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Abstract— This paper shows a software library with 

functionalities for real-time cardiac beats detection, 

which is defined by a facade pattern. An interface 

enlaces three detectors in a subsystem, all of them 

activated by a specific command. This design pattern 

assures the complexity of the software, warranting the 

portability and allowing changes in the subsystem 

components. The implemented detectors combine state-

of-the-art algorithms of cardiac beats detection for 

improving performance. Assessments were made with 

the MIT-BIH Arrhythmia Database, totalizing 24 h of 

electrocardiogram (ECG). The results (up to 99.75% 

sensitivity and 99.85% positive predictivity for 0.41% 

detection fails) indicate better performances than the 

original algorithms.  

Keywords- software library; facade design pattern; cardiac  

beat detection; real-time monitoring. 

I.  INTRODUCTION  

Sudden cardiac death (SCD) is mainly caused by 
cardiopathies, where 80% of cases are ventricular 
fibrillation and 15 to 20% are bradiarrhythmias [1]. 
Estimations show that incidence of SCD in Brazilian 
population could be greater than that observed in USA 
(300.000 to 400.000 cases per year), due to similar 
lifestyles and the existence of endemic Chagas disease 
[2], which compromise the cardiovascular autonomic 
control and increases the risk for arrhythmic mechanisms 
that contribute to SCD. The diagnosis and preventive 
treatments of cardiac arrhythmias are efficient in 
reducing the SCD risks. Arrhythmias could be detected 
by the analysis of morphology and temporal evolution of 
the electrocardiogram (ECG) [3]. The normal ECG is 
composed by P, Q, R, S and T waves, having a quasi-
periodic comportment. P wave represents the atrial 
activation, QRS complex, the ventricular activation, and 
T wave represents the ventricular repolarization. Fig. 1 
shows one complete cycle of a normal ECG. 

To upgrade the efficiency of clinical diagnostic, real-
time monitoring systems are employed, helping the 

decision-making process for patients care. These systems 
are based on application, and depend on specialist 
knowledge and the implementation of decision rules that 
give enough computational intelligence to prevent 
situations and minimize errors.  

 

Figure 1.  Normal ECG Signal –  Record 100 MIT-BIH [12] 

A cardiac arrhythmia monitor includes algorithms for 
cardiac beat detection and classification. Detecting beats 
is the main process in the monitoring, but it is not a 
trivial process: the ECG is affected by noise from 
different sources (muscle activity, mains interference, 
motion artifacts, baseline drifts) and other ECG 
components with similar morphologies to the QRS 
complex, and shows physiological variability, presenting 
alterations along the time for the same patient. Thus, it 
becomes important to project filters that improve the 
signal to noise ratio (SNR), evidencing the QRS 
complexes and allowing the detection of cardiac beats 
and the signalization of fiducial marks — the time of 
occurrence of the R-wave peaks. In the last decades 
many approaches to QRS detection have been proposed: 
artificial neural networks [4,5], digital filter banks [6,8], 
analysis of first and second derivate the ECG signal 
[6,7], and Wavelet transforms [9-11]. This paper 
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proposes a model and presents a subsystem for automatic 
detection of cardiac beats. The subsystem structure has a 
code library, with three detectors enlaced in a single 
interface, which could be integrated in different 
platforms or systems. 

II. MATERIAL AND METHODS 

A. Data Selection 

The employed MIT-BIH Arrhythmia Database [13] 
is composed by 48 documented ECG records. Each 
record contains 30 min of ECG, taken from a standard 
24-hour two channel Holter signal. For this study, only 
the first channel was used, corresponding to the modified 
thoracic bipolar lead II. The database has a wide variety 
of QRS shapes, artifacts (records 100 to 124) and 
rhythms (200 to 234), in order to represent the reality 
observed in the cardiac monitoring centers. The 
complete database was analyzed, except for record 207, 
where a data segment showing ventricular flutter was 
excluded. The database is available in MIT proprietary 
format, digitized at 360 samples per channel and 11-bit 
resolution. Annotations provided by two cardiologists 
were employed to validate the system, consisting of 
information on time of occurrence of each beat and its 
classification. 

B. Cardiac Beat Detector 

The software library for automatic cardiac beat 
detection is composed by three detectors, combining 
characteristics of three high-performance methods. Each 
detector differs from each other by the preprocessing and 
the decision rules used for cardiac beat identification. A 
cardiac beat detector is divided in a preprocessing stage 
and a taken decision stage where different rules are 
applied over the preprocessed signal. In the 
preprocessing stage, the ECG is filtered to eliminate 
power-line interference, baseline drift and motions 
artifacts, and to maximize the high frequencies related to 
the QRS complex. In the second stage, improved 
decision rules based in specialists knowledge are 
employed to optimize the performance in atypical 
signals, either presenting high levels of noise or high 
morphological variability by the occurrence of different 
arrhythmias. Various parameters were experimentally 
adjusted, like detection threshold (the most important), 
search-back threshold (that permits revalidation in a 
signal that has a significant time interval without 
detection), blanking (here events immediately following 
a QRS detection are ignored for a set time), and use of 
slope (to distinguish between T waves and early ectopic 
beats). In all detectors the threshold level is adaptive to 
the signal. The decision rules were optimized empirically 
to minimize the occurrence of false positive (FP) and 
false negative (FN) beats. Different predictors for R peak 
value were tested: a percentage of the last detected peak, 
as well as mean and median of latest peaks. The median 
predictor has the lower prediction error, and the 
detection threshold was defined as a percentage (B) of 
the estimated R peak value:  

Detection Threshold = B x R peak estimate      (1) 

The detector I has a preprocessing stage composed 
by cascaded filters, including a bandpass filter from 5 to 

15 Hz, a derivative filter and a moving window 
integrator, as proposed by Pan and Tompkins [6]; the 
decision stage provides a combination of rules used by 
Pan and Tompkins [6], Hamilton and Tompkins [14] and 
Lima [15]: the width of the QRS complex is used as a 
delimiting parameter and the median of the last eight 
detected beats amplitude is used to define the detection 
threshold. The output of the moving window integrator 
is submitted to the decision stage. The signal is evaluated 
in windows of 150 ms, and when it crosses the detection 
threshold the delimitation process of a possible QRS 
complex is activated. This process will verify if the event 
happened in a correct interval considering the estimated 
RR interval and respected a refractory period of 200 ms. 
Events that occurred between 200 and 360 ms from the 
last accepted beat are submitted to other parameter 
analysis, for eliminating false detections due to abnormal 
T waves. Search back requires the analysis of the 
estimated RR interval: if no QRS complex was detected 
within 150% of the estimated RR interval, then the 
search back is applied with a lower threshold. If the 
decision stage accepts a peak, all parameters will be 
actualized and thus, the detection threshold is adapted to 
the signal characteristics in real-time.  

The Detector II employs a derivative filter proposed 
by Engelse and Zeemberleng [16] and changed by Lima 
[15] with a cutoff frequency around 16 Hz, and the 
decision stage combines Engelse and Zeemberleng [16] 
and Hamilton and Tompkins rules [14]. The absolute 
value of the derivative filter output is analyzed in the 
decision stage, where will be accounted the number of 
intersections of the detection threshold in a period of 
150 ms. This number represents the first criterion for 
discriminating between a possible QRS complex, which 
will be further evaluated, and a burst of noise, which is 
thus rejected. A possible QRS complex is validated 
according to rules that include the estimated RR 
intervals, the complex width, and the analysis of the first 
derivate of the signal.  

In Detector III the preprocessing stage comprehends 
the cascaded filters proposed by Pan and Tompkins [6] 
and decision rules based on Hamilton and Tompkins [14] 
and on Difference Operation Method (DOM) algorithm 
[17]. This method presents the lowest mathematical 
complexity among the three ones, taking the first 
difference of filters output and then applying the 
decision rules in windows of 150 ms. The delimitation 
process allows localizing the Q, R and S waves.  

C. Performance Assessment 

The detection performance was defined in terms of 
sensibility, positive predictivity and failed detection. For 
each event detected it is performed a comparison with 
the annotations file. If a time delay between detection 
and a database annotation is lower than 150 ms, the 
event is considered a true-positive (TP), whereas a 
detection fail is accounted as a false-positive (FP) or 
false-negative (FN), depending on detection having 
occurred before or after the database annotation, 
respectively. The flowchart of the performance 
evaluation algorithm is shown in Fig. 2. 
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Figure 2.  Algorithm for performance evaluation 

III. RESULTS 

A. Software Library Model 

Fig. 3 presents the structural diagram of the cardiac 
beat detector, used in the software library based on 
facade design patterns. 

Figure 3.  Structural diagram of software library  

The EcgApp class is a client type that asks and waits 
responses from EcgDetector, without knowing details of 
its implementation and functionalities. EcgDetector is a 
class that knows which part of the subsystem is 
responsible for the attendance of a solicitation, and 
distributes works to the appropriated objects (instanced 
detectors), by classes of enum type FilterType and 
RuleType. FilterPht, FilterEzl, FilterDom, RulesPht, 
RulesEzl and RulesDom are specific classes of the 
subsystem that contains functionalities of the detection 
library, responsible to attending service solicitations 
from EcgDetector. This diagram does not show 
attributes and methods to improve the figure resolution.  

B. Detectors Details 

Fig. 4 presents the input and output of the band pass 
filter for a signal with a low SNR. 

In Fig. 5, it is presented the output of each 
preprocessing stage of Detector I, for a signal that 
presents multiform ventricular arrhythmias.  

 

Figure 4.  Bandpass filter of a noisy signal (record 108 of            

MIT-BIH [13])  

Figure 5.  Output of each module of preprocessing stage of 

Detector I. From top to down: Original signal (record 100 of 

MIT-BIH [13]), output of bandpass filter, after derivative filter, 

quadrature of signal, and output signal of moving window 

integrator. The detection precess is applied in the resulting 

signal, and the localization of R wave corresponds to the midle 

of the rise slope. 
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C. Definition of Detection Parameters  

The final parameters configuration was obtained 
according to the performance assessment, considering 
the rates of FP and FN. For Detector I the better results 
were obtained using an R peak predictor based on the 
median of the last eight beats detected, with B equal to 
0.25 and rejecting some occurrences between 200 and 
360 ms after the last detected beat. This rule eliminates 
FP caused by sharpen T waves that could be confused 
with R wave if only the detection threshold were 
considered. For detector II the RR interval was also 
estimated based on the last eight detected beats. In 
Detector III, it was only accepted beats detected within 
the interval between 0.4 and 1.2 s from the last detected 
beat.  

D. Detectors Performance 

Table I presents the performances obtained by the 
three detectors include in software library, when 
analyzing the complete MIT-BIH Arrhythmia Database 
[13]. 

TABLE I.  INDIVIDUAL PERFORMANCE OF DETECTORS AND 

AVERAGE TIME  

Detector 

Performance Indices   

Sensitivity 

(%) 

Positive 

Preditivity (%) 

Detection 

Fails (%) 

Average 

Time * 

(s) 

I 99.75 99.77 0.47 15.69 

II 99.74 99.84 0.42 12.23 

III 99.73 99.85 0.41 6.77 

* PC with Intel Core Duo processor, 2.4 GHz, 4 GB RAM and 
Windows XP 64 bits. 

IV. DISCUSION 

The approach employed for implementing the library 
of cardiac beats detection indicated that the combination 
of state-of-the-art algorithms minimize the fail detection 
rate, when compared with the individual detector 
performances presented in [14, 15, 17]. The use of a 
unified interface by facade design pattern allowed 
transparency in library usage, leaving the user 
knowledge on the complexity of each detector, while 
minimizing the code compiling dependence. It also 
makes easy the portability and the inclusion of new 
functionalities; without modifying the main structure.  

In the design of decision rules for QRS complex 
detection, the use of median estimates allowed the better 
adaptation of the algorithm to the ECG signal, and the 
occurrence of premature ventricular contractions in 
epochs with predominance of normal rhythm does not 
compromised the detection performance. In the 
validation of performance, some signals (104 and 108) 
presented increased FN rates due to lower R wave 
amplitudes. These cases required a compromise solution, 
by reducing the threshold down to a reasonable value. 
However, in a given case, the lower R-waves amplitudes 
appeared associated with anomalous P waves (record 
106), and it could not be contemplated by this solution. 
All detectors presented satisfactory results in noisy 

signals (105 and 119), anomalous P waves (108 and 222) 
and multifocal ventricular arrhythmias (203).  
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