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Abstract—Seismic  inversion  is  a  technique  of 
tomographic seismic imaging for creating a  model in 
slowness  space  that  can  correctly  reconstruct  the 
measured seismic dataset. This is usually implemented 
by minimizing a  least squares inversion algorithm. This 
algorithm has limitations because it reconstructs images 
with  artifacts  yield  by  ground  roll  coherent  noise 
contained  in  the  raw seismic  input  dataset.  Recently, 
improved seismic images were reconstructed using the 
Huber  norm.  We  achieved  superior  results  via 
minimizing an objective function that is built using both 
terms, the least squares norm of measured and modeled 
dataset  misfit  and  a  non  quadratic  error  norm  of 
slowness  model. This  error  norm  can  regularize  the 
reconstructed slowness image model from input seismic 
dataset corrupted  by  ground roll noise. 
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I.  INTRODUCTION 
The  slowness  domain  is  an  alternative  domain for 

processing  seismic  dataset.  The  input  raw  dataset  of 
seismic  inversion  algorithms  has  axes  of  time  and 
offset. The seismic slowness space has axes of time and 
slowness  as  in  [1].  Many  seismic  data  processing 
applications  are  much  simpler  in  the  slowness  space. 
E.g. ground roll coherent seismic noise attenuation can 
be performed as an operation of filtering a noise in the 
slowness  space.  In  this  paper,  the  forward   modeling 
operator  of  input  data  is  defined  and  the  inverse 
transform can be implemented using an iterative solver. 
The  usual  process  is  to  compute  the  inverse  as  the 
minimization of a least squares norm. The least  square 
solution has some attributes that may be undesirable. If 
the  model  space  is  overdetermined,  the  least  squares 
solution will usually be spread out over all the possible 
solutions.  Other  methods  may  be  more  useful  if  we 
desire a parsimonious representation.

Reference  [2]  presents  a  method of  robust  seismic 
inversion  based  on  the  Huber  norm of  measured  and 
modeled data misfit.  As measures  of  data misfit,  they 
show  considerably less sensitivity to  large measurement 
errors than  least squares   norm measures. 

Reference [3] presents a travel time seismic inversion 
algorithm based  on  the  weighted least squares   norm 

such  that some ray tracing has more weight than others 
on  the  full  least  squares   norm.  This  behavior  of  the 
algorithm makes it less sensible to measurement errors 
on measured and modeled data misfit. 

In  this  paper, we demonstrate some limitations of 
the least squares   norm used at the Stanford exploration 
project as in [1] and [4] to generate images obtained by 
seismic  inversion  from  a  land  seismic  input  dataset 
corrupted by ground roll coherent noise like spikes. This 
noise is  generated  by surface  near  seismic waves that 
overlap  to  the  primary  seismic  signal  of  imaged 
reflectors  coming  back  to  surface  [4].  We  used  the 
Madagascar free software as in [5] specialized at seismic 
image and signal processing to develop our regularized 
seismic inversion algorithm using scons (from software 
construction), a well-known open-source methodology. 

In  our work, an objective function is build on two 
mixed  (least  squares,  Lorentzian)  norms.  The  least 
square norm  is the energy of  the measured and modeled 
misfit  data.  The non-quadratic Lorentzian error   norm 
represents the prior energy acting on the reconstructed 
slowness  model  as  in  [6].  It  is  used  to  perform  the 
process  of image regularization in the slowness space. 
We  developed  a  regularized  inversion  algorithm  to 
generate  images  in  the  slowness  space  when  outliers 
(non-Gaussian  noise)  are  present  in  the  input  seismic 
data. Before performing the slowness regularization, the 
median  filter  was  applied  to  remove  spikes  in  raw 
seismic  input  dataset,  since  they  are  related  to  high 
amplitude of the ground roll seismic noise that generate 
image artifacts in inverted slowness model. This noise is 
produced by seismic waves near to surface that have low 
frequencies.  The  low  frequencies  in  the  input  dataset 
generate  image  artifacts  on  inverted  slowness  model. 
Thus, it was applied a high frequency pass-band filter on 
this model to remove  image artifacts associated to low 
frequencies of ground roll noise as in [7]. 

II. THE INVERSE PROBLEM

A. Least Squares Seismic Inversion 
The  slowness  inversion  assumes  that  the  forward 

modeling operator  H, which maps from slowness space 
to  offset  space,  can  be  implemented.  Equation  (1),  d 
represents  the  measured  travel-time  dataset  in  offset 
space  and  belongs  to  Hilbert  space,  m represents  the 
slowness model in stack-velocity space and  Hm is the 
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forward  modeling  operator,  which  represents  the 
modeled travel-time dataset  in offset space (Hyperbolic 
Radon transform of travel-time dataset).

              d=H m                 (1) 

The  least  squares  norm  m  of   measured  and 
modeled dataset misfit  is given in  (2).

      m = ∥d−H m∥2                (2)

We seek  a  solution  to  the  problem of  finding  the 
model in slowness space m, given data d. This is usually 
posed  as  a  least  squares  optimization  problem  that 
minimizes the energy of the measured and modeled data 
misfit. In the Stanford exploration project as in [1], it is 
implemented  as  a  conjugate  direction  optimization 
algorithm to find an optimal solution of the least squares 
norm (2). We redefined this problem in our work using 
the  methodology  based  on  a  reproducible  experiment 
using the Madagascar package. This conjugate direction 
optimization algorithm as in [1] and [4] is represented by 
(3), where mi−1  is the preceding estimate of m, mi  is 
the new estimate of m, k i−1 denotes the step direction 
to  be  specified  in  the  space  model,  and  i  is  an 
optimization parameter (or direction weight factor).

                  m s
i =m s

 i−1i k  i−1                    (3)

B. Least Squares Seismic Inversion with Lorentzian 
Regularization  

The least squares inversion is the optimal choice in 
the  presence  of  Gaussian  noise  in  the  seismic  input 
dataset.   However,  in  our  case,  we  are  working  with 
input datasets corrupted  with ground roll coherent noise 
similar to spikes. In this situation, least squares inversion 
yield reconstructed images with undesirable artifacts that 
degrade them as in [2].

The filter based on the Perona and Malik anisotropic 
diffusion  as  in  [6]  is  part  of  the  Madagascar  library 
seismic  processing  package;  however,  it  is 
fundamentally  applied  as  a  post-processing  filter  from 
any formed generic input image. We are applying this 
filter for regularization of reconstructed images from raw 
input seismic dataset containing ground roll noise. “This 
Perona and Malik filter allows the image pixels diffusion 
while  preserves  stronger  image-edges.  Therefore,  this 
filter can regularize output image-artifacts yield by least 
squares  norm,  while  preserving  the  stronger  interest 
signal in slowness space”.   

Our objective function  G(m) is defined by (4). The 
first term  represents  the  energy  of  the  measured   and 
modeled data misfit.  The second term represents   the 
prior energy on the slowness model given by Lorentzian 
robust error norm as in [6]. This norm is a Non Gaussian 
Markov Random Field and it is a function of the image 
intensity  differences  (mp-ms)  between  pixel s and   its 
neighboring pixels p. The scale  parameter  of the norm  
has the function of regularizing output   image yield by 
least squares norm. In this case,  if the image intensity 
difference (mp-ms) is below this threshold , the output  
image edges are diffused, but image-edges are preserved 
above the cited threshold.  The parameter  ns  represents 

the  spatial  neighborhood  of  the  pixel  s,  and  ns  is  the 
number of neighbors, such that  p∈ns .

G m=∥d−H m∥2∑
s∈m
∑
p∈ns

℘m p−ms ,
 (4)

This Lorentzian error norm is given by  (5):  

        ℘m p−ms ,=log [11
2
mp−ms

2

2 ]    (5)

     The numerical representation  of the posterior solution 
m is given by (6) through an iterative-recursive scheme. 
The  first  two terms  on  the  right  side  of  this  equation 
represent  the  classic  suboptimal  solution  based  on  the 
least squares norm used as in [1] and [4]. It is obtained 
from the conjugate direction optimization algorithm that 
can converge to local minimum [1]. The discretization of 
Perona and Malik as in [5] for their anisotropic diffusion 
equation is given by the sum of the third and first terms 
of (6).  The function g ∇ ms , p

 i−1 given in (6) has the 
goal  of regularizing the output image generated by the 
least squares norm generated by Madagascar package as 
in [1]. Equation (7) represents the residual or difference 
between input dataset and forward modeling operator in 
the iteration (i). Equation (8) gives the relation between 
the residual at iterations (i) and (i-1).          

      In our case, we developed a strategy for output image 
regularization generated from least squares solution via 
Madagascar package. This strategy was carried out using 
the  Perona  and  Malik  filter  as  in  [5]  which  acts  on 
Madagascar  output image from a seismic input dataset 
corrupted by ground roll noise.  Our proposed algorithm 
of  regularized  seismic  inversion  is  based  on  the 
equations (6), (7) and (8).          

           m s
i =m s

 i−1i k  i−1g ∇ms , p
i−1      (6)

 

                       Y mi=d−〈H ,mi 〉               (7)

                Y mi=Y mi−1−i H k  i−1
            (8) 

The  function g ∇ ms , p
 i−1 is  given  by  (9)  and 

named the influence function as in [5]. In this equation, 
the constant λ represents a positive scalar that determines 
the  rate  of  image  intensity  diffusion  of  function  w(.). 
Equation (10) is the image gradient between pixels (mp-
ms). The function w(.) is given by (11). This function is 
quasi-zero for very small image-edges and those pixels 
will not be updated by (6). Pixels with stronger image-
edges will be updated adjusting the scale parameter    
according to the behavior of Perona and Malik diffusion 
filter  given  by  (11),  whose  performance  has  been 
explained above in quotes. 

      g ∇ ms , p= λ
ns
∑

p∈ns

w∇m s , p∇ms , p   (9) 

                            ∇ms , p=mp−ms
 i                     (10)
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w ∇ms , p=

1

[1
∇ms , p

2

22
]

          (11) 

III. EXPERIMENTAL RESULTS WITH  FIELD DATA 
     The following figures show the effects of using the 
two inversion methods on a raw seismic input dataset 
containing ground roll noise. 
   Fig.  (1a)  displays  the  raw  seismic  input  dataset 
corrupted by ground roll noise. We used a shot gather 
from a land data survey in the Middle East as in [2] that 
appear in the dataset repository of Madagascar as in [5]. 
The x-axis shows the offsets of the  seismic sensors on 
surface  with  relation  to  the  source  that  generate  the 
seismic shot. The y-axis shows the time seismic waves 
take to leave the source towards the subsurface layers 
until  they  achieve  the  sensors. The  intensity  of  the 
pixels represent the amplitude of the seismic events of 
the underground  reaching  the  sensors. This  dataset  is 
particularly  interesting  because  it  has  amplitude 
anomalies  at  short  offset  and  a low-velocity  coherent 
noise that is probably due to guided energy in the near 
surface  as  in  [2]. Note  also  at  (1a)  the  amplitude 
anomalies matching with time change and offset around 
2.0 km. Both show the ground roll noise of input data. 
     Fig. (1b) displays the least squares   inversion from 
input  dataset  generating  a  slowness  model.  The 
slowness  displays  some  image  artifacts  similar  to 
straight stripes  and  curved  features.  These  image 
artifacts  are  associated  to  multiples  (ground  roll 
coherent  noise)  and  are  in  the  higher  center-right 
position. The main velocity event is on the left of the 
picture along a track that crosses the whole image and is 
masked with horizontal stripes (in the left upper half), 
coming from the short-offset amplitudes anomalies as in 
[2].  This  main event  is  associated  to  primary seismic 
waves  coming  back  from  subsurface  to  the  seismic 
sensor  on the  surface.  Fig.  (2a)  displays  the modeled 
dataset from least squares   inversion such that part of 
the ground roll noise, (at the near offset contained into 
input  dataset),  is  suppressed.  Fig.  (2b)  displays  the 
residual Euclidean norm between modeled dataset (2a) 
and raw input dataset (1a). This norm rejects part of the 
ground roll noise (in the near offset). Fig. (3) displays 
the  convergence  of  the weighted  conjugated-direction 
inversion algorithm  using  10  iterations.  Fig.  (4a) 
displays  the raw input dataset (1a) after application of 
the  median  filter.  This  filter  removes  some  spikes 
contained in the ground roll noise (1a).  The slowness 
generated from this input dataset (4a) shows to be more 
accurate  without  the  presence  of  undesirable  image 
artifacts. Fig.  (4b) displays  the least squares inversion 
followed by a non quadratic regularization of slowness 
model  obtained  from  input  dataset  (4a).  After 
performing this inversion followed by regularization, it 
is applied a frequency high band-pass filter to eliminate 
additional  image artifacts that are in the range of low 
frequency  of  the  ground  roll  noise  as  in  [7].  This 

regularized  slowness  model  is  cleaner,  allowing  to 
highlight the features associated only with the primary 
seismic  waves  energy.  Thus,  the  features  associated 
with ground roll noise are completely eliminated in the 
slowness space. Fig. (5a) displays the  modeled dataset 
from least squares inversion followed by regularization. 
Fig. (5b) displays the residual Euclidean norm between 
the modeled dataset (5a) and the input dataset (4a). This 
norm displays features of input signal (4a) associated to 
the ground roll noise indicating that rejects it.  Fig. (6) 
displays  the  convergence  of  the weighted  conjugate 
direction inversion algorithm using 10 iterations. 

IV. CONCLUSIONS 

      In this paper, we proposed to minimize the objective 
function based on both Euclidean norm of measured and 
modeled dataset misfits, and the Lorentzian error norm 
of the slowness model. The method used to optimize the 
objective  function  was  the  conjugate  direction 
optimization. This algorithm removed image artifacts in 
the regularized slowness model associated with ground 
roll  coherent  noise  and  enhanced  features  associated 
only  to  the  energy  of  primary  seismic  waves.  We 
consider that the non-quadratic regularization, and both 
median  and  high  frequency  band-pass  filters,  are 
fundamental  to  suppress  image  artifacts  in  slowness 
space.  This  approach  can  be  relevant  to  enhance 
porosity  features  in  hydrocarbons  reservoirs  of  high 
commercial value using land seismic data corrupted by 
ground roll coherent noise.  
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Figure  (1a):  raw  input  seismic 
dataset corrupted by ground roll 
noise  (offset vs time)

Figure (1b): least squares 
inversion (slowness squared vs 

time)

Figure (2a): modeled dataset 
from least squares  inversion 

(offset vs time)

Figure (2b): residual (Euclidean 
norm between modeled dataset 
(2a) and raw input dataset (1a))

 

Figure (3): convergence of the weighted conjugate-direction 
inversion using 10 iterations

Figure  (4a):  raw  seismic  input 
dataset  after  application  of  the 
median  filter (offset  vs time)

Figure  (4b):  least  squares 
inversion  from input  dataset (4a) 
followed  by regularization.  After 
applying  high  frequency  band-
pass filter ( squared  vs time).

Figure  (5a):  modeled  dataset 
from  least  squares  inversion 
followed by regularization (offset 
vs time)

Figure (5b): residual (Euclidean 
norm between modeled dataset 

(5a) and input dataset (4a)) 

Figure (6): convergence of the weighted conjugate-direction 
inversion using 10 iterations


