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Abstract— Voice production occurs within the larynx 

where the vocal folds produce the glottal flow signal 

through vibrational movements that generate the 

primary voice signal. In this context, this paper 

introduces a method based on inverse filtering of speech 

signals and a biomechanical model of vocal folds to 

simulate the production of this primary signal. This 

method allows the formulation of a deterministic model 

of the vocal folds that reproduces their dynamic 

behavior and can be used to evaluate the functional state 

of the subject’s voice using only acoustic speech 

signals. The results indicate that the proposed method 

can simulate the main components of the glottal flow 

signal. 
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I.  INTRODUCTION 

The voice production process comprehends a set of 

biological systems that involves the lungs, larynx, 

pharynx, trachea, and nasal and oral cavities. This 

process starts in the larynx, where the vocal folds 

produce the excitation signal of vocal tract through 

vibratory motions that modulate the air (from the 

trachea) generating the glottal flow.  This signal will 

define the fundamental frequency of voice and many of 

its basic features. Due to the intense activity in the 

larynx, many voice pathologies originate in this 

structure [1] and may result in a change in the behavior 

of its dynamics, producing a perturbation on the voice. 

In this context, a detailed study of voice must include 

an evaluation of the properties of the glottal flow signal. 

For this purpose, some methods have been developed to 

evaluate the larynx activity and/or the waveform of the 

glottal flow generated, among which videolaryngoscopy 

[2], electroglottography [3] and inverse filtering of 

speech signals [4] can be emphasized.  

Videolaryngoscopy is considered the gold standard 

method [5], as it is capable of directly evaluating the 

functional state of vocal folds using visual recordings of 

their movements. However, it uses an endoscopy linked 

to a video camera, which is inserted in the subject’s 

mouth (or nasal cavity) interfering with the natural 

voice production during the exam. Moreover, its cost 

may be impracticable in many applications. 

Electroglottography uses a pair of noninvasive 

electrodes fixed on the neck skin, next to the larynx, 

sensitive to the vibrational activity present in this 

region. Its drawback is associated with the fact that the 

tissues where the electrodes are fixed attenuate some 

signal components generating a distortion in the 

waveform of the glottal flow recorded by the device.  

Lastly, the inverse filtering method uses acoustical 

speech signals recorded by a microphone to reconstruct 

the waveform of the glottal flow through an algorithm 

which can compensate the effects of vocal tract on the 

signal analyzed.  

However, a single analysis of the glottal flow signal 

would not be enough to describe the complex 

mechanisms of voice production in the larynx. For this 

reason, many authors [6-7] have developed 

biomechanical models of vocal folds to reproduce their 

dynamics through their vibrational behavior. In this 

sense, the use of inverse filtering as a method to 

estimate the glottal flow waveform is a useful way to 

produce information regarding a determined subject. 

This information can be used for a biomechanical model 

to reconstruct the vocal folds dynamics of this subject 

and simulate their glottal flow signal. This approach 

needs few hardware resources and can generate valuable 

information concerning the evaluation of subject voice 

in clinical practice. 

The aim of this paper is to describe a technique that 

allows the evaluation of the vocal folds dynamics of a 

subject using a biomechanical model. The glottal flow 

produced by the subject is extracted from his/her speech 

signal using an inverse filtering method. This extracted 

signal is used for an optimization procedure able to 

change the model parameters until it could reproduce, 

with a good precision, the waveform of the extracted 

glottal flow. As a contribution, this method allows the 

simulation of the vocal folds behavior of a specific 

subject, evaluation of the functional state of voice and 

its dynamics using only acoustic speech signals. 

II. METHODOLOGY 

The first step in this research to simulate the 

behavior of vocal folds was the extraction of the glottal 

flow waveform using a speech signal recorded by a 

microphone. An inverse filtering method is applied to 

the signal of four subjects (with healthy voices) that 

vocalize the sustained vowel “a”. Next, an optimization 
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procedure combining genetic algorithm and simplex 

method is used to find the best values for the parameters 

of the biomechanical model employed, such that the 

model can accurately reproduce the glottal flow 

waveform extracted from the subject voice signal. The 

methods employed in this research are described in the 

following sections. 

A. Estimation of the glottal flow waveform 

The extraction of the glottal flow waveform is 
performed by the Iterative Adaptive Inverse Filtering 
(IAIF) [8].  Basically, this method uses the Linear 
Predictive Coding (LPC) to estimate the vocal tract 
transfer function and compensate the vocal tract effects 
on the analyzed signal using an inverse filtering process. 
The IAIF adopts a voice production model based on 
three interdependent processes: production of glottal 
excitation, (2) vocal tract equalization and (3) lip 
radiation effect. 

Following the IAIF method, to estimate the glottal 
waveform it is necessary to evaluate the contributions of 
the vocal tract and lips radiation in the signal. 
Considering that the lips radiation effects can be 
modeled accurately enough with a fixed differentiator, 
the problem concentrates on the estimation of the vocal 
tract transfer function. The glottal waveform is then 
estimated by an inverse filtering which will cancel the 
vocal tract effects and posteriorly the lips radiation in the 
speech signal. Figure 1 illustrates the steps involved in 
the IAIF method.  

In the first step of the IAIF method, the speech signal 
is high-pass filtered with a second-order Butterworth 
filter with cut-off frequency of 30 Hz. If the low 
frequency components of the speech are not removed, 
the resulting glottal wave starts to fluctuate. In the 
second step a preliminary estimate of excitation effects 
on the signal is computed by LPC analysis. The glottal 
contribution is eliminated from the signal through an 
inverse filtering process (Step 3). 

(1) - High-
pass filter

(2) - LPC analysis
(order 1)

(3) - Inverse
filtering

(4) - LPC analysis
(order p)

(5) - Inverse
filtering

(6) - Integration

(7) - LPC analysis
(order g)

(8) - Inverse
filtering

(9) - LPC analysis
(order r)

(10) - Inverse
filtering

(11) - Integration

s(n)

g(n)

 

Figure 1.  Block diagram of the IAIF method used to estimate the 

glottal flow waveform. The input s(n) is a speech signal recorded by a 

microphone and the output g(n) is a time series corresponding to a 

glottal flow which produced the signal s(n). 

In Step 4 an LPC filter is again applied resulting in a 
vocal tract model used in Step 5 to cancel the effects of 

this vocal tract on the analyzed speech signal. At the end, 
the lips radiation is also canceled by the numerical 
integration in Step 6. The result of this first iteration is a 
preliminary estimate of the glottal flow wave in the Step 
6 output. To increase the reliability of this estimate, the 
IAIF uses a second iteration that comprehends Steps 7 to 
11 in the diagram of Figure 1. 

At the beginning of the second iteration (Step 7), a 
new estimate of the glottal excitation is performed using 
an LPC analysis. Unlike the first iteration, the input of 
this step is the preliminary estimate of the glottal flow 
evaluated by former steps, and not by the speech signal, 
as in Step 2. This approach allows the glottal 
contribution to be evaluated more accurately when 
compared with the start of the first iteration. In Step 8 
this glottal contribution is suppressed by inverse filtering 
and a new LPC analysis (present in Step 9) is applied to 
the signal whose glottal contribution had been 
suppressed, constituting a final model for the vocal tract. 
The glottal flow waveform is finally obtained by the 
inverse filtering in Steps 10 (which had suppressed the 
vocal tract contributions from the original speech signal) 
and 11, canceling the lips radiation.  

During the analysis, signals with about 25 ms were 
used with a rectangular window. The LPC order 
described in Figure 1 diagram was p = r = 8 and g = 6. In 
agreement with Alku et al [8], these values are enough 
for this type of analysis. 

B. Biomechanical modeling of vocal folds 

The vocal folds consist of a set of tissue layers able 

to vibrate due to the aerodynamic interaction that this 

system has with the airflow from the trachea. Based on 

its myoelastic and aerodynamic properties, Ishizaka and 

Flanagan [6] developed a biomechanical model of the 

vocal folds which simulates their main vibrational 

motions and reproduce their dynamics. This model, 

termed as two-mass model, assumes one vocal fold to 

be represented by a pair of two coupled oscillators using 

two masses, three springs and two dampers, as in Figure 

2. 

The two masses of the model were used to 

reproduce the mucosal wave phase difference while the 

other lumped elements (springs and dampers) represent 
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Figure 2.  Biomechanical model of the vocal folds elaborated by 

Ishizaka and Flanagan [6]. 

a stiff layer and its viscoelastic properties. In this model 

the masses are vibrated by aerodynamic forces caused 

by the interaction between the subglottal pressure and 
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vocal fold tissues and can be described by Bernoulli 

laws. Steinecke and Herzel [7] proposed an adaptation 

for this classical model in which some assumptions 

were adopted to simplify the model and decrease the 

computational cost, keeping the most important features 

of vocal fold dynamics and its physiological base. The 

model equations are described in (1). 
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The xiα variable corresponds to oscillation 

amplitudes of the masses. Index i represents the lower 

(i=1) and upper (i=2) portion of vocal folds while index 

α represents the left (α=L) and right (α=R) portion. The 

main parameters of the model are denoted by miα 

(mass), kiα (stiffness coefficient), kcα (coupling spring 

constant), riα (damping coefficients) and Ps (subglottal 

pressure) and can be represented by a parameter vector 

p such as p := [miα, kiα, kcα, riα, Ps]. The impact forces 

due to vocal fold collisions and Bernoulli forces were 

represented as F
I
α and F

B
, respectively, and are 

described in details in [7]. The standard parameters of 

this model, defined by the authors, are: m1α=0.125, 

m2α=0.025, k1α=0.08, k2α=0.008, kcα=0.025, r1α=r2α=0.02 

and Ps=0.008. All units are given in centimeters, grams, 

milliseconds and their corresponding combinations. In 

this research, the equations showed in (1) were solved 

using the standard fourth-order Runge-Kutta method. 

All simulations were processed using Matlab 

(Mathworks, USA). 

C. Optimization of biomechanical model parameters 

By using the parameters of the two-mass model 

represented above by p, it is possible to reproduce the 

glottal signal.  As each subject has their own voice 

characteristics - which reflects their vocal fold dynamics 

- it is important to find the value of p that best 

reproduces the glottal flow extracted by IAIF method. 

For this purpose, an optimization procedure 

combining genetic algorithms and the simplex method 

was used. This method compares the signal extracted by 

IAIF method with the one simulated by the two-mass 

model. As the model equations are nonsmooth and 

might have a non-convex search space, in the first step a 

genetic algorithm is applied to search for a rough 

approximation in order to avoid inappropriate local 

minima.  In the second step, this approximate solution 

serves as the starting point for a simplex method 

refining the approximate solution. This approach will 

help to reduce the optimization time and avoid the 

problem of convergence to local minima.  

The genetic algorithm used in this research 

utilized the roulette wheel selection rule and elitism 

techniques [9] to accelerate the convergence. A 

population of five hundred individuals was adopted and 

the algorithm was programmed to process only 50 

generations to avoid excessive processing time. The 

search space comprised the [0.0 to 0.4] interval for the 

first seven mechanical parameters of vector p while the 

eighth parameter should be contained in the [0.008 to 

0.040] interval.  The objective function used for both 

methods was defined as 
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Were, m indicates the sample number of the speech 

signal. The value of Ψ represents the approximation 

error between the signal simulated by the model (xS) 

and the glottal flow signal extracted from the speech 

signal (xE). The minimum value of Ψ gives the model 

parameters most able to reproduce the vibrational 

movements of the folds.   

III. RESULTS 

Figure 3 illustrates some results involving the glottal 
signal extracted from the speech signal of a subject and 
the simulation performed by the biomechanical model. 

The described method could simulate the signal 
produced by glottal vibrations of a specific subject with 
relative precision. The difference between the extracted 
and simulated signals (Figure 3b) might be attributed to 
the model behavior, which cannot simulate certain 
patterns, and/or the optimization procedure, which does 
not produce an optimum solution. Stochastic 
components in the extracted signal may have increased 
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Figure 3.  (a) Windowed speech signal of vowel /a/ pronounced by 

subject 1. (b) Glottal flow signal extracted by inverse filtering method 

(dotted line) and its corresponding simulated signal (continuous line) 

generated by the biomechanical model. (c) Fourier spectrum of the 

extracted signal and (d) simulated signal. (e) Spectrum error between 

the simulated and extracted signals. 

the error value. The graphics of Figures 3c and 3d show 
that the simulated signal can reproduce the most 
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important components of the extracted signal. Table 1 
shows the mechanical parameters found by the 
optimization procedure for the four subjects analyzed. 

TABLE I.  PARAMETERS OF THE BIOMECHANICAL MODEL 

CALCULATED FOR THE FOUR SUBJECTS 

Parameters 

Subjects 

1 2 3 4 

m1, 

m2 

0.1900, 

0.0819 

0.1668, 

0.0700 

0.1894, 

0.1065 

0.1392, 

0.0569 

k1, 

k2 

0.1234, 

0.0491 

0.0922, 

0.0474 

0.1666, 

0.0046 

0.1511, 

0.0202 

r1, 

r2 

0.0611, 

0.0223 

0.1960, 

0.0087 

0.0099, 

0.0282 

0.0097, 

0.0245 

kc, 

Ps 

0.1244, 

0.0237 
0.0824, 
0.0232 

0.1994, 
0.0319 

0.1918, 
0.0222 

Errora 0.29 0.49 0.32 0.58 

a. Error between the extracted and simulated signals calculated by equation (2). 

IV. DISCUSSION 

This paper has described a method which 
allows simulating the vocal folds dynamics of a subject 
using his/her speech signal and a standard biomechanical 
model. Emphasis was given to the extracted and 
simulated glottal flow signals used to describe the 
dynamical behavior of the larynx during the phonation.  

As an example, the glottal flow waveform of a 
healthy subject (illustrated in Figure 1) was estimated by 
the IAIF method and later used to optimize the 
parameters of the biomechanical model. The 
optimization procedure showed a good performance and 
the curves produced by the model could reflect the most 
important vibration patterns present in the signal 
extracted from this subject. The error signal between the 
spectra confirms this result. Similar results were 
achieved in the analysis of the other subjects. 

The mechanical parameters exhibited in Table 1 
were significantly different from those defined as 
standard to the model. This is a strong evidence that (1) 
the proposed method can explore a large search space, 
and (2) the model parameters are sensitive to the 
vibration pattern showed for each subject. Furthermore, 
the simulated signals do not take into account merely the 
amplitude, fundamental frequency or phase, but also the 
peculiar features of the extracted waveform. 

Albeit the biomechanical model has been 
successfully used to elucidate the vocal folds dynamics 
in scientific researches [2, 3, 10], the physiologic 
relevance of these parameters, found here to four 
subjects, is limited. Nevertheless, these parameters had 
an association with some physiologic properties of fold 
tissues related to elasticity, Young module, viscosity, 
tension, etc [11]. 

The importance of the proposed method is related to 
the clinical evaluation of voice and vocal folds [11], 
pathologies assessment [10], voice synthesis [12] and 
evaluation of voice dynamics [2, 3]. In this sense, some 
authors [13] have demonstrated that dynamic analysis 

methods can be used as very useful tools to quantify 
voice properties and have equal or superior performance 
than classic methods, such as jitter and shimmer. The 
limitations of the this method here proposed are related 
to the optimization procedure, which does not ensure a 
global optimum, and the IAIF drawbacks, which are very 
sensitive to noise in the signal input [8]. 

The development of a deterministic model of vocal 
folds has brought new perspectives to the use of 
emergent techniques in dynamic systems that can be 
applied to voice research. In particular, the nonlinear 
normal mode [14] theory has been used to study the 
structural nonlinearities in dynamical systems, detection 
and identification of complex behaviors in systems like 
those used here. Future works involving these methods 
will contribute to the characterization of the dynamic 
behavior of voice production in the larynx. 
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