion, were included in the pool of windows. 

No individual corresponding to the manual choice in [6] 

was included in the initial population. 
In EI and EII, CP values 0.5, 0.6, 0.7, and 0.8 were 

used and, for each of them, MP values 0.001, 0.01 and 
0.1 were used. We also tested different values for the 
initial population size, maximum number of generations, 
and maximum generations without update of the fittest 
individual. Altogether, forty-eight different combinations 
of these parameter values have been tested. The pool of 
windows considered had around 30 windows, and the 
window domain used was the large window used in [6]. 
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In EIII, parameter CP was set to 0.8, MP to 0.01, 
with 20 chromosomes in the initial population, 
maximum number of generations to 200, and the 
maximum number of generations without update of the 
fittest individual to 50.  

B. Results and discussion 

The best fitness found in EI, EII and EIII by GA 
compared to the fitness of manually chosen windows as 
presented in [6] are shown in Table II. In all cases, the 
GA found a set of windows that resulted in an operator 
with smaller MAE than the ones corresponding to the 
manually chosen windows. 

TABLE II.  FITNESS (MAE) FOR MANUAL WINDOWS AND THE 

BEST RESULTS OF GA 

Dataset Manual 

windows 

EI EII EII 

Text_s 0.005520 0.003707 0.003707 0.003990 

Map 0.123947 0.109482 0.108832 0.014969 

Circ 0.007562 0.006063 0.005879 0.006258 

Box 0.079702 0.074540 0.074470 0.045121 

 

As expected, both EI and EII confirm that a priori 
knowledge on windows, such as their ideal size, helps 
the GA to find a good chromosome. Furthermore, EIII 
shows that the GA based method can find a good 
architecture even when the windows are not restricted to 
a pre-established window domain.  

Table III describes the experiments that provided the 
best operator for each dataset. Fig. 5 presents a piece of a 
test image from Map dataset and the corresponding 
output using manually and GA selected operators. 

TABLE III.  INFORMATION ABOUT BEST GA RESULTS. 

 Text_s  Map  Circ  Box 
Type of experiment  EI EIII EII EIII 

Max. generations    100 200 200 200 

Max. generations without 

change of the 

best chromosome 

20 50 40 50 

CP  0.5 0.8 0.7 0.8 

MP  0.1 0.01 0.001 0.01 

Initial population size  10 10 10 10 

Final population size 15 39 24 35 

Generations  94 193 106 158 

Runtime (minutes)  30.6 303.86 93.14 245.75 

Number of windows in the 

GA solution 
7 13 8 10 

Number of windows in 

manual solution  
5 3 6 6 

V. CONCLUSION 

 We proposed an approach based on GA to define an  
architecture for the two-level training of binary 
morphological operators.  

The proposed method has been tested on four 
different datasets and results show that it provides a good 
architecture even without any information on window 
domain. The results also suggest that prior information 
on the window domain can help the GA to find better 
results, in fewer numbers of iterations. 

The GA runtime is strongly related to the evaluation 
of the fitness function. As proposed, evaluation requires 
the training of the second level operator followed by 
MAE estimation on test images. Windows in the first 

level could be randomly generated rather than randomly 
chosen from a given pool of windows. However, fitness 
function evaluation would become computationally 
prohibitive due to the need to train first level operators. 
In order to avoid such time consuming processing, other 
ways to evaluate the fitness of a chromosome will need 
to be devised. 

To conclude, results support GA as an effective and 
promising way of choosing a two-level training 
architecture of morphological operators. In all datasets, 
the results obtained by GA outperformed the 
corresponding manual solution provided by an 
experienced designer. 

    
(a) S (b) I (c) Manual (d) GA 

Figure 4.  Example of a test image and results for dataset Map. 
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