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Abstract—In this paper we propose a segmentation 

approach that applies the topological derivative as a pre-

processing step. The obtained result is used for 

initializing a level set model in order to get the final 

result. First, the method uses a low-pass filter and the 

topological derivative to get a rough definition of the 

boundaries of interest. Then, morphological operators 

are applied to fill holes and discard artifacts. Finally, a 

level set model is used to improve the result giving the 

desired approximation. We test the pipeline for cell 

image segmentation.  
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I. INTRODUCTION 

    Segmentation is a fundamental step for medical 
imaging analysis and computer vision tasks. Approaches 
in image segmentation can be roughly classified in [1]: 
(a)Contour Based methods, like snakes and active shape 
models; (b)Region based techniques; (c)Optimization 
approaches; (d)Clustering methods, like k-means, Fuzzy 
C-means, Hierarchical clustering; (e)Thresholding 
methods. In this paper we focus on contour based 
techniques, the level set approach, and an optimization 
method formulated through the topological derivative 
[2].  

    The level set model has been successfully applied 
for boundary extraction, motion tracking and 
segmentation, mainly in medical imaging [3]. In general, 
the process of boundary extraction in such applications 
involves some kind of pre-processing step [1]. On the 
other hand, segmentation techniques based on 
topological derivative needs (in general) a post-
processing step, in order to improve the results [2]. 

    In this paper we focus on image processing 
through topological derivative concept [4,5,6], which 
quantifies the sensitivity of a given shape functional with 
respect to a singular domain perturbation, such as the 
nucleation of holes, inclusions, source-terms or even 
cracks. This concept, initially conceived to deal with 
topology optimization problems, has also been 
successfully applied to image segmentation [2]. Despite 
the observed potential of the topological derivative, its 
result must be improved by a contour based approach, 
like level set. In this way, we are combining two 
segmentation methods: an optimization technique to get 
a first approximation of the boundary and the level set 
method to complete the segmentation. Besides, some 

low-pass filters and morphological operators can be also 
applied in order to improve the segmentation efficiency. 
The obtained segmentation pipeline is the contribution of 
this paper: (a)Gaussian Filter; (b)Topological Derivative; 
(c)Mathematical Morphology; (d)Level Set. 

    Despite of some theoretical study about 
connections between level set and the topological 
derivative [7], the combination of these techniques has 
not been deeper explored in the image segmentation 
literature yet. One advantage of using level set in the last 
step is the possibility of exploring the topological 
capabilities of level set for multi-object segmentation 
and the fact that the methodology remains the same for 
2D and 3D images. However, we can replace the level 
set for any other suitable deformable model.  

II. LEVEL  SET   

      The main idea of the level set method is to 
represent the deformable surface (or curve) as a level set 

( ){ }0|3 =ℜ∈ xGx  of an embedding function: 

,: 3 ℜ→ℜ×ℜ +
G                                                         (1)

                                            

such that the deformable surface (also called front in this 

formulation), at time t , is given by: 

( ) ( ){ }0,|3 =ℜ∈= txGxtS                                           (2) 

    In this paper, the governing equation for the 
embedding function G , and, consequently, for the zero 

level set )(tS , has the general form [3]: 
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where λ and γ  are parameters that weight the different 

terms, k  is the fronts curvature, G  is an embedding 

function, I  is the image field and ∇  is the gradient 

operator. An initial condition ( )0, =txG  is also 

required which can be obtained through a signed-
distance function as follows: 

( ) ,0, dtxG ±==                                                         (4) 
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where d is the distance from x  to the surface ( )0, =txS  

and the sign indicates if the point is interior (-) or 
exterior (+) to the initial front. 

Finite difference schemes, based on an uniform grid 
[8], can be used to solve (3). Besides, the update of the 
embedding function can be made cheaper if the narrow-
band technique is applied [3]. Also, a stopping criterion 
is adopted based on small displacements of the zero level 
set.  

III. TOPOLOGICAL DERIVATIVE IN IMAGE 

SEGMENTATION  

Let Ψ  be a given shape function and consider that 
we introduce a singular perturbation in the original 
domain governed by a small parameter ε . Then, the 

concept of topological asymptotic expansion can be 
stated as: 

( ) ( ) ( ) ( )( )εεε fDf T Ο+Ψ+Ψ=Ψ 0                           (5) 

where ( )εΨ  is the value of the shape function in the 

perturbed domain, ( )0Ψ  is the same shape function in 

the original domain and ( )εf  goes to zero with .ε  

Therefore, ΨTD  is the topological derivative of the 

shape function .Ψ  Then, (5) provides a first order 

approximation of ( )εΨ  for a sufficiently small .ε  

More precisely, the topological derivative ΨTD  is a 
scalar function defined over the original domain that 
indicates, in each point, the sensitivity of the shape 
function when a singular perturbation of size ε  is 
introduced at that point. In general, the domain singular 
perturbation can be, for instance: the introduction of 
holes, cracks or non smooth changes in the parameters of 
the problem (e.g., material properties, sources acting 
over the domain, boundary conditions, etc.).  

In [2] was proposed a shape function that quantifies 
the misfit between the input image ν  being segmented 

and a possible segmentation .u  Let us first define the 

input image ν  as 

:)({ 2 Ω∈=∈ LwVv w is constant at each element}   (6) 

and the segmented image u  as  

{ }Ω∈∀∈∈=∈ xCxuVuUu ,)(:                              (7) 

where Ω  is an open bounded domain in 3,2, =ℜ n
n  and 

the set of classes C  is given by  

},,...,1:{ ci NicC =ℜ∈=                                              (8) 

with 
cN  used to denote the number of classes in which 

the original imageν will be segmented and 
ic  represents 

the intensity that characterizes the 
thi - class. Let us 

introduce the following shape function [2]. 

∫Ω +Ω∇•∇==Ψ dKJ ϕϕϕ
2

1
)(:)0(  

                       ∫Ω Ω−−+ ,)((
2

1 2
duνϕ                           (9) 

where the field ϕ  accounts for the misfit between ν  and 

,u  and is solution of the following variational problem: 

for all ),(1 Ω∈ Hη  find ( ),1 Ω∈ Hϕ such that: 

∫ ∫ ∫Ω Ω Ω
=Ω−−Ω+Ω∇•∇ ,0)( duddK ηνβϕηηϕ    (10)                                             

The diffusivity second order tensor field K is 
constant at image element level and 10 ≤< β is used to 

adjust the numerical algorithm. Note that the image 

u and function ϕ  can be seen as the control and the 

state, respectively. Therefore, the image segmentation 
problem can be stated as following: given the image data 

V∈ν  find the segmented image Uu ∈∗  such that 

minimizes a functional .: ℜ→UJ  

Associated to ϕ  we define the function 
εϕ  solution 

to the perturbed variational problem. In this context, the 
perturbation is characterized by changing the segmented 

image u  for a new one 
Tu  that is identical to u  

everywhere in Ω  except in a small region 
εω  centered 

in point Ω∈x̂ . In 
Tu,εω  assumes one of the values 

.Cci ∈  More precisely, )()( xuxuT = if 
εϖ\Ω∈x and 

iT cxu =)( if
εω∈x . In this way, the perturbed shape 

function becomes 

∫Ω +Ω∇•∇==Ψ dKJ εεεε ϕϕϕε
2

1
)(:)(  

                          ∫Ω Ω−−+ ,))((
2

1 2 duTνϕε
                (11) 

where the field 
εϕ  is the solution of the perturbed 

variational problem: for all ),(1 Ω∈ Hη find ( )Ω∈ 1
Hεϕ  

such that  

( )∫ ∫ ∫Ω Ω Ω
Ω−=Ω+Ω∇•∇ duddK T ηνβηϕηϕ εε

         (12)

                                               

      The associated topological derivative can be easily 
calculated, namely (see [2] for details), 

+−−−=Ψ )ˆ()ˆ(()ˆ())[(ˆ((
2

1
),ˆ( xuxxxuccxD iiT νϕ  

                   )],ˆ()1(2)))ˆ(()ˆ(( xcxx i ϕβνϕ −+−−+        (13) 

with
εωε =)(f  , Ω∈∀ x̂ . This derivative allows us to 

select, for each point Ω∈x̂ , the class Cc i ∈  that 

produces the minimal value of the shape function.   
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It is important to emphasize that the diffusivity tensor 

K in general can be adopted as a homogeneous isotropic 
tensor kI , where k is a piecewise constant function and 

I is the identity tensor. Nevertheless, when the noise 
reduction is performed using a non-linear anisotropic 
method or a restoration method based on the topological 

derivative, the tensor K  might be chosen equal to the 
diffusivity tensor provided by these methods. 

IV. PROPOSED METHOD   

    The proposed segmentation methodology is 
composed by the following pipeline: (a)Gaussian Filter; 
(b)Topological Derivative; (c)Mathematical Morphology 
operators; (d) Level Set. The steps (a) and (c) are useful 
to improve the robustness of the pipeline against 
parameters choice.  

    Medical images have a complex intensity field and 
texture patterns. Thus, we apply low-pass filter to 
smooth the original image before using the topological 
derivative. As mentioned in section III, for the image 

V∈ν  we need to find the segmented image Uu ∈∗  

that minimizes the shape function J (expression (9)) by 

successively selecting for each point Ω∈x̂  the class 

that produces a negative value of the topological 
derivative. Table I describes the whole algorithm.  

TABLE I.  ALGORITHM I: IMAGE SEGMENTATION BASED ON     

THE TOPOLOGICAL DERIVATIVE 

Input: An image V∈ν , the initial set C , an initial guess Uu∈ , 

the diffusivity tensor field K and the parameters β  and ).1,0(∈α  

1. Output: The segmented image Uu ∈∗ . 

2     while 0<∗
TD  do 

3          find the solution ϕ  for the problem (10)       

4        evaluate ),ˆ( iT cxD Ψ according to (13) 

5        compute },...,1),,ˆ({min
ˆ

ciT
x

T NicxDD =Ψ=
Ω∈

∗                                  

6       for each pixel Ω∈x̂  do 

7        compute }),ˆ({minarg)ˆ( iT
Cc

cxDxc
i

Ψ=
∈

∗  

8         if ,)1(),ˆ( ∗∗ −≤Ψ TT DcxD α then  ∗= cxu )ˆ(  

9         end for 

10          Update the class C according to algorithm in Table II 

11    end while  

     12       uu =∗  

 

Obviously, a fundamental question is how to define 
the set of classes C. This is performed by calling the 
Algorithm II, described in Table II after each interaction 
of the main loop (line 10 of Table I). Basically, the 

Algorithm II takes an initial guess C and computes lC , 

1,0,1l = − , and replaces the class C by the l
C  that 

minimizes the functional  J in expression (9). The 
obtained result may have holes inside the objects of 
interest as well as artifacts in the background. These 
problems can be easily removed through simple 
morphological operators (erosion, dilation, region 
filling). The obtained result is binarized (0 for the 
background and 1 inside the objects) which can be used 
to get a rough approximation of the boundaries of the 
targets. 

TABLE II.  ALGORITHM II: ADJUST THE VALUES OF THE CLASSES 

Input: An image V∈ν , the set C , and the segmented image at 

iteration I , Uu∈ . 

Output: The new set of classes .∗C  

 []=∗C         

for Cci ∈  do       

for 1l = − to1 do  

           set }(}){( lccCC ii

l +∪−=                                                                        

           set 
l

u  substituting 
l

CC →   

                       compute )(ϕJj
l =  

end for      

         lcc i +=min  where )(min l

l
jl =  

         
min

cCC ∪= ∗∗  

end for      

 

  

The obtained curves are the input for the computation 
of the signed-distance function of expression (4) to 
initialize the level set method, described in section II. In 
this way, we get a first approximation of the boundary 
which can save time computation and improve the 
accuracy of the level set result.  

V. EXPERIMENTAL RESULTS  

 In this section we show the robustness and 
efficiency of the proposed segmentation approach. The 
case study is cell segmentation. Therefore, it is assumed 
that we may have more than one object of interest in the 
image. However, we are supposing that each object 
boundary have the properties of connectedness and 
closedness. Therefore, we can fill inner holes and we can 
discard foreground regions linked with the image 
boundary. In this case we assume two classes. The initial 
guess for the set C is the minimum and maximum 
intensities of the original image at startup. The setting of 
parameters was performed through experimentation. 

    As an example, let us observe Fig.1 whose 
resolution is 144×150, which shows a result obtained 
with our method. The Fig.1(b) draws the topological 
derivative result which must be improved by discarding 
cell regions linked with the image boundary. The result 
is suitable for level set initialization (Fig.1(c)). The 
desired result, shown in Fig.1(d), is obtained after 9 
interactions of the level set. The values of the parameters 

used are: for the topological derivative we set β = 0.3, 

α  = 1 and K  = 20 and for level set we use niter  = 100, 

t∆  = 0.005, e  = 0.0001, λ = 13 and γ  = 10. We observe 

that the boundary of the cell (Fig.1(d)) in the right-hand 
corner of the bottom becomes smoother. 
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Another point is the scale of the objects of interest. In 
general, we can incorporate information about the scale 
range (size) of the objects and to use this information to 
discard artifacts that may appear in the field generated by 
the topological derivative. The next example, pictured on 
Fig.2, shows an electronic micrography of a nucleous 
whose resolution is 137×179. We can observe the 
presence of noise and artifacts. Besides, the interested 
boundary has points with high curvature. 

 

 

    

 

The Fig.2(b) shows the result of the topological 
derivative. We observe small holes inside the region of 
interest as well as artifacts in the background due to 
inhomogeneities in the intensity pattern. So, we apply 
morphological operators in order to fill holes and a scale 
threshold to discard foreground artifacts. The result 
allows to get a suitable initialization for the level set 
method, as we can see in Fig.2(c). After 20 interactions 
we obtain the desired result. We only change the 

parameter e which in this case is e  =  0.00001. 

    A visual inspection shows little changes in the 
previous examples. However, if we add noise to the 
original image, the behavior of step (b) of the algorithm 
changes, which justifies the inclusion of step (c) in the 

proposed pipeline. The Fig.3(a) shows the original image 
in Fig.2(a) after adding a gaussian noise of mean null 
and variance 0.8. In this case, the initialization of the 
level set (also shown on Fig.3(a)) is not so close to the 
desired boundary as we observed in the above 
examples. Despite of this, a visual inspections shows 
that we get the desired result after 135 interactions. The 

values of the parameters used are: β  = 0.2, niter = 400, 

e  = 0.00001 and λ  = 30.  The others are the same of 

example 1. 
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VI. CONCLUSIONS AND FUTURE WORKS 

In this work we propose a segmentation approach 
based on topological derivative and level set method. 
The method applies also prior knowledge about the scale 
of the objects of interest. The result shows that the 
technique is robust against noise and very powerful for 
multi-object segmentation. A further direction is to study 
the sensitivity of the pipeline against parameter choice 
and to compare the performance with other related 
techniques.  
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Figure 1.  (a) Cell image. (b) Result of the topological. (c) Level 

set initialization. (d) Level set result after 9 interactions. 

Figure 2.  (a) Nucleous image. (b) Topological derivative result 

with inner holes and artifacts. (c) Level set initialization after  

application of morphological operators. (d) Level set result after 20 

interactions. 

Figure 3.  (a) Level set initialization after application of 

morphological operators. (b) Level set result after 135 

interactions. 


