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Abstract—This paper evaluates cepstral classifiers 

applied to pathological voice detection problem. The 

goal is analyze the individual and combined 

performance of classifiers based on cepstral, weighted 

cepstral, delta cepstral, and weighted delta cepstral 

parameters. They are evaluated considering two 

different combination strategies yielding a multiple 

classifier that is more efficient than either individual 

technique. The efficiency rates obtained vary from 87% 

using stand alone weighted delta cepstral to 98% 

considering the classifiers combination. 

Keywords-Acoustic signal analysis, pathological voices, 

cepstral analysis, multiple classifiers. 

I.  INTRODUCTION  

The diagnosis of laryngeal pathologies is usually 
made by laryngoscopical exams, which are considered 
invasive, causing discomfort to patients. Digital signal 
processing techniques performing an acoustic analysis 
for vocal quality assessment is a simple and noninvasive 
measurement procedure. These techniques provide an 
objective diagnosis of pathological voices, and may be 
used as complementary tool in laryngoscopical exams 
[1].  

Some researchers have dedicated efforts for obtaining 
efficient methods for discriminating normal and 
pathological voices using acoustic analysis [1]-[6]. 
However, the research for a more detailed and 
representative acoustic analysis of pathological voice 
signals is still a promising area.  

In this work, a parametric analysis based on cepstral 
analysis is employed to discriminate pathological voices 
of speakers affected by vocal fold edema. Cepstral 
(CEP), weighted cepstral (WCEP) delta cepstral 
(DCEP), and weighted delta cepstral (WDCEP) 
parameters are used as features to detect the  
irregularities of the pathological voices in comparison 
with the normal voice. A vector quantization technique 
(VQ) was used associated with a distortion measurement 
to classify the speech signal by each parameter. The VQ 
was trained with voices affected by the considered 
pathology and the results will be used to build an 
effective method basis for detecting  pathological voices.  

To improve the performance of the cepstral 
classifiers, an approach based on multiple classifiers is 

evaluated. For that, two combination rules are 
considered:  the combination by average and the 
combination by product, which are modifications of the 
strategies used in [7]. 

II. AN OVERVIEW ON THE CEPSTRAL 

ANALYSIS  

Considering that speech signal is the result of 
convolving excitation with vocal tract sample response, 
by cepstral analysis, it is possible to separate these two 
components. All the cepstrum-related features described 
are obtained after Linear Predictive Coding (LPC) 
analysis [8],[14]. 

The linear prediction method estimates each speech 
sample based on a linear combination of the p previous 
samples; a larger p enables a more accurate model. It 
provides a set of speech parameters that represent the 
vocal tract [8]. It is expected that any change in the 
anatomical structure of the vocal tract, because of 
pathology, affects the LPC coefficients and also the 
cepstral and its derivatives.  A linear predictor with 
prediction coefficients, α(k), is defined as a system 
whose output is 
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where p is the predictor order. The autocorrelation 
method and the covariance method are standard for 
computing the predictor coefficients. The prediction 
coefficients are computed using the Levison-Durbin 
algorithm [8]. 

Cepstral derivatives can improve the representation 
of the spectral speech properties.  Pathological speech 
presents significant spectral differences of normal 
voices. The cepstral coefficients can be calculated 
recursively from the linear predictor coefficients, α(k), 
by means of [9]: 
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Cepstral coefficients obtained by (2) provide a good 
measure of the difference in the spectral envelope of the 
speech frames. These coefficients are used in order to 
observe the information of voice transitions in 
pathological speech signal versus normal speech [10].  
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The first derivative of the cepstral coefficients (Delta 
Cepstral Coefficients)  is given by [10]: 
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where c(n,t) is the n-th LP coefficient at time t, ø is a 
normalization constant and 2K+1 is the number of 
frames over which the computation is performed.  

The delta cepstral coefficients are obtained as a 
simplified version of (3), as it was proposed by [10]:  

    ( ) [ ( )] ,     1 ,
K

i i q

q K

c n kc n G n p−
=−

∆ = ≤ ≤∑         (4) 

where G is a gain term (for example, 0.375), p is the 
number of delta cepstral coefficients, K=2, n the 
coefficient index and  i the frame of analysis [12]. 

In order to account for the sensitivity of the low-
order cepstral coefficients to overall spectral slope and 
the sensitivity of the high-order cepstral coefficients to 
noise, cepstral weighting (liftering) is employed . 

The weighted cepstral coefficients (WCEP), cwi(n),  
are obtained by [10]-[12]: 

( ) ( ) ( ).i icw n c n w n= ⋅       (5) 

The type of window used in this work was the band 
pass liftering (BPL), given by [10]: 
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where L is the size of the window. The BPL weights a 
cepstral sequence by (6) so that the lower- and higher-
order components are de-emphasized.  

Weighted Delta Cepstral coefficients (WDCEP) are 
obtained replacing (4) in (5), resulting on 

( ) ( ) ( ).i icw n c n w n∆ = ∆ ⋅
                    

(7) 

The characteristics of weighted cepstral and delta 
cepstral are associated by using (7).  

III. DATABASE AND METHODS  

The database was recorded by the Massachusetts Eye 
and Ear Infirmary (MEEI) Voice and Speech Lab [14]. 
The following cases were selected: 44 patients 
presenting vocal fold edema - 33 women (17 to 85 years 
old) and 11 men (23 to 63 years old), most of them (32) 
with bilateral edema and 53 patients with normal voices 
which is composed of 21 male (26 to 59 years old), and 
32 female (22 to 52 years old). 

In the pre-processing stage speech signals are 
multiplied by a 20 (ms) Hamming window with an 
overlap of 50%. A filter of pre-emphasis (0.95) is also 
used. Then each parameter is calculated after LP 
coefficients (p=12).  

To dimensionality reduction of data, a Vector 
Quantization (VQ) technique [15] is used that is 
associated with a distortion measurement. The 
quantization is carried out individually for each feature 

using just voices under vocal fold edema in the training 
phase. Thus, different VQ-trained distance classifiers 
[12] are obtained by the discrimination process. The VQ-
classifiers are applied to static feature vectors, which are 
computed for every analysis frame of the speech samples 
over a dynamic input sustained vowel /a/. It is used 50% 
of vocal fold edema cases in the training phase. To the 
test phase, the other 50% of voices signals under vocal 
fold edema, and all the normal (53) voices are used. 
After the feature extraction, a codebook is generated 
using the Euclidean distortion measurement and the 
nearest neighbour rule is used to find the codevector. 
LBG algorithm to quantization and the least mean square 
distance for classification process are used [16]. 

IV. RESULTS AND DISCUSSION 

The measurements used to evaluate the performance 
of the methods are the following: Correct acceptance 
(CA) rate;  Correct rejection (CR) rate, False acceptance 
(FA) rate; False rejection (FR) rate; and the Efficiency 
representing the correct classification of a given class 
when that is present, given by E(%)= 
(CR+CA)/(CR+CA+FA+FR) x 100 [1]. 

Table I shows the results obtained for each parameter 
individually.  It can be seen that Delta Cepstral (DCEP) 
method gives the best Efficiency and False Acceptance 
rates. However, this method presents a higher False 
Rejection rate compared to cepstral (CEP) method.  

TABLE I.  PERFORMANCE EVALUATION  OF THE 

INDIVIDUAL FEATURES. 

Classifiers CR (%) CA (%) FA (%) FR (%) E (%) 

CEP 89 91 11 9 90 

WCEP 94 86 6 14 90 

DCEP 98 86 2 14 92 

WDCEP 91 82 9 18 87 
 

     To evaluate the combined features, makes the 
assumption that a speech signal must be assigned to one 
of the K possible classes and assume that L classifiers are 
available. The distortion measurement used by the ith 
QV-classifier is denoted as di. Two combination rules 
have been employed: 

• Combination by average:  

 

 

• Combination by Product:  

 

 

where D denotes the distortion obtained after 
combination.  

In order to guarantee an standardization of the that 
the classifier outputs, the distortion values of each VQ-
classifier were normalized (values between 0 and 1). A 
threshold of D is chosen such as the best separation 
between the classes is obtained.  
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The results for average and product combination are 
presented in Tables II and III, respectively. The results 
show that, for almost all combinations, the False 
Rejection rates decrease significantly. In the average rule 
(Table II), the probability in rejecting the presence of 
vocal fold edema (14%) in the individual case (DCEP) 
that gives the best efficiency (Table I) is about 2% when 
combining the four parameters.  

TABLE II.  PERFORMANCE EVALUATION – THE AVERAGE 

RULE 

Classifiers 
CR 

(%) 

CA 

(%) 

FA 

(%) 

FR 

(%) 

E 

(%) 

CEP and DCEP 92 95 8 5 94 

CEP and WDCEP 94 95 6 5 95 

CEP and WCEP 96 95 4 5 96 

DCEP and WDCEP 98 82 2 18 90 

DCEP and WCEP 94 93 6 7 94 

WDCEP and WCEP 92 95 8 5 94 

CEP, DCEP and WDCEP 94 91 6 9 93 

CEP, DCEP and WCEP 96 95 4 5 96 

CEP, WDCEP and WCEP 96 98 4 2 97 

DCEP, WDCEP and WCEP 94 93 6 7 94 

CEP, DCEP, WDCEP and 

WCEP 
94 98 6 2 96 

 

The best result is obtained using combination by 
product of CEP and WDCEP classifiers (Table III). It 
can be observed an improvement of at least 6% in 
efficiency rate, comparing with the DCEP individual 
classifier. For this case, the probability in detecting the 
presence of the edema pathology when, in real, it is not 
present (FA), is null. 

TABLE III PERFORMANCE EVALUATION THE PRODUCT 
RULE 

Classifiers 
CR 

(%) 

CA 

(%) 

FA 

(%) 

FR 

(%) 

E 

(%) 

CEP, DCEP 100 93 0 7 97 

CEP, WDCEP 100 95 0 5 98 

CEP, WCEP 92 98 8 2 95 

DCEP, WDCEP 96 86 4 14 91 

DCEP, WCEP 94 95 6 5 95 

WDCEP, WCEP 92 98 8 2 95 

CEP, DCEP and WDCEP 94 95 6 5 95 

CEP, DCEP and WCEP 94 95 6 5 95 

CEP, WDCEP and WCEP 94 98 6 2 96 

DCEP, WDCEP and WCEP 94 93 6 7 94 

CEP, DCEP, WDCEP and 

WCEP 
74 98 26 2 86 

V. CONCLUSIONS  

In this paper the individual and combined 
performance of classifiers based on cepstral, weighted 
cepstral, delta cepstral, and weighted delta cepstral 
parameters were evaluated for the pathological voice 
detection problem. The results show that combination of 

these classifiers can yield a significant performance 
improvement related to individual ones. The best 
efficiency rate in the individual case was 92% and after 
the combinations, about 98%. This mean that the 
parameters employed are complementary and can be 
used to detect vocal disorders caused by the presence of 
vocal fold pathologies. Future work will focus in the use 
of others combination rules, such as an weighted  
average, for example, and in the use of other classifiers, 
such as Neural Network and/or Hidden Markov Models. 
Furthermore, the system performance can be tested with 
other laryngeal pathologies. 
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