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Abstract—In this paper we introduce the idea of descriptor
combination by Particle Swarm Optimization and its applications
for classification purposes using a recently pattern recognition
technique called Optimum-Path Forest (OPF), which interprets
the samples of the dataset as the nodes of a given graph, and each
arc is weighted by the distance between the corresponding nodes.
The method combines different color descriptors for classification
in the COREL dataset to further weight the OPF graph arcs by
these combined similarities. We show that our proposed approach
can provides better accuracies than the individual ones obtained
by each descriptor.

Index Terms—Optimum-Path Forest, Descriptor Combination,
Particle Swarm Optimization, Pattern Recognition

I. I NTRODUCTION

Multimodal pattern recognition has become a very promis-
ing research area, mainly due to its power of describing
datasets. However, it is usual to find researches that vali-
date their feature extraction algorithms in a restrict domain
of datasets. Shape features extractors [1], for instance, are
commonly evaluated in the MPEG-7 Shape Dataset [2], which
is composed by binary objects for shape analysis. Regarding
color features, the most commonly used dataset is COREL [3].
Color histograms [4] and Color Coherence Vectors [5], for
instance, are the most actively used feature extraction algo-
rithms and are constantly validated on COREL dataset. Several
texture analysis approaches have been carried out in Brodatz
Dataset [6]. Montoya et al. [7], for instance, evaluated their
new wavelet-based approach for scale and rotation texture
invariant recognition in this dataset.

Given that humans visually recognizes objects using differ-
ent features, they tend to distinguish images based on their
shape, color and texture properties. In this context, some
works have been investigating the problem of combining and
selecting features. However, the main problem of combining
features of different types (such as color, texture, and shape),
and even features of the same type, relies on the fact that some
features can not be treated in the same metric space. The BAS
shape feature extractor [1], for instance, is composed by the
computation of three statistical moments of thek-curvature at
each shape point. This means that the features extracted from
BAS for each image are not correlated to each other. Hence
a common distance metric, such as the Euclidean distance,

can not be used for computing BAS distances, and so more
complex distance functions need to be used [8]. In the opposite
way, color histograms represent the image as a whole, and
the Euclidean distance can be used to computed the distance
between two different color histograms.

Recently, a novel pattern recognition technique called
Optimum-Path Forest (OPF) [9] was developed, and has been
demonstrated to be superior than Artificial Neural Networks
(ANN) and similar to Support Vector Machines (SVM), but
much faster. The OPF models the pattern recognition as a
graph partitioning problem, in which each class is represented
by an Optimum-Path Tree (OPT), and a sample that belongs
to a given OPT is more strongly connected to its root than any
other root in the forest. Given that the arcs of this graph are
weighted by the distance between their corresponding nodes
(feature vectors), we propose in this work to combine different
descriptors (i.e., different similarity values) by Particle Swarm
Optimization (PSO) [10]. PSO is a evolutionary approach that
has been extensively used for several optimization problems.
The main idea is to use this combined distance to weight the
OPF graph edges. In such a way, each arc weight will represent
a similarity value between two samples that takes into account
different features extraction algorithms. As far as we know, we
are the first to propose a descriptor combination using Particle
Optimization and other main contribution of our paper is that
we are the pioneer into applying this approach for the OPF
algorithm.

The remainder of this paper is organized as follows. Sec-
tions II and III present, respectively, the OPF and PSO meth-
ods. Section IV discuss the experimental results and Section V
states conclusions and future works.

II. OPTIMUM-PATH FOREST CLASSIFIER

Let Z1 andZ2 be the training and and test sets with|Z1| and
|Z2| samples such as points or image elements (e.g., pixels,
voxels, shapes or texture information). Letλ(s) be the function
that assigns the correct labeli, i = 1, 2, . . . , c, from classi to
any samples ∈ Z1∪Z2. Z1 is a labeled set used to the design
of the classifier andZ2 is used to assess the performance of
classifier and it is kept unseen during the project.

Let S ⊂ Z1 be a set of prototypes of all classes (i.e.,
key samples that best represent the classes). Letv be an
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algorithm which extractsn attributes (color, shape or texture
properties) from any samples ∈ Z1 ∪Z2 and returns a vector
~v(s) ∈ ℜn. The distanced(s, t) between two samples (images
in this paper),s andt, is the one between their feature vectors
~v(s) and~v(t). One can use any valid metric (e.g., Euclidean)
or a more elaborated distance algorithm. In this context, we
introduce the idea ofdescriptor[11], which can be defined as
a pairD = (~v, d), in which d is a distance function between
samples. A descriptor claims that every feature vector needs
its related distance.

Our problem consists of usingS, (v, d) and Z1 to project
an optimal classifier which can predict the correct labelλ(s)
of any samples ∈ Z2. The OPF classifier creates a discrete
optimal partition of the feature space such that any samples ∈
Z2 can be classified according to this partition. This partition
is an optimum path forest (OPF) computed inℜn by the image
foresting transform (IFT) algorithm [12].

A. Training

Let (Z1, A) be a complete graph whose nodes are the
training samples and any pair of samples defines an arc in
A = Z1 × Z1. The arcs do not need to be stored and so
the graph does not need to be explicitly represented. A path
is a sequence of distinct samplesπt = 〈s1, s2, . . . , t〉 with
terminus at a samplet. A path is saidtrivial if πt = 〈t〉. We
assign to each pathπt a costf(πt) given by a connectivity
functionf . A pathπt is said optimum iff(πt) ≤ f(τt) for any
other pathτt. We also denote byπs · 〈s, t〉 the concatenation
of a pathπs and an arc(s, t).

We will address the connectivity functionfmax, given by:

fmax(〈s〉) =

{
0 if s ∈ S,
+∞ otherwise,

fmax(πs · 〈s, t〉) = max{fmax(πs), d(s, t)}, (1)

such thatfmax(πs · 〈s, t〉) computes the maximum distance
between adjacent samples along the pathπs · 〈s, t〉. We wish
to assign to every samplet ∈ Z1 an optimum pathP ∗(t) from
the setS ⊂ Z1 of prototypes, whose minimum costC(t) is:

C(t) = min
∀πt∈(Z1,A)

{fmax(πt)}. (2)

The minimization of C is computed by Algorithm 1
(described afterwards), called OPF algorithm, which is an
extension of the general image foresting transform (IFT)
algorithm [12] from the image domain to the feature space,
here specialized forfmax. This process assigns one optimum
path from S to each training samplet in a non-decreasing
order of minimum cost, such that the graph is partitioned into
an optimum-path forestP (a function with no cycles which
assigns to eacht ∈ Z1\S its predecessorP (t) in P ∗(t) or a
markernil when t ∈ S. The rootR(t) ∈ S of P ∗(t) can be
obtained fromP (t) by following the predecessors backwards
along the path, but its label is propagated during the algorithm
by settingL(t)← λ(R(t)).

In Algorithm 1, Lines 1 − 3 initialize maps and insert
prototypes inQ. The main loop computes an optimum path

from S to every samples in a non-decreasing order of
minimum cost (Lines4 − 11). At each iteration, a path of
minimum costC(s) is obtained inP when we remove its
last nodes from Q (Line 5). Ties are broken inQ using
first-in-first-out policy. That is, when two optimum paths
reach an ambiguous samples with the same minimum cost,
s is assigned to the first path that reached it. Note that
C(t) > C(s) in Line 6 is false whent has been removed
from Q and, therefore,C(t) 6= +∞ in Line 9 is true only
whent ∈ Q. Lines8− 11 evaluate if the path that reaches an
adjacent nodet throughs has a lower cost than the current
path with terminust and update the position oft in Q, C(t),
L(t) andP (t) accordingly.

Algorithm 1: – OPF ALGORITHM

INPUT: A training setZ1, λ-labeled prototypesS ⊂ Z1 and the
pair (v, d) for feature vector and distance computations.

OUTPUT: Optimum-path forestP , cost mapC and label mapL.
AUXILIARY : Priority queueQ implemented as a binary heap and cost

variable cst.
1. For eachs ∈ Z1\S, setC(s)← +∞.
2. For eachs ∈ S, do
3. C(s)← 0, P (s)← nil, L(s)← λ(s), and inserts in Q.
4. While Q is not empty, do
5. Remove fromQ a samples such thatC(s) is minimum.
6. For eacht ∈ Z1 such thatt 6= s andC(t) > C(s), do
7. Computecst← max{C(s), d(s, t)}.
8. If cst < C(t), then
9. If C(t) 6= +∞, then removet from Q.
10. P (t)← s, L(t)← L(s) andC(t)← cst.
11. Insert t in Q.

We say thatS∗ is an optimum set of prototypes when
Algorithm 1 minimizes the classification errors inZ1. S∗

can be found by exploiting the theoretical relation between
minimum-spanning tree (MST) and optimum-path tree for
fmax [9]. By computing a MST in the complete graph(Z1, A),
we obtain a connected acyclic graph whose nodes are all
samples ofZ1 and arcs are undirected and weighted by the
distancesd between adjacent samples. The MST is optimum
in the sense that the sum of its arc weights is minimum as
compared to any other spanning tree in the complete graph,
and every pair of samples is connected by a single path which
is optimum according tofmax. That is, the minimum-spanning
tree contains one optimum-path tree for any selected root node.
The optimum prototypes are the closest elements of the MST
with different labels inZ1. By removing the arcs between
different classes, their adjacent samples become prototypes in
S∗ and Algorithm 1 can compute an optimum-path forest in
Z1.

B. Classification

For any samplet ∈ Z2, we consider all arcs connectingt
with sampless ∈ Z1, as thought were part of the training
graph. Considering all possible paths fromS∗ to t, we find
the optimum pathP ∗(t) from S∗ and labelt with the class
λ(R(t)) of its most strongly connected prototypeR(t) ∈ S∗.
This path can be identified incrementally, by evaluating the
optimum costC(t) as:

C(t) = min{max{C(s), d(s, t)}}, ∀s ∈ Z1. (3)
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Let nodes∗ ∈ Z1 be the one that satisfies Equation 3 (i.e.,
the predecessorP (t) in the optimum pathP ∗(t)). Given that
L(s∗) = λ(R(t)), the classification simply assignsL(s∗) as
the class oft. An error occurs whenL(s∗) 6= λ(t).

III. PARTICLE SWARM OPTIMIZATION

Recently, several applications have used evolutionary tech-
niques as heuristic methods to find optimal or quasi-optimal
solutions. A particular attention has been devoted to Particle
Swarm Optimization (PSO), due to its simplicity and effec-
tiveness. Basically, PSO is an algorithm modeled on swarm
intelligence that finds a solution in a search space based on
the social behavior dynamics [10]. Each possible solution of
the problem is modeled as a particle in the swarm that imitates
its neighbor based on a fitness function.

Other definitions consider PSO as a stochastic and
population-based search algorithm, in which the social behav-
ior learning allows each possible solution (particle) to ”fly”
into this space (swarm) looking for other particles that have
better characteristics, i.e., the ones that maximize a fitness
function. Each particle has a memory that stores its best local
solution (local maxima) and the best global solution (global
maxima). Taking into account this information, each particle
has the ability to imitate the other ones that give to it the best
local and global maxima. This process simulates the social
interaction between humans looking for the same objective or
bird flocks looking for food, for instance. This socio-cognitive
mechanism can be summarized into three main principles [10]:
(i) evaluating, (ii) comparing and (iii) imitating. Each particle
can evaluate other ones into its neighborhood through some
fitness function, can compare it with its own value and, finally,
can decide whether it is a good choice to imitate them.

The entire swarm is modeled as multidimensional space
ℜm, in which each particlepi = (~xi, ~vi) ∈ ℜ

m has two
main features: (i) position (~xi) and (ii) velocity (~vi). The local
(best current position̂xi) and global solution̂s are also known
(Figure 1). After defining the swarm size, i.e., the number of
particles, each one of them is initialized with random values of
both velocity and position. Each individual is then evaluated
with respect to some fitness function and its local maximum
is updated. At the end, the global maximum is updated with
the particle that achieved the best position into the swarm.
This process is repeated until some convergence criterion be
reached. The updated position and velocity equations of the
particle pi in the simplest form that govern the PSO are,
respectively, given by

~vi = w~vi + c1r1(x̂i − ~xi) + c2r2(ŝ− ~xi) (4)

and
xi = xi + vi, (5)

where w is the inertia weight that controls the interaction
power between particles, andr1, r2 ∈ [0, 1] are random
variables that give the idea of stochasticity to the PSO
method. Constantsc1 and c2 are used to guide particles
into good directions. The whole PSO algorithm is given

Fig. 1. PSO geometrical interpretation.

below. For the swarm size and number of iterations, we used
n = 100 and T = 10, respectively. Regarding the inertia
weight we usedw = 0.5.

Algorithm 2: – PSO ALGORITHM

INPUT: Inertia weight valuew, PSO swarm sizen, fitness function
f , dimensionm and number of iterationsT and c1, c2
values.

OUTPUT: Global best positionbs.
AUXILIARY : Fitness vector~a with sizen and variablesr1, r2, c1, c2,

k, tmp, maxfit, globalfit and maxindex.
1. For each particlepi (∀i = 1, . . . , n), do.
2. For each dimensionj (∀j = 1, . . . , m), do.
3. xi,j ← uniform random value
4. vi,j ← 0
5. ai ← −∞
6. globalfit← −∞
7. For each iterationt (t = 1, . . . , T ), do.
8. For each particlepi (∀i = 1, . . . , n), do.
9. tmp← f(pi)
10. If (tmp > ~ai), then.
11. ~ai ← tmp
12. For each dimensionj (∀j = 1, . . . , m), do.
13. bxi,j ← xi,j

14. [maxfit, maxindex]← max(~a)
15. If(maxfit > globalfit), then.
16. globalfit← maxfit
17. For each dimensionj (∀j = 1, . . . , m), do.
18. bsj ← xmaxindex,j

19. For each particlepi (∀i = 1, . . . , n), do.
20. For each dimensionj (∀j = 1, . . . , m), do.
21. r1 ← uniform random value
22. r2 ← uniform random value
23. k ← c2 ∗ r2 ∗ (bsi,j − xi,j)
24. vi,j ← w ∗ vi,j + c1 ∗ r1 ∗ (bxi,j − xi,j) + k
25. xi,j ← xi,j + vi,j

The loop (Lines1 − 5) initializes the particle parameters
(Lines 2− 4) and its local fitness value (Line5). The swarm
global fitness is initialized in Line6. The main loop (Lines
7−25) is the core of PSO algorithm: the first inner loop (Lines
8− 13) calculates, for each particle, its fitness function (Line
9) and evaluates whether this value is better than the best one
recorded by the particle (Lines10− 13). In the positive case,
the fitness value of particlepi (Line 11) and its best position,
i.e., local maxima, are updated in Line12. Line 14 retrieves the
best (maximum) fitness value and its position and stores them
in the variablesmaxfit and maxindex, respectively. If the
obtained best fitness value is greater than the global fitness,
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the last one is updated with former value (Lines17 − 18).
The global best particle is updated with the same position
of the particle that gave the maximum fitness value in the
actual iteration (Line16). Finally, the second inner loop (Lines
19 − 25) is responsible for updating each particle’s position
and velocity with Equations 4 and 5 (Lines23− 25).

IV. EXPERIMENTAL RESULTS

In this section we describe the experiments regarding the
descriptor combination by PSO, as well its application for
the Optimum-Path Forest classifier. We used the COREL
dataset [3] with the following color descriptors: BIC [13],
GCH [4] and LUCOLOR. We also used the LAS texture de-
scriptor [14]. The Corel dataset used here was extracted from a
database containing 20.000 images from the GALLERY Magic
- Stock Photo Library2, and our subset is composed by 3.906
images, in which we have 85 classes of images and the number
of images per class varies from 7 to 98.

For each descriptor, we computed its similarity matrices
(i.e., the distance between all pairs of samples), which were
used as input to the OPF algorithm for classification purposes.
We divided the dataset into three sets: 25% for training, 25%
for evaluating and 50% for testing. The former sets (training
and evaluating) were used to guide the PSO algorithm, i.e.,
the OPF was trained in the training set and validated in the
evaluating one. The accuracy obtained in the latter was usedas
the fitness function for PSO. In such a way, the valuef(pi) in
Line 9 of Algorithm 2 corresponds to the OPF accuracy over
the evaluating set. In other words, the PSO task was to find
the descriptor combination that maximizes the OPF accuracy
over the evaluating set.

Mathematically speaking, let’s say thatD∗ is the best
composite descriptor that we could obtain. Our descriptor
combination can be represented as a linear combination of
the aforementioned descriptors, given by

D∗ = λ1DBIC +λ2DLAS +λ3DGCH +λ4DLUCOLOR. (6)

In such a way, we used the PSO methodology to findλ∗ =
{λ1, λ2, λ3, λ4} that maximizes the OPF accuracy over the
evaluating set. After that, we useλ∗ to transform the original
dataset to this new one and apply OPF for classifying samples
from the test set. The whole process is repeated 10 times in
order to compute the mean accuracies values. Table I displays
the results for each descriptor individually, and also for several
combinations of them.

We can see that any descriptor combination by PSO and its
validation using OPF can outperform the individual accuracy
of each one. The best results were found by combining all
descriptors (bolded line in the above table).

V. CONCLUSIONS

We proposed in this work the descriptor combination in-
stead of simple features selection/combination. Our proposed
schema was carried out by the Particle Swarm Optimization
and validated in the Optimum-Path Forest algorithm in the

TABLE I
COLOR DESCRIPTORS PERFORMANCE.

Descriptor Accuracy Classifier
BIC 72.69% OPF
LAS 60.15% OPF
GCH 65.49% OPF

LUCOLOR 62.77% OPF
LAS+GCH+LUCOLOR 66.31% OPF+PSO

BIC+LAS 73.38% OPF+PSO
LAS+GCH 68.61% OPF+PSO

BIC+LAS+GCH+LUCOLOR 73.46% OPF+PSO

COREL image dataset. We used here 3 color and 1 texture
descriptors, which had their similarity matrices combinedin
order to maximize the OPF accuracy over an evaluating set.
As our proposed methodology can be described by a linear
combination of variables, the PSO was used to find them
for further dataset transformation. Our results demonstrated
that the proposed methodology outperformed the individual
accuracy of each descriptor. Thus, it can be efficiently used
for classification purposes.

For future works, we intend to combine descriptors from
different contexts, i.e., shape, color and texture. Another idea
is to validate our approach for Content-Based Image Retrieval.
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