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Abstract— In this paper, we model the received signals 

in UWB radars as a Fourier series expansion with time 

varying coefficients to introduce a new MMSE 

estimator based on the unconditional orthonormal signal 

representation, moreover, a new method for detection of 

these signals in presence of (non)-Gaussian additive 

noise in stationary and moving target scenario is 

provided. We utilize the discrete prolate spheroidal 

sequences (DPSS) as unconditional orthonormal signals. 

Conventional UWB radar detectors use maximum 

likelihood detection which relies on correlating pair of 

adjacent segments. Simulations for CFAR detectors are 

presented to compare the introduced method with 

conventional UWB radar detectors called interleaved 

periodic correlation processing (IPCP). 

 
Keywords- MMSE; UWB radar; discrete prolate spheroidal 

sequesce; IPCP.   

I.  INTRODUCTION  

The application of UWB in radar systems has been 
introduced in the past several decades. The bandwidth of 
narrowband signals used in traditional radars is much 
less than the carrier frequency. Because of the 
narrowband pulses, they provide low resolution 
detection, but in today’s applications, high resolution 
radars are required for fine and sensitive surveillance of 
the environment. The development of application of 
UWB radars has been surveyed in [1]. On the contrary to 
a narrowband signal, an ultra-short pulse has no pure 
sinusoidal waveform, but it is composed of sum 
sinusoids with different frequencies, hence backscattered 
signal from a target upon impingement of a real UWB 
signal has a complex shape in time. The UWB signal 
parameters, such as duration, number of sinusoids, 
location, and amplitude of scattered signal are strongly 
dependent upon the target. Because the signal from 
target exhibits is stochastic time series, its parameters are 
unknown. Therefore, blind detection has absorbed the 
attention of advanced UWB radar designers. A blind 
detector based on correlation of the received signal in 
two adjacent periods has been introduced [2] as the IPCP 
detector. IPCP requires an invariable channel in at least 
two adjacent periods which occurs in stationary or low 
speed moving target. Since it is not an easy task to 
perform matched filtering for high speed moving target 
models, UWB detectors become more complex in 
moving target scenario [3, 4]. In synchronized IPCP 
detector, the integration period in the correlation 
processing is determined by the observation interval or 
the scattered signal duration which depends on the target 

size, hence, the detection threshold depends on the target 
size. There are some limitations to produce short time 
pulses ([3], chapter10). Since the Fourier series method 
for waveform generation overcomes these limitations, 
UWB radar signals are generated using Fourier series-
based waveform paradigm [3].  DPSS sequences are 
powerful tools to expand low pass signals in terms of 
orthonormal; their prominent feature is the independency 
of orthonormal bases from the signal. For example, non-
coherent time-varying channel estimation as a recent 
work is made thanks to use DPSS sequences. This article 
is based on Fourier series signal generation, it shows that 
the UWB received signal is an almost periodic signal 
which can be represented as a Fourier series expansion 
with time-varying coefficients. Cyclostationary 
characteristics which appear in this type of waveform are 
exploited to determine an MSEE to estimate these time-
varying coefficients and to provide a blind detector 
under two hypotheses; in presence of (non)-Gaussian 
background noise in stationary and moving target. We 
introduce a new detector that utilizes the unconditional 
orthonormal basis functions as the matched filters which 
are based on Discrete Prolate Spheroidal Sequences 
(DPSS) and are independent of the target and transmitted 
signal. Since time-varying channel estimation appears in 
moving target scenario, the proposed detector not only 
increases performance in stationary target, but also it 
results in a simpler detector in moving target scenario. 
On the other hand, there is no distribution constraint in 
the MSE estimator, therefore, with some reasonable 
assumptions, detecting signal of interest in presence of 
non-Gaussian noise and clutter is possible. In this paper 
non-Gaussian noise is modeled as the Middleton class A 
noise. 

II. SYSTEM  MODEL AND PROBLEM FORMULATION 

The transmitted signal s1(t) is produced by a 
summation of finite number of Fourier series 
components. The required number of transmitting 
sources to generate a train of short pulses is a function of 
the pulse duration and the pulse repetition. In this case, 
the pulse train s1(t) can be represented by a summation 
of N Fourier components as [3] 
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Where ωn= 2πnf0 and f0 is pulse repetition frequency 
(PRF). cn are the complex harmonic coefficients, 
respectively. We assume s1(t) is transmitted as an UWB 
signal by the array antenna with P radiators which is 
shown in Fig.1 in a form of current pulse. For this signal, 
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pulse duration in space is cτ (c is the velocity of light, τ 
is the pulse duration in time domain). If this pulse 
duration is much less than the linear size of the radiator 
L, then the pulse undergoes some modification while 
being transmitted, because the aperture of an array 
antenna is not simultaneously excited by the travelling 
current pulse while it moves along the radiator. In this 
case, a radiator of the antenna which has a length L>>cτ 
will radiate several pulses of an electromagnetic wave 
serially. As a result, a single 

 

Figure 1. Array antenna with P radiators 

pulse transforms into a sequence of K pulses where the 
time intervals between their radiations are τk. Another 
change occurs due to delay of signal radiated by P 
radiators of the antenna, in space. For adjacent radiators, 
this delay is (d / c) sin (φ), where d is the spacing 
between the radiators on the observation angle φ. 
However, due to anomalies in the propagation path the 
pulse train s2(t) which hits the target will be: 
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Next, we discuss what target model the transmitted 
signal is expected to meet. 

III. MODEL OF TARGET IN UWB RADAR 

We assume that s2(t) is scattering by the target which 
consists of M local scattering elements (bright points) 
located along the line Lt that cτ << Lt in UWB signal. 
Such signal reflects from discrete target elements and 
forms pulse sequence. Number of pulses, time delay τm, 
and intensity of signal depend on target shape and target 
element impulse response hm. UWB signal possesses a 
large bandwidth that causes the radar cross section 
(RCS) to change significantly. So, in practical 
applications RCS of the target becomes frequency-
depended [6]. The frequency-depended RCS causes that 
hm instead of a single path (an attenuation and delay) to 
act as an FIR filter with complex coefficients with 
Rayleigh distribution in magnitude and uniform 
distribution in phase, however, the filter length can be 
modeled as a discrete Poisson random variable with a 
given mean. In this scenario, target RCS becomes time-
depended magnitude, too, thus, hm changes during the 
time [7]. However, assumption of an almost identical hm 
for finite number of time pulse repetition intervals will 
be reasonable, if 2TVR << cτ (almost stationary target), 
where VR is the radial velocity of target. But in moving 
target (especially in high altitude detection or high speed 
moving target) hm(t) will not be almost periodic. The 
whole signal which is affected by all M bright points 
presents the time distribution of scattered energy. It is 
formed during time interval t0 = 2Lt / c; and so s3(t) 
which will be received by receiver antenna is: 
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As mentioned before if a summation of N Fourier 
components is transmitted as a UWB signal, the received 
signal will be a wideband signal which is composed of a 
sum of non-stationary signals that each signal behaves 
like a sine wave with particular frequency f0 or one of its 
harmonics multiplied by a “smoothly varying” amplitude 
function. The suitable model for this signal is the 
summation of N Fourier-series components with time-
dependent coefficients. 
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Where the coefficients an(t) are band limited signals. 

IV. UWB DETECTOR 

By sampling the noisy received waveform r(t) = s3(t) 
+ υ(t) we obtain L samples. Then by f0 the only known a 
priori information, we introduce a MMSE estimator to 
estimate the finite bandwidth signals an(i) and then we 
develop our estimator to detect the presence of a UWB 
signal. The optimal window which is an index-limited 
sequence with maximum energy concentration in a finite 
frequency interval is related to the zeroth discrete prolate 
spheroidal sequence (DPSS) [8]. Modeling band limited 
signals as a linear combination of these orthonormal 
windows is well surveyed in [9]. Since an(i) appears as a 
band limited process in this paper, we use DPSS 
sequences as the appropriate model for them. 
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M  are DPSS orthogonal sequences and 

Cn are the coefficient vector. The number of expansion 

functions M ( M <L) is frequency dependent and 

indicates the degree to which an(i) varies with time. For 

small values of M , an(i) is slowly varying (low pass 

process), and for large values of M, it is rapidly varying. 

Now, we model the received signal 
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Based on the above assumptions for the time-varying 
amplitude an(i) or equation (5), the signal ( )

n
r iω can be 

expressed in the following vector form 

n n nω =r F C  (7) 

where Fn is a L × M  matrix with entries 



IWSSIP 2010 - 17th International Conference on Systems, Signals and Image Processing 

475 

 

{ }02
0 1

( , ) ( ) ,
1

j nf i

n m

i L
f i m i e

m

πφ
≤ ≤ −

= 
≤ ≤ M

 (8) 

and 

[ (0) (1) ( 1)]
k n n n

T
r r r Lω ω ω ω= −r L   

and so: 

/ 2

/2
n

N

n N

ω υ
=−

= +∑r r  (9) 

Based on this model, we propose a MMSE estimator of 

the time varying amplitude an(i): Let’s consider the 

following linear estimator for an(i): 
1
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where wn(i) is a L × 1 vector with weights which have to 

be determined. By substituting (9) into (10), we write 

the estimator as: 
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The equation above shows that each estimate is 
formed of two components, the first depends on the 
time-varying amplitude at the frequency of interest nf0; 
and the second is an error term which depends on all the 
other components of r(i) at frequencies different from nf0 
and noise. The optimal estimator must produce the 
correct time-varying amplitude from the first component 
and minimize the contribution of the error term. In other 
words, we need to impose the restrictions that 
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Also we minimize the mean-squared error (MSE) 
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We minimize this error subject to the constraints in 
(12) using the method of Lagrange multipliers, i.e. we 
minimize the cost function 

2( ) ( ) ( ) ( ) ( )

( ) ( )

H H

n n n n

H H

n n

J i i i i i

i i

υσ

λ

= Θ +

 − − Φ 

w w w w

w F
 (14) 

where 

{ } { }
/2

2

/ 2,

,
N

H H H

n n n n

n N n n

E Eυσ υυ′ ′ ′ ′

′ ′=− ≠

Θ = =∑ F C C F I  (15) 

and  ̧ is a M × 1 vector of Lagrange multipliers. By 

setting the derivative of the cost function to zero, we 
obtain the following minimization conditions 
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By using the orthonormality of the DPSS functions 
and the conditions in (12) to solve the equation above for 
the vector  ̧we have 
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Let’s assume Θ  = I: Despite the fact this assumption 

is not realistic, it is actually the most general that one 
could make about the modeling error in absence of any a 
priori information about it, by this assumption 
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Although, MMSE seems time dependent in (18), but it is 
almost constant in practice. Also, MMSE depends on the 
set of DPSS functions selected can be exploited to 
obtain M  and the number of required samples L: The 

suitable choice on M  can be determined by minimizing 

MMSE as a function of M  in a feedback procedure, in 

desired times. In Fig.2 MMSE is shown as a function of 
time for M  = 20 and L = 1000. The optimal weights do 

not depend on the observed data. Therefore, (17) 
provides a suitable non- 

 

Figure 2. Time-dependent minimum mean-squared error. 

coherent estimator in both stationary and moving target 
scenarios. This estimation approach is not limited by any 
restrictive assumption on noise and signal distribution, 
hence, noise suppression seems possible for both 
Gaussian and non-Gaussian noise. 

In this article, the new detector is designed based on 
a simple scenario which is considered in [10]. According 
to this scenario under both hypotheses, by assuming that 
r(i) are independent, identically distributed zero-mean 
Gaussian random variables, i.e. the worst assumption, 
the sufficient statistic is 
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Based on Parseval’s theorem, under H1, sufficient 
statistic is equal to: 
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If we change sufficient statistic from (19) to (20) we 
will consider noise suppressed signal under H1, so vast 
increasing performance appears in detection. 
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To define a threshold for a given probability of false 
alarm (Pfa), we need to determine an analytical 
expression for distribution function of l(a) under H0. 
Under non-Gaussian noise background and under H0, 
|an(i)|

2
 will be correlated random variables with different 

variances in both n and i, so it is impossible to get an 
analytical expression which describes distribution 
function for l(a), even under Gaussian noise, it is rather 
difficult to define this analytical expression. Although, 
|an(i)|

2
 are correlated, because of large number of 

elements in l(a), as Central Limit theorem assumption 
Gaussian distribution is possible for l(a). l(a) satisfies 
Kolmogorov-Smirnov test which as a Gaussianity test 
for 100 normalized sample experiments in Gaussian 
noise and Middleton Class A noise as a non-Gaussian 
noise. Fig.3 shows Cumulative distribution function of 
l(a) in both Gaussian and non-Gaussian noise to compare 
with a standard normal distribution. 

V. SIMULATION AND RESULT 

Computer simulations of Detection characteristics of 
IPCP for a signal scattered by a stationary target is 
performed for two strategies 1) when delay and target 
size are known and 2) when target size is unknown and 
delay is  

 

Figure3. Cumulative distribution function for l(a) 

 

Figure 4. Detection Characteristic 

estimated. These strategies are compared with proposed 
detector for value of false alarm rate 10

-2
 in Fig.4. In this 

simulation Baseband Barker code of length 11 
introduced in [3] is used as transmitted signal and 
integration period for IPCP is assumed 20τ (τ is pulse 
length). One can see the effectiveness and the superiority 
of proposed detector over IPCP even in moving target 
and non-Gaussian noise. This is expected because of the 
fact that proposed detector makes a noise-suppression in 
its non-coherent estimation. Another simulation is 
proposed to determine the receiver operating 
characteristic (ROC) curves for the detector for 
stationary and moving target in both Gaussian and non-
Gaussian noise. In both simulations we use just a time 
interval stationary and M =20 in moving target. The 

result shown in Fig.5 demonstrates the capability of 
detector to detect signal of interest (SOI) in moving 
target and non-Gaussian target detection in low SNR 
(0dB). Also, we use log scale for the abscissa in Fig.5 to 
make the curves more readable. 

VI. CONCLUSION 

In this paper, Time-dependent FIR filter is introduced 
as a more realistic assumption for target characteristic 
for UWB signals in radar. It is shown that an UWB 
received signal can be represented as a composed of 
band-limited  

 

Figure 5. Receiver Operation Characteristic (ROC) in SNR=0dB 

signals which DPSS can span perfectly. A non-coherent 
detector is proposed which exploits DPSS as 
unconditional orthonormal signals usefully to detect SOI 
in stationary and moving target. Since there is no 
assumption in detector for noise and signal distribution, 
detector appears much versatility in non-Gaussian noise. 
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