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Abstract— In this paper, a new moment-based method for 

joint time delay and Doppler estimation in passive radar, 

sonar, and GPS applications is described. We provide a new 

blind approach for estimating the delay and Doppler imposed 

onto a Gaussian mixture using on the statistical moments. 

Wigner-Ville (WV) distribution has suitable estimation for 

delay and Doppler. However, since WV is a bilinear 

transformation, it suffers from the quadratic superposition 

principle, i.e. cross-term problem. Different attempts for cross-

term suppression resulted in numerical complexity. .Hence, 

there is a trade off between suppression and complexity. A 

new method is discussed for resolving this issue. The 

estimation is done by using the moments of received signal. 

This procedure provides lower complexity and more accuracy. 

In this method, the noise power is assumed unknown and is 

estimated as well. The simulation results demonstrate that the 

proposed approach can effectively estimate the delay and 

Doppler in noisy environment. 
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I. INTRODUCTION 

In radar, sonar, and Global Positioning Systems (GPS), the 

time delay and Doppler are two important parameters that 

facilitate the target localization and tracking [1]. WV has 

proven to be a valuable tool in time-frequency processing. 

WV possesses a high resolution in the time-frequency plane, 

and satisfies a large number of desirable theoretical properties 

[2]. These properties are in fact the fundamental motivation 

for the use of the narrowband(wideband) WV transformation 

for detecting a deterministic signal with unknown delay-

Doppler(-scale) parameters in white Gaussian noise. 

Unfortunately, WV’s practical usage is limited by the presence 

of non-negligible cross-terms, resulting from interactions 

between signal components. 

Cross-WV distribution of two signals x(t)  and y(t)  is 

defined as: 

, ( / 2) ( / 2)exp( 2 ) .x yW x t y t j f dτ τ π τ τ
∞

∗

−∞
= + + −∫    (1) 

When time and frequency details of a signal is prominent, 

this distribution presents an accurate response, but, when one 

of these two signals is affected by the noise, WV distribution 

could not effectively distinguish them due to the presence of 

cross-terms. Alternative approaches are proposed for 

eliminating or at least, suppressing the cross-terms [2]–[5]. 

Generally speaking, the cross-term suppression may be 

divided into two categories: signal-independent, and signal-

dependent paradigm. Coupling the Gabor transformation with 

the WV distribution is a signal-independent procedure that 

reveals a cross-term suppression approach through the 

exploitation of partial knowledge about the signals to be 

encountered [3]. For the signal-dependent method, it is 

possible to apply an adaptive window over WV distribution, 

where the kernel parameters are determined automatically 

from the parameters of the input signal. This kernel is capable 

of suppressing the cross-terms and maintaining accurate time-

frequency resolution [4]. It is not possible to generate an alias-

free discrete WV distribution from a discrete analytic signal, 

but, there is a new discrete analytic signal that indirectly 

suppresses cross-term [5]. 

In addition to WV method, there are other techniques for 

the delay and Doppler estimation. Wavelet transform is one of 

these procedures. Wavelet approach combines the noise 

filtering and scaling together, yielding a reduction in 

complexity [6]. There is also another method which uses the 

fractional lower order ambiguity function (FLOAF) for joint 

delay and Doppler estimation [7]. In this paper, we present 

another view for solving the problem which has less 

complexity and also suppresses cross-term effectively. It is 

assumed that the transmitted signal follows an N-mode 

Gaussian mixture model (GMM). GMM can be used for 

different transmitted signals. Especially, it presents an 

accurate modeling for actual signals transmitted in sonar and 

radar systems [8]. The received signal is contaminated by 

noise, delay and Doppler. It is shown that how it is possible to 

distinguish signal and noise by using PDF of received signal 

and moments which have been extracted from this PDF. 

Having noise statistics is equivalent to cross-term suppression 

of multi-component signals in Wigner-Ville distribution 

discussions. Then, the delay and Doppler will be attained by 

using the results obtained from the available moments. 

Section 2 provides a model for the received signal. This 

signal has been influenced by unknown noise, delay and 

Doppler. It is shown in Section 3 that it is possible to estimate 

Doppler and the unknown noise power simultaneously by 

using the moments of the received random signal. There is 

also a method for the delay estimation based on the PDF of the 

received signal which is described at the end of this section. 

Section 4 contains simulation results to illustrate the 

effectiveness of the proposed method. 

II. SIGNAL MODEL 

Mixture models have been proven to be quite useful in 

modeling complex densities [9]. Using a small number of 

normal components, one is able to model distributions that are 

far from normal. 

A signal transmitted from a remote source and monitored 

in the presence of the noise along with a relative motion 

between the transmitter and the receiver can be modeled as: 

( ) ( )exp( 2 ) ( ),y t s t j t tτ π ε ω= − +                    (2) 
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where (·)s  is the transmitted signal which is modeled at each 

time instance t to follow a real N-mode Gaussian mixture: 

2

1

( , ),
i i

N

i s s

i

p µ σ
=

∑ N                                 (3) 

and ω  is a real zero-mean additive white Gaussian noise 

(AWGN) with power of 2

ωσ . The signal and noise are 

assumed to be uncorrelated. τ  and ε  denote the delay and 

Doppler respectively. 

III. MOMENTS 

Let’s assume that ( )
X

f x is the PDF of the random 

variable X whose moments are given as: 

( ) ( ),n n

n
m x dF x E x

∞

−∞
= =∫                      (4) 

where F is the cumulative density function (CDF) of random 

variable X and E describes the expectation value of the 

variable. On the other hand, moment generating function 

(MGF) of the random variable X is defined as: 

( ) ( ), ,uX

x
M u E e u= ∈�                           (5) 

whenever this expectation exists. The relation between 

moments and MGF is used in this paper: 

2

2
1( ) 1 .

2!
x

u m
M u um= + + +L                    (6) 

This derivation is valid as long as moments 
nm are finite, 

.nm < ∞  

A. Doppler estimation 

The statistical properties of the signal and noise are known 

in (2), therefore, their MGF is available. Although the 

transmitted signal follows a Gaussian mixture distribution, the 

conglomerate effect of the delay and Doppler creates a non-

stationary signal. Doppler estimation is described here and the 

discussions about the delay estimation are provided in the 

sequel. First, it is required to consider the normal distribution 

as the base for the next steps. Its MGF is: 

2 2

( ) exp( ),
2

x

u
M u u

σ
µ= +                       (7) 

where µ  and 
2σ are the mean and variance of normal 

distribution respectively. Its moments can be easily achieved. 

Suppose that the received noise free signal is denoted 

by ( ).r t Since ( ) ( ) ( ),y t r t tω= + and ( )r t and ( )tω are 

independent processes, MGF for ( )y t  is: 

2 20.5
( ) ( ) ( ), ( ) ,

u

y rM u M u M u M u e ωσ
ω ω= =     (8) 

( )tω  is a normal variate. The problem is to calculate MGF of 

( )r t . Without loss of generality, let’s assume that we have no 

delay, thus: 

( ) ( )exp( 2 ).r t s t j tπ ε=                          (9) 

 

TABLE I.  MOMENTS OF RANDOM VARIABLE 
r

r  

n Moments 

0 1 

1 
1

N
p

i s
ii

µ∑
=

 

2 
2 2 2( cos (2 ))

1

N
p t

i s s
i ii

µ σ π ε+∑
=

 

3 
3 2 2( 3 cos (2 ))

1

N
p t

i s s s
i i ii

µ µ σ π ε+∑
=

 

4 
4 2 2 2 4 4( 6 cos (2 ) 3 cos (2 ))

1

N
p t t

i s s s s
i i i ii

µ µ σ π ε σ π ε+ +∑
=

 

5 
5 3 2 2 4 4( 10 cos (2 ) 15 cos (2 ))

1

N
p t t

i s s s s s
i i i i ii

µ µ σ π ε µ σ π ε+ +∑
=

 

 

The goal is the estimation of 2
.rσ  For simplicity, we work 

with the real part of ( )r t : 

( ) ( )cos(2 ).rr t s t tπ ε=                           (10) 

( )s t follows a Gaussian mixture distribution in (3), but, 

the presence of the cosine term in (10) changes ( )
r

r t  to a 

non-stationary process. Although this term is time variant, 

fortunately, it is deterministic. Now we obtain MGF of 

( )
r

r t : 

2 2

1

2 2 2

1

( ) exp( 0.5 )

( ; ) exp( 0.5 cos (2 ) ).

i i

r i i

N

s i s s

i

N

r i s s

i

M u p u u

M u t p u t u

µ σ

µ σ π ε

=

=

= +

= +

∑

∑

(11) 

According to (6), the moments of the random variable 
r

r  

could be calculated. These moments are depicted in table I. 

Now, the moments of the received signal ( )y t  can be 

obtained. Both MGF of ( )
r

r t  and ( )tω  are expressed as the 

series presented in (6), then, by multiplying these two series 

and ordering their terms, MGF of ( )y t  is obtained in context 

of (6): 

2

2 2 1 1

1 1

3

3 3 1 2 2 1

4

4 4 2 2 1 3 3 1
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u m m
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ω
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ω
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+ + +
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+
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+

+L

(12) 

which 
rr im ’s have been shown in table 1, and 

i
mω

’s are the 

moments of a normal distribution. Therefore, the moments of 

the received signal ( )y t  are obtained. The resulted moments 

are time dependent, but, since the cosine term is deterministic, 

the time average of the moments can be substituted instead. 

Let’s define: 

0

1
( ) cos (2 ) ,

T
i

i t dt
T

ζ ε π ε= ∫                   (13) 
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                         (a)                                                         (b) 

Figure 1. MSE of delay estimation in conventional and proposed 

methods (a) constant noise variance. (b) variable noise variance. 

 

which T  is the time duration of the signal block. 

Note that for the dependency of ( )
i

ζ ε on ε ,  the 

moments of the received signal are dependent on ε too. 

Finally, the time independent moments of ( )y t  are as 

presented in (12), only all “ cos (2 )
i

tπ ε ” terms should be 

substituted by ( )iζ ε . On the other hand, let’s suppose that the 

moments of the observed signal in the receiver are calculated 

statistically by: 

                
0

1
( ) .

T
i

i y t dt
T

µ′ = ∫                            (14) 

Both of these two procedures must yield same results. 

Thus, ε should be selected in such a way that this equality 

satisfies. To do this, the mean square error (MSE) estimator is 

used: 

2

1

MSE ,
m

i i

i

µ µ
=

′= −∑                           (15) 

where in this paper, m is considered 4, because it would 

reveal a desirable result. So Doppler of the received signal 

( )y t  is: 

2

1

ˆ min .
m

i i

i

εε µ µ
=

′= −∑                        (16) 

B. Noise estimation 

The noise power estimation is similar to the Doppler 

estimation. Indeed, these two estimations are done 

simultaneously. In (12), it is seen that the moments do not 

merely depend on Doppler. They also depend onto the noise 

power as well. So, in (15), MSE includes two parameters and 

should be minimized according to both Doppler and the noise 

power of the received signal: 

2

22

,
1

ˆ ˆ( , ) min .
m

i i

i
ω

ω ε σ
ε σ µ µ

=

′= −∑           (17) 

Note that in the actual scenario, the noise variance in (8) is 

unknown. We can estimate the noise variance given 
1N  signal 

free samples which are at hand occasionally, hence, 2

ωσ  

becomes a random variate. Since the noise ( )tω  is assumed 

Gaussian, the 
1

N -sample based estimated variance is chi-

square distributed with 
1

N  degrees of freedom: 

1

1

2 2 2 2

11

1
ˆ ˆ, ~ ,

N

i N

iN
ω ωσ ω σ χ

=

= ∑              (18) 

Hence, the average MGF of the noise over the sample variance 

is obtained: 

12 2

1

2 2 4 4

1

1
( )

ˆ(1 / )

ˆ ˆ1 0.5 (0.125 1/ 4 ) .

N
M u

u N

u N u

ω

ω

ω ω

σ

σ σ

=
−

= + + + +L

 (19) 

If this MGF is used for the noise in (12), the equation (17) 

would estimate the variance of this non-stationary noise. In 

section 4, there are results for both situations, i.e. constant and 

variable variance. 

C. Delay estimation 

Before discussing about the last parameter, delay, at first it 

is better to talk about changes that happens to a signal when it 

is exposed at delay phenomena. In some papers, the 

correlation between the transmitted and the received signal is 

criteria for estimating the delay. But since possessing of the 

transmitted signal is not reasonable, there are two sensors in 

the receiver, and the delay estimation is performed based on 

the correlation between these two receivers [10]. In the OFDM 

systems, the existence of cyclic prefix magnifies this 

correlation about the delay-point. Therefore, the delay 

estimation becomes more comfortable [11]. 

In this paper, we take a new direction for this estimation. 

Instead of tracking the variation of the correlation, the effect 

of the delay on the PDF of signal is examined. In this method, 

there is no need to have two sensors. Suppose that there is a 

delay and the receiver is waiting for the signal during this 

delay time. Before sensing the signal, the receiver only 

receives the noise, which has constant statistics. As soon as 

the main signal is detected, the statistical properties of the 

received signal changes, because, there is no pure noise 

anymore, but the receiver is taking both the noise and the 

transmitted signal. This change is a reasonable criterion for 

estimating delay point. Even there is no requirement to have 

knowledge about the noise power. Only monotonousness of 

signal power before the arrival of transmitted signal, and its 

change after sensing the main signal is sufficient for detecting 

the delay. To detect this change, a rectangular window is used. 

The length of this window is variable. The onset of this 

window is always the beginning of signal and the PDF 

estimation is done on the windowed signal. The window 

length increases and the endpoint of window moves to the end 

of the signal, and after each change in window length, a bigger 

segment of the signal is used for PDF estimation. The 

variation of statistics, like mean and variance, help finding the 

delay point. Those segments, which have the most change 

relative to the previous ones, are determined. The first 

segment of them is the most favorite and the end point of that 

is considered as the amount of delay. 

This delay estimation can be done at the first stage before 

the Doppler and noise estimation, but it is better to estimate 

the noise power first, because this operation helps getting a 

more accurate estimation for delay even in a very unsuitable 

noisy environment. 

IV. SIMULATION AND RESULTS 

In this section, the proposed moment method is simulated to 

assess its performance to estimate the delay and Doppler. The 

transmitted signal has tri-modal Gaussian mixture distribution  
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(a)                                                              (b) 

Figure 2. MSE of Doppler estimation in conventional and proposed 

methods (a) constant noise variance. (b) variable noise variance. 

 

with 
1 2 3

1,
s s s

σ σ σ= = =  
1

2,sµ =  
2

5,sµ =  
3

8,
s

µ =   and 

1 0.3,p =  
2 0.3,p =  

3
0.4.p =  

For each SNR, the simulation is performed 1000 times, the 

signal duration is 1msec, the delay is assumed 300µs, and the 

Doppler value, i.e. 2εω πε= , is a number between 0 and 2π 

that provides a 2π rotation for frequency shift. In the 

simulation, Doppler is assumed to be 0.8π. 

Fig. 1 depicts the error existed in the estimation of delay 

for the conventional and proposed methods. This error is 

presented as MSE, calculated from 1000 times of simulation, 

versus SNR. Fig. 1(a) is related to constant noise variance and 

Fig. 1(b) shows MSE when noise variance is the random 

variable in (18). The presented conventional methods are WV 

in [2], wavelet method in [6] and FLOAF in [7]. It can be seen 

that in high SNR, the consequences of the proposed method 

have a little larger MSE relative to the other methods. It is 

possible to decrease this error by using more points in the PDF 

estimation, but it should be a trade off between the complexity 

and accuracy. Anyhow, this MSE is small and in comparison 

with the promising results that this method presents in low 

SNR, this error is acceptable. On the other hand, Fig. 1(b) 

depicts when we have a non-stationary noise, in addition to 

low SNRs, the proposed method also has better results in high 

SNR in comparison with the conventional methods. 

There is a similar observation for Doppler. The related 

MSE is shown in Fig. 2. In this figure, the conventional 

methods are WV in [2] and FLOAF in [7]. As presented in 

above, Fig. 2(b) shows the proposed method has the best result 

relative to other methods for non-stationary noise.  

It is worth mentioning that these results are in an unknown 

noise power scenario. To judge the accuracy of the proposed 

method for the estimation of the unknown noise power, a 

comparison between the actual and the estimated noise power 

is portrayed in Fig. 3. This comparison is presented as MSE of 

noise power estimation for both constant and variable 

variance. 

 

Figure 3. MSE of noise power estimation in proposed method. 

 

V. CONCLUSION 

In this paper, we provide a new approach to estimate the 

delay and Doppler imposed on a signal modeled as a Gaussian 

mixture. The new method is based on the moments of the 

received signal. This method is more successful than the 

Wigner-Ville method in environment which has unknown 

noise power. Another feature for this method is the 

simultaneous estimation of Doppler, and the noise power. 

About the delay estimation, there is no necessary need to 

attain noise nature before determining the delay, and even 

without knowing the value of the noise power, the predicted 

delay point has an acceptable accuracy. The simulation results 

show that these claims are trustable and present acceptable 

consequences.  
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