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Abstract–Synchronization plays an important role in
telecommunication systems and integrated circuits.
The Master-Slave is a commonly used strategy for clock
signal distribution. Recently, due to the wireless net-
works development and the higher operation frequency
of integrated circuits, the Mutually-Connected clock
distribution strategies are gaining importance and the
Fully-Connected strategy appears as a convenient en-
gineering solution. The Fully-Connected architecture
complexity imposes difficulties to satisfy both stability
and performance requirements in the control system
design. For that reason the multi-variable LQG/LTR
control technique is applied in attempting to fulfill
both stability and performance requirements.The re-
sults seems to confirm the improvement in the transient
response and in the precision of the clock distribution
process.

Keywords: Synchronization; Phase-Locked Loop;

Fully-Connected network; Robust Control.

I. Introduction

Synchronization allows the correct temporal order
of information processing in communication systems,
computation and control. The Master-Slave is a com-
monly used strategy for clock signal distribution [1,
2]. Recently, with the wireless networks development
and the increase in the operation frequency of inte-
grated circuits, the Fully-Connected clock distribution
strategy is gaining importance (Fig.1). The Fully-
Connected architecture is also being used in digital
electronic circuits for clock signal distribution [3], and
in synchronous neural networks for pattern recogni-
tion [4].

In a Fully-Connected architecture, the phase and
frequency scales are determined by all the nodes. Dif-
ferently from the Master-Slave strategies, the Fully-
Connected presents a robust behavior when adding or
dropping nodes. The nodes are build with PLLs (Fig.2)
that are composed of a phase-detector (PD), a low-
pass filter (f) and a voltage controlled oscillator (VCO)

[1, 2, 5]. The main drawback of the Fully-Connected
architecture is the definition of control algorithms that
can assure the stability of the network dynamic behav-
ior [5, 6]. In hybrid synchronization techniques groups
of nodes synchronized by the Fully-Connected architec-
ture are synchronized with network master clocks by
using the Master-Slave tecnique. In this arrangement,
if a route of clock signal distribution becomes inoper-
ative, the group of Fully-Connected nodes retain for
some time the original phase and frequency received
from the network [7].

The multi-variable linear quadratic gaussian and
the loop transfer recovery (LQG/LTR) robust control
techniques provide systematic procedures to design the
compensator, and to analyse the dynamic stability of
the system, besides robustness to a wide class of mod-
elling errors [8, 6]. The technique is also suitable for
this application due to multivariable characteristic of
the Fully-Connected network. In section II the mathe-
matical model of a Fully-Connected PLL network with
N nodes is developed. The LQG/LTR robust control
system design is shown in section III.
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Figure 1: Fully-Connected architecture

II. Mathematical model

For each node in a Fully-Connected PLL network,with
N nodes, there are N−1 inputs to make the phase com-
parisons between the local VCO and the other nodes.
There is also another phase comparison between the

local VCO and the external input v
(j)
I , as shown in

Fig. 2. The PDs outputs are weighted, generating the



Figure 2: PLL block diagram

input to the filter f (j)(t), which feeds the local VCO.

The inputs and output signals are given by:

v
(j)
I (t) = v

(j)
I sin

(

ωM t + θ
(j)
I (t)

)

, (1)

and
v(j)

o (t) = v(j)
o cos

(

ωM t + θ(j)
o (t)

)

, (2)

where vI and vo are the amplitudes of the input and
output signals, and ωM is the free-running frequency of
all VCOs. The coupling between the nodes is carried
out by an inner coupling input, given by:

v(ℓ)
o (t) = v(ℓ)

o sin
(

ωM t + θ(ℓ)
o (t)

)

, (3)

for ℓ = 1, . . . , j − 1, j + 1, . . . , N ,

The filter is all-pole [2] with transfer function given
by:

F (s) =
α0

s + β0
. (4)

The weighted PDs output is:

v
(j)
d (t) =

1

N

[

N
∑

ℓ=1
ℓ 6=j

k(ℓ,j)

k
(j)
o

sin
(

θ(ℓ)
o (t) − θ(j)

o (t)
)

+

k(I,j)

k
(j)
o

sin
(

θ
(j)
I (t) − θ(j)

o (t)
)

]

, (5)

with the loop gains given by:

k(ℓ,j) =
1

2
aℓ,jk

(j)
m k(j)

o v(j)
o v(ℓ)

o , (6)

k(I,j) =
1

2
aI,jk

(j)
m k(j)

o v(j)
o v

(j)
I , (7)

where k
(j)
m is the PD gain, k

(j)
o the VCO gain, aℓ,j and

aI,j are the PDs weighting factors. In (5) the double-
frequency terms are neglected because they are sup-
posed to be filtered [5].

The output of the VCO is controlled according to
the relation:

d

dt
θ(j)

o (t) = k(j)
o v(j)

c (t), (8)

where

v(j)
c (t) =

∫ t

0

f (j)(t − τ)v
(j)
d (τ)dτ. (9)

In order to simplify the mathematical reasoning all
the constitutive parameters of the nodes are considered
to be the same, then, k(ℓ,j) = k(I,j) = k. Considering
the former relations and applying the convolution theo-
rem [10] the dynamics of the phase output of the nodes
is given by:

θ̈(j)
o + β0θ̇

(j)
o − α0

k

N

[

N
∑

ℓ=1
ℓ 6=j

sin
(

θ(ℓ)
o − θ(j)

o

)

+

sin
(

θ
(j)
I − θ(j)

o

)

]

= 0, (10)

for j = 1, 2, . . . , N . Additionaly, for small phase errors,
the sinusoids in (10) can be simplyfied by using the first
terms in the Taylor’s series [10, 11, 5], resulting:

θ̈(j)
o +β0θ̇

(j)
o +α0k






θ(j)

o +
1

N

N
∑

ℓ=1
ℓ 6=j

θ(ℓ)
o






= α0kθ

(j)
I , (11)

for j = 1, 2, . . . , N , which can be tranformed into state
space equations by defining the state variables as fol-
lows:

x
(j)
1 = θ(j)

o

x
(j)
2 = θ̇(j)

o (12)

resulting,

ẋ
(j)
1 =x

(j)
2 (13)

ẋ
(j)
2 =−β0x

(j)
2 − α0k

[

x
(j)
1 +

1

N

N
∑

ℓ=1
ℓ 6=j

x
(ℓ)
1

]

+ α0kθ
(j)
I ,

for j = 1, 2, . . . , N .

III. LQG/LTR Control system design

As an example, the multivariable Fully-Connected net-
work is implemented consisting of two nodes (N = 2),
i.e., two external inputs - see (1) - and two outputs.
The other parameters are set in order to generate a
stable Fully-Connected network [5]. The loop-gain
is set to k = 1 and the filter coefficients are set to
α0 = 0.6283 and β0 = 0.6283. Accordingly the state
space equation for this network is given by:

ẋn = Anxn + Bnun (14)

yn = Cnxn + Dnun. (15)
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with Dn = 02×2, xn =
[

x
(1)
1 x

(1)
2 x

(2)
1 x

(2)
2

]T

and un =
[

θ
(1)
I θ

(2)
I

]T
. For a precise clock sig-

nal distribution the network needs to track phase steps
with null steady state error. For that reason pure inte-
grators must be added to the loop, resulting that the
nominal system transfer function matrix is given by:

GN(s) = C(sI − A)−1B (16)

where A =

[

02×2 Cn

Bn An

]

, B =

[

I2×2

04×2

]

and C =

[

02×2 Cn

]

. In addition, x =
[

un
T xn

T
]T

[8].

The transfer function matrix is a multivariable
state space description of the nominal network. In this
case, the frequency response of the system is given in
terms of the singular values of the transfer function
matrix [8, 9]. The transfer function matrix has two
singular values denoted respecively by σM (GN) and
σm(GN), where M stands for maximun and m for min-
imum.

The stability analysis of multivariable systems is
done by means of its stability barrier, wich is a function
of ω. All singular values of the frequency response must
be located bellow this barrier. The stability barrier
is obtained from the error matrices generated by all
possible combinations of deviations. The error matrix
is defined as:

ǫ(jω) = [GR(jω) − GN(jω)]G−1
N (jω) (17)

where GR(s) is the real system transfer function ma-
trix [8, 9, 6], and the stability barrier is defined by:

b(ω) =
1

eM (ω)
(18)

where eM (ω) = max [σM (ǫ(jω))]. The stability barrier
is determined, using MATLAB [12], for 300 values of
ω, in the range of interest, and for combinations of the
deviations of the filter coefficients, α0 and β0.

The performance requirements are accomplished
by the disturbance rejection barrier (αn(ω)) and by
the reference tracking barrier (p(ω)). In the case of
disturbance rejection barrier both open loop and closed
loop singular values must be bellow the barrier. On the
other hand, in the case of reference tracking barrier, the
open loop singular values must be above the barrier
[8, 9, 6]. The robustness barriers are shown in Fig. 3.
Clearly, the frequency response of the uncompensated
nominal system GN(s), shown in Fig. 3, do not satisfy
the stability barrier.

The LQG/LTR method is used to design the
closed loop control system with the compensator K(s),
as shown in Fig.4. The LQG/LTR is applied following
the steps.

• The “target loop” transfer function matrix
GTL is determined according to GTL(s) =
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Figure 3: Nominal system singular values and robust-
ness barriers

1
µ
C (sI − A)

−1
L, where µ and L are chosen in

order to satisfy σM (GTL(jω)) < b(ω) at high fre-
quencies. Here L was determined using the Cabral
criterion [8].

• The state observer gain matrix is determined by
H = 1

µ
ΣCT , where Σ is the solution of the al-

gebraic Riccati equation: AΣ + ΣAT + LLT −
1
µ
ΣCTCΣ = 0.

• The state regulator gain matrix is determined by
G = 1

ρ
BTΦ, where Φ is the solution of another

algebraic Riccati equation: −ΦA−ATΦ−CTC+
1
ρ
ΦBBTΦ = 0. The parameter ρ is a small posi-

tive number that matches the frequency response
of the whole system to the target loop.

• The compensator matrix transfer function is given
by K(s) = G [sI − (A + BG + HC)]−1

H.

The compensator K(s) can be implemented by ac-
tive or passive synthesis of networks, and the matrix
GN(s)K(s) satisfy both σM (GN(jω)K(jω)) < b(ω)
and σM (CN) < b(ω), where CN is the closed loop ma-
trix transfer function of the compensated system, given
by:

CN(s) = [I + GN(s)K(s)]
−1

GN(s)K(s), (19)

assuring the stability of the system. Finally, as shown
in Fig. 5, the singular values of both the open loop and
closed loop system satisfy the robustness barriers.

The performace of the compensated Fully-
Connected network can be seen in Figs. 6 and 7. In
Fig. 6 both uncompensated and compensated networks
are compared, the compensated network presents null
steady state error to a step input in θ1

I . In Fig. 7
the compensated network rejects the double-frequency
jitter (DFJ) [13], applied as a disturbance d(s) (see
Fig. 4). The DFJ is attenuated at a rate of −60dB

approximately.
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Figure 4: Control system block diagram
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Figure 5: Open loop and closed loop singular values
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IV. Conclusion

The proposed Fully-Connected network is suitable to
generate clock signals to be distributed in a hybrid syn-
chronization technique. The multivariable LQG/LTR
was used in the analysis and to assure stability even
in the presence of modelling errors. Also the toler-
ance to jitter was observed, with the DFJ applied
as a disturbance. The attenuation to the DFJ is of
−60dB, which can be considered satifactory. Accord-
ingly, Fully-Connected networks with phase weighting
PDs implemented with LQG/LTR control technique
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Figure 7: Response to double-frequency jitter (DFJ)

can increase the reliabity and quality of the clock sig-
nal distribution in telecommunication networks.
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