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Abstract—Template matching is a technique widely 

used for finding patterns in digital images. An efficient 

template matching algorithm should be able to detect 

template instances that have undergone geometric 

transformations. Similarly, a color template matching 

should be able to deal with color constancy problem. 

Recently we have proposed a new grayscale template 

matching algorithm named Ciratefi, invariant to rota-

tion, scale, translation, brightness and contrast. In this 

paper we introduce the Color-Ciratefi that takes into 

account the color information. We use a new similarity 

metric in the CIELAB space to obtain invariance to 

brightness and contrast changes. Experiments show that 

Color-Ciratefi is more accurate than C-color-SIFT, the 

well-known SIFT algorithm that uses a set of color in-

variants. In conventional computers, Color-Ciratefi is 

slower than C-color-SIFT. However Color-Ciratefi is 

more suitable than C-color-SIFT to be implemented in 

highly parallel architectures like FPGA, because it re-

peats exactly the same set of operations for each pixel. 

Keywords - template matching; Ciratefi; RST-invariant; 

color. 

I.  INTRODUCTION 

Color provides high discriminative power. However, 
most existing template matching techniques were de-
signed for gray-level images [1]. The main problem of 
color template matching is the color constancy, that is, 
how to extract color information that remains constant 
with the illumination change. Changes in illumination 
can cause changes in object colors acquired by a camera, 
worsening the performance of pattern recognition algo-
rithms that use color information [2].  

Tsai and Tsai [1] presented a technique for matching 
colored objects, called “color ring-projection”. It uses 
color features derived from HSI and CIELAB color 
spaces and is able to detect objects in different condi-
tions of illumination. The main drawback of this tech-
nique is the lack of invariance to scale changes. 

Geusebroek et al. [3] developed an important set of 
color invariant features based on Gaussian derivative to 
deal with illumination changes, shadow, highlights and 
noise. These set of invariants has been embedded in the 
well known SIFT (Scale Invariant Features Transform) 
[4], one of the most efficient methods to extract invariant 
features from images, yielding a powerful color invariant 

descriptor [5, 6]. Actually, many color invariants re-
ported in the literature have been plugged in the SIFT, 
generating many color-based SIFT descriptors such as 
CSIFT [5], HSV-SIFT, Hue-SIFT, OpponentSIFT, W-
SIFT, rgSIFT, Transformed color SIFT [7], SIFT-CCH 
[8], W-color-SIFT, H-color-SIFT and C-color-SIFT [6]. 

In this paper we introduce a new color template 
matching algorithm named Color-Ciratefi, based on our 
Ciratefi technique (Circular, Radial and Template-
Matching Filter) [9]. Color-Ciratefi is invariant to rota-
tion, scaling and translation (RST), and robust to minor 
viewpoint variations and blur. We propose a color simi-
larity metric designed to be robust to contrast and bright-
ness changes. We did experiments using a dataset of 
color images with different geometric and photometric 
transformations [10] and compared the results with those 
obtained by C-color-SIFT algorithm [6] that combines 
SIFT descriptor with a set of color invariants proposed 
by Geusebroek et al. [3]. Experiments show that Color-
Ciratefi is more accurate than C-color-SIFT.  

In conventional computers, Color-Ciratefi is slower 

than C-color-SIFT. However, Color-Ciratefi is more 

suitable than C-color-SIFT to be implemented in highly 

parallel architectures like FPGA, because Color-Ciratefi 

repeats exactly the same set of simple operations for 

each pixel [11]. FPGA implementation of the first Cira-

tefi filter (Ciratefi has three cascaded filters) can process 

a 640×480 frame in only 1.06ms [11], far faster than 

SIFT implementation in FPGA that processes a 

320×240 frame in 30ms [12]. Kim [13] developed 

another RST-invariant template matching based on 

Fourier transform of the radial projections named Fora-

pro. Forapro is faster than Ciratefi in a conventional 

computer but the latter seems to be more fit to be im-

plemented in FPGA than the former. 

II. CIRATEFI TECHNIQUE 

Ciratefi is a grayscale template-matching algorithm 
composed by three steps of filtering that successively 
excludes pixels that have no chance of matching the 
query template [9, 11]. Let A be the grayscale image to 
be analyzed and T the query grayscale template. The 
goal of Ciratefi is to find all occurrences of T in A, with 
respective orientation angle and scale (Fig. 1). The in-
stances of T in A may appear rotated, scaled, shifted and 
with diverse brightness and contrast. Below we present a 
brief description of Ciratefi.  
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A. First step - Circular Sampling Filter (Cifi) 

Cifi uses the projections of the images A and T on a 
set of circles (Fig. 1b) to detect the “first grade candidate 
pixels”. For each candidate pixel, the “probable scale 
factor” is also computed. Given an image to be analyzed 
A and a set of l radii {r0, r1,..., rl-1}, a 3D image CA[x,y,k] 
is built as:  
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where 0 ≤ k < l, and )2round( kk rP π= . ],,[ kyxCA  is 

the average grayscale of pixels of A on the circle ring 
with radius rk centered at (x, y).  

Given the query template T and a set of n scales {s0, 
s1, ..., sn-1}, T is resized, generating the resized templates 
T0, T1 … Tn-1. Each template Ti is circularly sampled 
according to the set of radii yelding a matrix of multi-
scale rotation-invariant features CT with n rows (scales) 
and l columns (radii):  
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where (x0, y0) is the central pixel of T and ni <≤0 . In 

other words, ],[ kiCT  is the average grayscale of pixels 

of template T at scale si on the circle ring with radius rk. 
In small scales, some of the outer circles may not fit in-
side the resized templates. These circles are represented 
by a special value in table CT (say, -1) and are not used 
to compute the correlations.  

Matrices CA and CT are used to detect the circular 
sampling correlation (CisCorr) at the best matching scale 
for each pixel (x,y): 
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where ),Corr( ba  is the normalized cross correlation 

coefficient between vectors a and b.  

A pixel (x,y) is classified as a first grade candidate 

pixel if 1, ),(CisCorr tyxTA ≥ , for some threshold t1. The 

probable scale of ),( yx  is si, where i is the argument that 

maximizes CisCorr. 

B. Second step - Radial sampling filter (Rafi) 

This step uses projections of images A and T on a set 
of radial lines (Fig. 1c) to upgrade some of the first grade 
candidate pixels to the second grade. Rafi also estimates 
the probable rotation angle for each second grade candi-

date pixel. The length of the radial lines (λ=rl-1si) is cal-
culated according to the largest circle radius rl-1 and the 
probable scale si computed by Cifi.  

For each first grade candidate pixel (x,y) of image A, 
the matrix RA is computed, considering a set of m angles 

(α0, α1,..., αm-1), as follows: 
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In other words, ],,[ jyxRA  is the average grayscale 

of pixels of A on the radial line with one vertex at (x,y), 

length λ and inclination αj. Then T is radially sampled 
yielding a vector RT with m features: 
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Then, Rafi computes the correlation RasCorr be-
tween the vectors RA[x,y] and RT at the best matching 
rotation angle: 
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where “cshiftj” denotes circular shifting j positions of the 
argument vector. A first grade pixel (x,y) is upgraded to 

the second grade if 2, ),(RasCorr tyxTA ≥ , for some thre-

shold t2. The probable rotation angle of pixel (x,y) is αj 
where j is the argument that maximizes RasCorr. 

It seems possible to estimate the local rotation angle 
using some rotation-discriminating feature, as in [1, 4, 
13]. Using this idea, the second filter (Rafi) can be com-
pletely eliminated. However, rotation-discriminating 
feature may not be applicable in some situations (as at 
the very center of symmetrical shapes like “H”, “O”, 
etc.). Rafi solves this problem. 

C. Third step – Template matching filter (Tefi) 

This step filters the second grade candidate pixels us-
ing a conventional template matching with correlation 
coefficient as metric. This task is fast because Cifi and 
Rafi computed the probable scale and angle for each 
candidate pixel. Tefi computes the correlation coefficient 
using a threshold t3, to evaluate how well each candidate 
pixel of the second grade matches the template. 

 

(a) 

(d) 

 

(b) 

 

(c) 

Figure 1.  Detection of the template “frog” by Ciratefi. (a) Query 

template T. (b) Circular projections. (c) Radial projections. (d) The 

circles indicate the matching positions (the radii represent the scales 

and the pointers represent the angles). 

III. COLOR CIRATEFI  

The goal of Color Ciratefi is: given a pair of color 
images A and T, detect all the instances of T that appear 
in A. The instances of T in A can be affected by different 
geometric and photometric transformations such as 
scale, rotation, minor viewpoint variations, blur and il-
lumination.  
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To deal with illumination changes we propose a simi-
larity measure that uses CIELAB color space. Color-
Ciratefi consists of the same three cascaded filters as 
Ciratefi, using the proposed similarity measure instead of 
the correlation coefficient. 

A. CIE L*a*b* and the similarity measure 

The CIE L*a*b* (CIELAB) color space was de-
signed to be perceptually uniform [2], that is, a small 
perturbation to a color value produces a change of about 
the same perceptual importance across the range of all 
colors. Moreover, CIELAB isolates the lightness L* 
from the chromaticity a*b*. So, this color space is espe-
cially suited to evaluate the similarity of two image 
patches, invariant to brightness and contrast changes. In 
CIELAB space, the lightness L* varies from 0 to 100. 
The range of chromaticity components a*b* depends on 
the original color space of the image. If the original color 
space is RGB, one can assume the range -100 to +100.  

The Euclidean distance or some other perceptual dis-
tance is typically used as the similarity measure in per-
ceptual color spaces as L*a*b* [14, 15]. We proposed a 
similarity measure that uses a weighted composition of 
chromaticity and lightness components to evaluate the 
perceptual similarity between two color feature vectors, 
robust to brightness and contrast changes.  

Let }...,,,{ 21 nxxx=x  and }...,,,{ 21 nyyy=y  be 

two vectors of colors. Each component ix  or iy  is com-

posed by a set of tristimulus values L*, a* and b* and are 

denoted, respectively, by ibiaiL xxx ,,  and ibiaiL yyy ,, . 

For similarity of chromaticity (SC) the Euclidean distance 
of components a* and b* is used:  
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The distance is subtracted of one to obtain the similarity 
measure. 

To measure the similarity of intensity (SI), the corre-
lation coefficient was employed, since it is invariant to 
brightness and contrast changes: 
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where Lx  and Ly  are, respectively, the mean lightness 

of x and y. The proposed similarity measure (Sim) is a 
weighted geometric mean of SC and SI: 

βα ⋅= )],([)],([),Sim( yxyxyx IC SS  (9)

where α and β are the weights attributed to chromaticity 

and intensity similarities (usually, α+β=1). For example, 

if α=0 only the correlation of intensity values is consi-

dered. On the other hand, if β=0 only the chromaticity 
information is taken into account. We use weighted 
geometric mean (instead of weighted arithmetic mean) 
because either complete chromaticity dissimilarity or 

complete lightness dissimilarity represents complete 
dissimilarity of the two patches.  

IV. EXPERIMENTAL RESULTS 

In order to evaluate Color Ciratefi, a set of real-world 
color images with different geometric and photometric 
transformations was used [10]. It consists of 42 images 
divided in 7 subsets, labelled by the authors as bark, 
leuven, graffiti, wall, bikes, trees and ubc (Fig. 2). There 
is a 8th subset named boat, but it was discarded because 
it contains only grayscale images (Fig. 2h). Each subset 
is composed of 6 images of the same scene with gradual 
geometric or photometric transformation: rotation and 
scale changes (Fig. 2a); illumination changes (Fig. 2b); 
viewpoint changes (Fig. 2c and 2d); image blur (Fig. 2e 
and 2f) and JPEG compression (Fig. 2g). This image 
database has been used to evaluate the performance of 
many other color descriptors, such as [10, 16]. 

    

(a) bark - 535×358 (b) leuven - 450×300 

    

(c) graffiti 400×320 (d) wall 440×340 

    

(e) bikes 500×350 (f) trees 500×350 

    

(g) ubc - 400×320 (h) boat - unused subset 

Figure 2.  Images used for evaluating Color Ciratefi. The images 

were reduced to 70% (bark subset images) and 50% (all other images) 

of their original sizes. 

In the experiments, we extracted randomly 20 tem-
plates with 60×60 pixels from the first image of each 
subset, and searched for them in the 6 images of the 
same subset. In total, we did 840 templates matchings 
(20×6×7). For evaluation purpose, we compare Color 
Ciratefi with C-color-SIFT, using the best color descrip-
tor reported in the paper [6].  

C-color-SIFT is truly scale-invariant. However, Col-
or Ciratefi needs a pre-specified scale range. We used 
n=9 (0.3 to 1.1) scales in all the Color Ciratefi experi-
ments. We used also the following Color Ciratefi para-
meters: number of circles l=21, number of angles m=36. 
Cifi chose the 2000 best matching pixels as the first 
grade candidates, Rafi promoted 300 of them as the 
second grade candidates, and finally Tefi chose the best 

matching position. We chose the weights α=0.8 and 

β=0.2 in the similarity measure (eq. 9) to maximize the 
accuracy, as depicted in Table 1. In all experiments, the 
performance of algorithms is given in terms of recall: 
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TP/(TP+FN), where TP is True Positive and FN is False 
Negative. 

TABLE 1. EXPERIMENTS VARYING α AND β  IN COLOR CIRATEFI, TO 

CHOOSE THE OPTIMAL PARAMETERS. 

Parameters 

α and β 

Possible 

Matches 
TP FN Recall 

0.9 ; 0.1 840 627 213 0.746 

0.8 ; 0.2 840 631 209 0.751 

0.7 ; 0.3 840 599 241 0.713 

TABLE 2. ACCURACY EVALUATION – COLOR CIRATEFI × C-COLOR-
SIFT. 

Image 

Subset 

Possible 

Matches 

Color Ciratefi C-color-SIFT 

TP FN Recall TP FN Recall 

Bark 120 87 33 0.73 83 37 0.69 

Leuven 120 94 26 0.78 76 44 0.63 

Graffiti 120 74 46 0.62 48 72 0.40 

Wall 120 61 59 0.51 94 26 0.78 

Bikes 120 108 12 0.90 76 44 0.63 

Trees 120 109 11 0.91 94 26 0.78 

UBC 120 98 22 0.82 58 62 0.48 

Total 840 631 209 0.75 529 311 0.63 

 
The comparison between color Ciratefi and C-color-

SIFT is depicted in Table 2. In average, Color Ciratefi is 
more precise than C-color-SIFT. For images with 
changes in scale/rotation (Bark), illumination (Leuven), 
affected by blur (Bikes and Trees) and JPEG compres-
sion (UBC), Color Ciratefi outperforms C-color-SIFT.  

In blurred images (bikes and trees), the weak perfor-
mance of C-color-SIFT can be attributed to the small 
amount of keypoints extracted by SIFT descriptor. In the 
case of JPEG compression (UBC), a large amount of 
inconsistent features arises from the artifacts introduced 
by the JPEG compression, leading to erroneous SIFT 
keypoint matchings. The only subset where C-color-
SIFT is more accurate than Color Ciratefi is in the Wall 
subset. Actually, neither Color Ciratefi nor C-color-SIFT 
is designed to deal with viewpoint changes.  

C-color-SIFT is faster than Color Ciratefi in conven-
tional computer. It took, in average, 5s to detect a tem-
plate while color Ciratefi took 28s, both using a 2.8GHz 
Pentium-4. However, Ciratefi can be accelerated thou-
sand of times via hardware FPGA implementation, 
achieving more than real-time performance [11]. Mean-
while, the SIFT can only be accelerated tens of times and 
the hardware implementation is far more intricate [12].  

V. CONCLUSIONS 

In this paper we have presented a robust color-based 
template matching named Color Ciratefi. We have pro-

posed a new similarity metric for color images. We 
compared the performance of Color Ciratefi with C-
color-SIFT algorithm using a dataset of natural images 
containing different geometric and photometric trans-
formations. Surprisingly, the experiments have shown 
that Color Ciratefi is more accurate than C-color-SIFT, 
although the latter uses a powerful set of color inva-
riants.  
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