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Abstract — This article analyses electrical signals of 

neuronal cultures from which measurements taken by 

multielectrode arrays (MEAs) present very low 

amplitudes and spike rates, so that no connections 

among neurons and microelectrodes seem to be 

established. Such information may be useful to 

characterize MEA instrumentation noise, which 

influences subsequent signal processing associated with 

spike and burst detection. A simple estimator of the 

probability density function of the signal amplitude is 

calculated, pointing out that this random variable is 

Gaussian. This conclusion is also attested by normality 

tests, as well as by high-order moment analysis. 

Average values for the mean and variance of the noise 

amplitude are provided. 

Keywords – probability function estimation; multielectrode 

array; gaussianity. 

I. INTRODUCTION 

One of the most relevant frontiers of the research on 
Brain-Machine Interfaces aims at the development of 
neural prosthesis for clinical applications, regarding 
pathologies of the central nervous system [1,2]. For 
example, one could point out epilepsy, which involves 
the anomalous and synchronized activity of large groups 
of neurons within the human cortex [3]. In consequence 
of previous discussions, several efforts are currently 
deployed in order to develop implantable neural 
prosthesis that are capable of communicating in a 
bidirectional way with the cortex [4,5]. Although several 
problems still remain unsolved, the literature presents 
interesting results in terms of some prototypes applied to 
in-vivo experiments. For example, in [6], the authors 
describe basic principles of implantable prosthesis, 
reporting fruitful preliminary results of 
electrostimulation on animal models, by means of 
nanotechnological devices such as Microelectrode 
Arrays (MEAs). 

Signals from neuronal cultures are composed of 

basic unities called “spikes” [7]. Since the classical 

analysis of spikes [7] does not take into account the 

biological noise segments [5], then it leads to a loss of 

biological information. In fact, although current 

neurophysiological knowledge focus on spikes as the 

source of the most important biological information [5], 

one should not forget that biological noise plays a very 

important role, as pointed out by several works devoted 

to its analysis within the nervous system [8]. In 

addition, it should be pointed out that the first operation 

of any signal processing applied to MEA data 

correspond to spike detection, which is subsequently 

used to generate the Interspike-Interval Time Series 

(ISI), to perform burst analysis and to estimate 

associated histograms. Such detection is mainly 

influenced by instrumentation noise, which is a quite 

complex issue in the context of extracellular recordings, 

due to its several possible sources [9].  

Classical spike signal processing [7] always 

supposes the gaussianity of this noise, particularly for 

intracellular data, in order to enable simple 

mathematical treatment. However, very few works in 

the literature [9,10] are focused on the background 

noise disturbing extracellular recordings. In [10], 

authors provide a simple illustration of the noise 

gaussianity based on real signals, supposing this 

hypothesis for deriving a new spike detection technique, 

as well as its variance within the range (0.06 – 0.08) 

( µ V)
2
. Article [9] considered the noise variance within 

the range (0.286 – 0.091) ( µ V)
2
 for testing a new 

proposition, without formal justification for this choice. 
This article is devoted to analyze background noise, 

which is experimentally studied by means of the concept 
of “inactive neuronal culture” , to be discussed below. 

 The underlying process leading to functional 
connections between cultured neurons and 
microelectrodes is not completely clear [11]. Just after 
the tissue deposition on the planar MEA surface, the 
ensemble is stored in an incubator. In general, eight or 
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ten days after the deposition, which are labeled as 
8thDIV (“Day-In-Vitro”) and 10thDIV respectively, the 
culture is connected to the acquisition system, in order to 
check if functional or anatomical connections between 
the cells and the microelectrodes have taken place. In 
this case, signal amplitudes may attain at least 100 µV 
during spike activity, firing rates are at least greater than 
0.1 spikes/second [12], and the culture is called “active”. 
Otherwise, it is called “inactive”. 

To the best of authors' knowledge, few works in the 
literature are devoted to culture inactivation, with the 
exception of [12], which presents some remarks and 
discussions, without experiments. In general, signals 
from these cultures are not considered as “useful 
information”, being not processed by researchers in the 
field. 

II. MATERIALS AND METHODS 

A. Signal Acquisition 

Extracellular electrophysiological signals were 
recorded by means of a planar sixty-electrode MEA 
system (MultichannelSystems, Reutlingen, Germany). 
Dissociated primary cultures of cortical neurons were 
prepared after tissue extraction from eighteen-day rat 
embryos, which were previously anesthetized. All 
procedures required by Genova University Animal 
Ethics Commission were employed to ensure the 
necessary care towards the rats. Further details regarding 
culture preparation are presented in [13]. MEA 
microelectrodes are distributed in an 8x8 array, each of 
them presenting a diameter of 30 µm and separated by 
200 µm from each other. Microelectrodes located in all 
four external edges of the device were not active. 
Sampling frequency was 10 kHz. 

Two neuronal cultures were monitored, and they are 
identified by C358 and C359. As long as it was possible, 
one complete experiment of each culture was performed 
during a twenty-minute recording time. In brief, our 
database is composed of fifteen data files or sessions, 
each of them lasting five minutes. Culture inactivation 
was “spontaneous” in the sense that no special biological 
or external procedure was performed to assure such 
condition. 

B. Probability Density Function Estimation 

 The “naïf estimator” [14] supposes that a 

random process X(n) is divided up into Q amplitude 

intervals )(nx∆ , which will be called “amplitude 

resolution”; n denoting the discrete time. X(n) 

represents the signal recorded at one microelectrode (or 

channel) of the MEA. The random process is stationary 

during a short time slot of L*T seconds, where L is the 

total amount of signal samples within this slot, and T is 

the sampling period. Then, the probability of the 

amplitude taking values within the interval )(nx∆  may 

be estimated by its relative frequency throughout the 

time slot under analysis as: 

 LnP /)(
X

qx(n))x(n)X(n)(x(n) ≅∆+≤≤  (1) 

Wherein x(n))x(n)X(n)(x(n) ∆+≤≤P is the 

probability of the random variable X(n) lay within the 

interval of ( ))()( nxnx ∆+ and 
)(nX

q  is the number 

of times that the signal amplitude X(n) takes values 

within the range ( ))()( nxnx ∆+  µV, during the 

analogue time interval  (0,L.T) seconds. 

Consider vector 
k

x  containing samples of the 

extracellular electrical activity amplitudes [ Vµ ] of one 

single channel or microelectrode k (k = 1,2,…60), 

during five minutes. In order to cope with nonstationary 

issues, each vector 
k

x was then divided into 300 

segments, each of them lasting one second. In fact, 

previous results achieved by classical spike-detection 

techniques [4,7] suggest that these segments should not 

be longer than 1-2 seconds. For each segment, a simple 

estimation of its histogram was performed according to 

(1). The average statistical behaviour of one channel 

was assessed, by means of averaging all its 300 

histograms, which leads to the “Single-Channel Single-

Session Histogram” (SCSSH). This same procedure was 

repeated for all 60 channels of the session, thus 

generating 60 SCSSHs.  

The previous paragraph described a procedure 

applied to data associated with one single session (five-

minute recording). Since the database is composed of 

fifteen sessions, all steps were repeated for each digital 

file. Finally, by averaging all these results, it was 

possible to generate one single histogram for each MEA 

channel, which will be called “Single-Channel All-

Session Histogram” (SCASH). The last one finally 

characterizes the average statistical behaviour of one 

single channel, considering all the fifteen sessions. 

Another possible feature is the “All-Channel All-

Session Histogram” (ACASH), which is obtained by 

averaging the sixty SCASHs, thus providing an overall 

statistical behaviour of the signal, considering the whole 

set of microelectrodes throughout all the fifteen 

recording sessions. 

 

C. High-Order Moments of Particular Channels 

(SCASHs) 

High-order moments associated with the SCASH of 
one single channel were calculated according to the 
definitions presented below [14]. 
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Wherein p(xi) represents the probability of the signal 

amplitude attains the value xi .  

In addition, the following statistical quantities 
were also estimated. 

 3)
4

/
4X

M̂(;
3

/
3X

M̂
k

S −== σσ
))

K  (5) 

Where Sk is the “skewness” of the SCASH [14], 
which characterizes the symmetry of the estimated 
probability density with respect to its mean value; and K 
is the “kurtosis” of the SCASH, providing information 
on the general aspect of the density plot, as it is 
compared to the normal distribution. If Sk = 0, then the 
random variable may be considered completely 
symmetric. If K = 0, the probability density is indeed 
Gaussian. For K < 0, the histogram is called 
“platykurtic”, otherwise, for K > 0, the histogram is 
called “leptokurtic”. 

III. RESULTS AND DISCUSSION 

A. Probability Density of all Channels 

The “All-Channel All-Session Histograms” 
(ACASHs) of cultures C358 and C359 were estimated. 
Fig. 1 presents the average histogram obtained from 
these two ones, depicting the overall statistical behavior 
of the whole set of signals from sixty microelectrodes, 
throughout all the fifteen recording sessions. Clearly, the 
plot resembles a Gaussian distribution. 

 
Figure 1.  Histogram obtained after averaging the ACASH of C358 

and the ACASH of C359. Vertical axis is expressed in percentage 

[%], whereas horizontal axis is associated to the instrumentation noise 

amplitude. 

Table I presents estimated values for the mean and 
variance of the final histogram in Fig. 1. 

TABLE I.  GAUSSIAN-DISTRIBUTION PARAMETER ESTIMATION, 
CONSIDERING HISTOGRAM OF FIG. 1 

Parameter Estimate 95%-Confidence Interval 

Mean value 1XM̂ [µV] 0,497 (0,497; 0,567) 

Variance ( ) ]
2

[
2

ˆ Vµσ  12,711 (12,366; 13,070) 

 

Since values in Table 1 approach the zero-mean 
Gaussian, Shapiro-Wilk statistical test was also 

performed for both the mean value and for the variance, 

supposing the following hypothesis: 0
1X

M̂: =
0

H  and 

( )21
2

ˆ:1 VH µσ = . Both hypothese were rejected with 

5% of significance, thus pointing out that the general 
density of Fig 1 is not associated with a zero-mean and 
unitary-variance Gaussian distribution. 

B. High-Order Moment Analysis and Particular 

Channel Behaviour 

Analysis of the sixty SCASHs by means of equations 
(2)-(5) was performed, and results are presented in Fig. 2 
and Table II.  

Fig. 2 depicts the overall variance of each MEA 
channel respectively, considering the average performed 
on all fifteen sessions. The upper part of Fig. 2 
represents the bottom view of the planar MEA device, 
wherein little square subdivisions are associated with the 
spatial location of particular microelectrodes. Variance 
amplitudes are depicted in color scales. The second part 
(lower one) introduces the color scales used for 
amplitude representation, and the scale ranges are 
written in the figure title. 

 

Figure 2.  Variance amplitudes 
2

σ̂  for all channels. Scale ranges 

1.94 ( µ V)
2
 for dark blue  ; 17.74 ( µ V)

2
 for dark red. 

Fig. 2 provides information on the particular 
statistical behaviour of each channel. In fact, it points out 
that the variance attains quite different amplitudes as one 
moves little distances within the device surface. Such 
amplitudes are high, specially for those microelectrodes 
located at the right lower part. 

TABLE II.  ESTIMATION OF THE MEAN-VALUE AND THE 

VARIANCE FOR EACH HIGH-ORDER MOMENT ASSOCIATED WITH 

SCASHS, CALCULATED CONSIDERING THE AVERAGE PERFORMDED ON 

ALL SIXTY MEA CHANNELS 

 

Mean-value 

1X
M̂  

Variance 

2
σ̂  

Skewness 

Sk 

Kurtosis 

K 

Mean 

value 

0,4981 12,6993 -0,0213 0.3903 

Variance 9,4300×10-5 3,9151 5,152×10-4 0,0374 
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Conclusions of the previous paragraph may be 
clearly attested by the third column of Table II, that 
presents the mean-value and the variance of the several 
moments, after averaging all the characteristic 
parameters over the sixty channels. Notice that the mean-
value, the skewness and the kurtosis present a quite low 
variance, which means that they do not vary too much 
throughout all the channels. In addition, notice also that 
amplitudes of the mean-value, the skewness and the 
kurtosis are very low. 

In consequence, major differences between the 
statistical behaviors of the MEA data are due to different 
signal powers (variances) at the microelectrodes. In 
addition, skewness and kurtosis present very low average 
amplitudes, which clearly characterizes the gaussianity 
of the random variable under analysis. This conclusion 
also attests the previous results of Table 1. 

IV. CONCLUSION AND FUTURE WORK 

This article analyzed two topics very few studied in 
the literature: inactive cultures and MEA instrumentation 
noise. Signals arising from these cultures were 
considered as a possible experimental framework in 
order to develop a statistical analysis of instrumentation 
noise. It should be pointed out that only absolute-
amplitude signals have been processed, since it is not 
possible to derive the interspike-interval time series, due 
to very low signal amplitudes and spiking frequency. In 
this context, the random character of this stochastic 
process was supposed to be tied to the signal amplitudes. 
Particular attention was devoted to the nonstationary 
issues that are instrinic to biological signals. For this 
purpose, data segmentation was performed based on a 
fixed-length strategy, followed by the application of 
simple theoretical tools, such as the “naïf estimator” and 
high-order moments for analyzing the probability density 
function. 

From the point of view established in the previous 
paragraph, it was possible to conclude that the MEA 
instrumentation noise follows indeed a Gaussian 
distribution, which was attested by visual inspection, and 
from high-order moment analysis. This distribution, as 
an overall trend for all the sixty channels and recording 

sessions, presents an average mean of 0.497 Vµ  and an 

average power of ( )2711.12
2

ˆ Vµσ = . When these 

experimental results are compared to those generally 
used in the literature devoted to spike-detection 
techniques and MEA signal simulation [9,10,15], 
discussed in Section 1, one could ask whether the last 
ones are realistic, since our results point out that noise is 
neither zero-mean, nor uncorrelated. In addition, its 
variance is much higher than values currently used in the 
literature. Regarding the statistical behavior of the 
several MEA channels, they present almost no 
differences in terms of mean values, kurtosis and 
skewness. In consequence, variance is the major 
statistical characteristic of MEA instrumentation noise at 
different microelectrodes, which is specially high for 
channels at the right lower part of the device. 

This article presents an experimental confirmation of 
a hypothesis that is used in papers related to extracellular 

recording simulation [9,10,15], which devotes very few 
attention to the noise and to the nonstationary issues 
associated with biological signals under analysis. The 
results are useful for deriving more accurate statistical 
models for MEA instrumentation noise, so that to 
contribute for the development of more efficient spike-
detection methods, as well as for the synthetic generation 
of MEA data. However, care should be taken regarding 
the statistical analysis performed in this paper. 
Histogram averaging, although necessary due to the 
signal nonstationarity, may lead itself to gaussianity, in 
view of the Central Limit theorem. In addition, as future 
work, more significant statistical tools such as adherence 
tests should be applied to single segments of the signals 
under analysis, in order to provide a more rigorous 
assesment of the signal gaussianity. 
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