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Abstract—In this paper we introduce the idea of descriptor can not be used for computing BAS distances, and so more
combination by Particle Swarm Optimization and its applications  complex distance functions need to be used [8]. In the opgosi
for classification purposes using a recently pattern recognition way, color histograms represent the image as a whole, and

technigue called Optimum-Path Forest (OPF), which interprets . : .
the samples of the dataset as the nodes of a given graph, and kac the Euclidean distance can be used to computed the distance

arc is weighted by the distance between the corresponding nodes.petween two different color histograms.
The method combines different color descriptors for classification ~ Recently, a novel pattern recognition technique called

in the COREL dataset to further weight the OPF graph arcs by  Optimum-Path Forest (OPF) [9] was developed, and has been
these combined similarities. We show that our proposed approach yemgnsirated to be superior than Artificial Neural Networks
can provides better accuracies than the individual ones obtained L .
by each descriptor. (ANN) and similar to Support Vector Machines (S\{M), but
much faster. The OPF models the pattern recognition as a
Index Terms—Optimum-Path Forest, Descriptor Combination, graph partitioning problem, in which each class is represskn
Particle Swarm Optimization, Pattern Recognition by an Optimum-Path Tree (OPT), and a sample that belongs
to a given OPT is more strongly connected to its root than any
other root in the forest. Given that the arcs of this graph are
Multimodal pattern recognition has become a very promisveighted by the distance between their corresponding nodes
ing research area, mainly due to its power of describiri@ature vectors), we propose in this work to combine déifeer
datasets. However, it is usual to find researches that valescriptors (i.e., different similarity values) by PadiSwarm
date their feature extraction algorithms in a restrict domaOptimization (PSO) [10]. PSO is a evolutionary approach tha
of datasets. Shape features extractors [1], for instanee, has been extensively used for several optimization proklem
commonly evaluated in the MPEG-7 Shape Dataset [2], whidlihe main idea is to use this combined distance to weight the
is composed by binary objects for shape analysis. Regard@®F graph edges. In such a way, each arc weight will represent
color features, the most commonly used dataset is COREL [d]similarity value between two samples that takes into acou
Color histograms [4] and Color Coherence Vectors [5], fatifferent features extraction algorithms. As far as we know
instance, are the most actively used feature extractioo- al@gre the first to propose a descriptor combination using ¢barti
rithms and are constantly validated on COREL dataset. 8eveDptimization and other main contribution of our paper isttha
texture analysis approaches have been carried out in Brodat are the pioneer into applying this approach for the OPF
Dataset [6]. Montoya et al. [7], for instance, evaluatedrthealgorithm.
new wavelet-based approach for scale and rotation textureThe remainder of this paper is organized as follows. Sec-
invariant recognition in this dataset. tions Il and Il present, respectively, the OPF and PSO meth-
Given that humans visually recognizes objects using diffends. Section IV discuss the experimental results and Se¥gtio
ent features, they tend to distinguish images based on thaites conclusions and future works.
shape, color and texture properties. In this context, some
works have been investigating the problem of combining and
selecting features. However, the main problem of combiningLet Z; andZ, be the training and and test sets wjifh | and
features of different types (such as color, texture, anghesha |Z>| samples such as points or image elements (e.g., pixels,
and even features of the same type, relies on the fact tha soroxels, shapes or texture information). Lék) be the function
features can not be treated in the same metric space. The BA& assigns the correct labgli = 1,2, ..., ¢, from classi to
shape feature extractor [1], for instance, is composed by tany samples € Z; U Z;. Z; is a labeled set used to the design
computation of three statistical moments of #eurvature at of the classifier andZ, is used to assess the performance of
each shape point. This means that the features extracted frddassifier and it is kept unseen during the project.
BAS for each image are not correlated to each other. Hencd,et S C Z; be a set of prototypes of all classes (i.e.,
a common distance metric, such as the Euclidean distankey samples that best represent the classes).vLbe an

I. INTRODUCTION

II. OPTIMUM-PATH FOREST CLASSIFIER
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algorithm which extracts: attributes (color, shape or texturefrom S to every samples in a non-decreasing order of
properties) from any samplee Z; U Z, and returns a vector minimum cost (Lines4 — 11). At each iteration, a path of
¥(s) € R™. The distancel(s,t) between two samples (imagesminimum costC(s) is obtained inP when we remove its
in this paper)s andt, is the one between their feature vectorlast nodes from @ (Line 5). Ties are broken i) using
v(s) and¥(t). One can use any valid metric (e.g., Euclidearfjrst-in-first-out policy. That is, when two optimum paths
or a more elaborated distance algorithm. In this context, weach an ambiguous sampiewith the same minimum cost,
introduce the idea aflescriptor[11], which can be defined ass is assigned to the first path that reached it. Note that
a pairD = (¢, d), in which d is a distance function betweenC(t) > C(s) in Line 6 is false whent has been removed
samples. A descriptor claims that every feature vector sieddom @ and, therefore(C'(t) # +oo in Line 9 is true only
its related distance. whent € @). Lines8 — 11 evaluate if the path that reaches an
Our problem consists of using, (v,d) and Z; to project adjacent node throughs has a lower cost than the current
an optimal classifier which can predict the correct labgl) path with terminug and update the position ofin @, C(¢),
of any samples € Z,. The OPF classifier creates a discreté&(¢) and P(t) accordingly.
optimal partition of the feature space such that any sampgle i
7, can be classified according to this partition. This panitio Algorithm 1: — OPF A.GORITHM

is an optimum path forest (OPF) computedih by the image  input A training setZ;, \-labeled prototypesS C Z; and the
foresting transform (IFT) algorithm [12]. pair (v, d) for feature vector and distance computations.
OUTPUT: Optimum-path foresP, cost mapC' and label mapL.
A Training AUXILIARY : Pr|(_)r|ty queue implemented as a binary heap and cost
variable cst.

Let (Z,,A) be a complete graph whose nodes are t@e Eor eacﬁseglés, setC(s) < +oo.
training samples and any pair of samples defines an arcsin Orfaccf;;oop(s) — nil, L(s) < X(s), and inserts in Q.

A = Zy x Zy. The arcs do not need to be stored and sp While Q is not empty, do

the graph does not need to be explicitly represented. A p&th Remove from@ a samples such thatC(s) is minimum.
. f distinct samples — < t> with 6. For eacht € Z; such thatt # s andC(t) > C(s), do
IS a .Sequence Y X p S = (81,82, 7. Computecst < max{C(s),d(s,t)}.
terminus at a sample A path is saidtrivial if 7, = (t). We s. If cst < C(t), then
assign to each path, a costf(r;) given by a connectivity If C(t) # +oo, then remove from Q.

. . . . . 10. P(t) < s, L(t) < L(s) andC(¢) < cst.
function f. A path, is said optimum iff (r;) < f(7;) forany 7 Insertt in Q.

other pathr;. We also denote by, - (s, ) the concatenation
of a pathr, and an ards, t). We say thatS* is an optimum set of prototypes when
We will address the connectivity functiofy..., given by:  Algorithm 1 minimizes the classification errors if;. S*
0 it S can be found by exploiting the theoretical relation between
Jmax((s)) { 5 €2, minimum-spanning tree (MST) and optimum-path tree for
+o0o otherwise, : .
fmax [9]- By computing a MST in the complete grapH;, A),
fmax(7s - (5,1)) = max{fmax(7s),d(s,1)}, (1) we obtain a connected acyclic graph whose nodes are all
such that fyax (s - (s,¢)) computes the maximum distances_amples ofZ, and arcs are undirected and weighted b_y the
between adjacent samples along the pagh (s, t). We wish Q|stancesi between adjacent s_amples. T.he M$T is c_)ptlmum
to assign to every samplec Z; an optimum pathP* (¢) from in the sense that the sum of its arc weights is minimum as

the setS C Z; of prototypes, whose minimum coét(t) is: compared to any other spanning tree in the complete graph,
and every pair of samples is connected by a single path which

c@t) = min  { fiax(m) }- (2) is optimum according tg,... That is, the minimum-spanning
vr:€(Z1,4) tree contains one optimum-path tree for any selected rae.no
The minimization of C' is computed by Algorithm 1 The optimum prototypes are the closest elements of the MST

(described afterwards), called OPF algorithm, which is awith different labels inZ;. By removing the arcs between
extension of the general image foresting transform (IFTjfferent classes, their adjacent samples become prastyp
algorithm [12] from the image domain to the feature spacg;” and Algorithm 1 can compute an optimum-path forest in
here specialized fof,,.x. This process assigns one optimun¥;.
path from S to each training samplé in a non-decreasing B. Classification
order of minimum cost, such that the graph is partitioned int . .
an optimum-path foresP (a function with no cycles which .For any sample € Z», we consider all arcs conne(?tlrtg
assigns to each € Z;\S its predecessoP(t) in P*(t) or a with samples; € 21, as thoyght were part of the training
markernil whent € S. The rootR(t) € S of P*(t) can be graph. _Con3|der|ng*all pOSS'blf paths frdii to ¢, we find
obtained fromP(t) by following the predecessors backwardéhe optimum pathP”(t) from $* and labelt with the class

: : : . A(R(t)) of its most strongly connected prototyp&t) € S*.
I th th, but its label ted d the dlgor . i B .
gyors]gttinzz?t) (_u/\(IRS(:)l)_e 'S propagated during the I This path can be identified incrementally, by evaluating the

In Algorithm 1, Lines1 — 3 initialize maps and insert optimum costC(¢) as:

prototypes in@. The main loop computes an optimum path C(t) = min{max{C(s),d(s,t)}}, Vs € Z;. (3)
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Let nodes* € Z; be the one that satisfies Equation 3 (i.e., local best position

. ’ . particle p;
the predecessaP(t) in the optimum pathP*(¢)). Given that @ _____________________
L(s*) = A(R(t)), the classification simply assigns(s*)as ~  ~— % L
the class oft. An error occurs wherd(s*) # A(t). S
.
IIl. PARTICLE SWARM OPTIMIZATION Ny
Recently, several applications have used evolutionaty-tec v,

nigues as heuristic methods to find optimal or quasi-optimal
solutions. A particular attention has been devoted to &arti
Swarm Optimization (PSO), due to its simplicity and effec- /
tiveness. Basically, PSO is an algorithm modeled on swarm new position
intelligence that finds a solution in a search space based on
the social behavior dynamics [10]. Each possible solutibn o
the problem is modeled as a patrticle in the swarm that instate
its neighbor pa;_ed ona f|tpess function. . bglow. For the swarm size and number of iterations, we used
Other definitions consider PSO as a stochastic an . : S

) . ; . . n = 100 and T' = 10, respectively. Regarding the inertia
population-based search algorithm, in which the sociabbzeh = .
. . . : . e Weight we usedo = 0.5.
ior learning allows each possible solution (particle) to/™fl
into this space (swarm) looking for other particles thatehav Algorithm 2: — PSO A.GORITHM
better characteristics, i.e., the ones that maximize asftne '

global best position

Fig. 1. PSO geometrical interpretation.

function. Each particle has a memory that stores its besd loc |NPUT. Inertia weight valuew, PSO swarm size, fithess function
Rk . . f, dimensionm and number of iterationd” and ¢y, c2

solution (local maxima) and the best global solution (globa values.

maxima). Taking into account this information, each p#tic outpuT: Global best positiors.

has the ability to imitate the other ones that give to it thetbe AUXILIARY: Zit;‘fnss ‘;zgg’ﬁt‘”it?ozgl‘}?ta;‘ndd‘gzz?:f;;' T2, €1, €2,
!ocal ar_1d global maxima. This process simulates the §ocpl For each parti’cl%p&\ﬁ: 17_’. tq,n), do.

interaction between humans looking for the same objective n For each dimensiopi (Vj = 1,...,m), do.

bird flocks looking for food, for instance. This socio-cotjyreé 3 ;,j < uniform random value

mechanism can be summarized into three main principles [1@)] L o — Vi 0

(i) evaluating, (i) comparing and (iii) imitating. Eachppale 6. giobalfit — —oco

can evaluate other ones into its neighborhood through sorhe For each iteratiort (t = 1,...,T), do.

fitness function, can compare it with its own value and, fipall§ For each particlg; (vi =1,...,n), do.

can decide whether it is a good choice to imitate them.  10. |tfm(}t7mp ];(Z;%)), then.

The entire swarm is modeled as multidimensional spaé& ai —tmp o
R™, in which each particlep; = (7,7;) € R™ has two i Fo,r_eafchdinir"s_'og (¥j=1,...,m), do.
main features: (i) position#) and (ii) velocity ;). The local 14. [mazx fit,maxindemljj<— mc:'g(d')
(best current positiot;) and global solutiors are also known 15. If(mazfit > global fit), then.
(Figure 1). After defining the swarm size, i.e., the number global it ;m’gﬁ;fg;t(w —1...m) do
particles, each one of them is initialized with random valog 1s. L 8j — Tmawindes,j S
both velocity and position. Each individual is then evatuat 19- For each particle; (Vi=1,...,n), do.
with respect to some fitness function and its local maximu For eiihi'muenr;%?r?q (rZ%d:O“lq’ \‘,éidé” ), do.
is updated. At the end, the global maximum is updated witf. r9 «— uniform random value
the particle that achieved the best position into the swarg$: k—coxrax(Si; — xij)

Vi j < Wk Vi 5+ C1*rY* (fi,j — Ii,j) + k

This process is repeated until some convergence critegon o o
L T j < Ti G+ Vi

reached. The updated position and velocity equations of the
particle p; in the simplest form that govern the PSO are, The loop (Linesl — 5) initializes the particle parameters

respectively, given by (Lines 2 — 4) and its local fitness value (Lin&). The swarm
global fitness is initialized in Ling. The main loop (Lines
0 = wu; + 171 (Ty — T;) + cora (5 — T7) (4) 7-25)is the core of PSO algorithm: the first inner loop (Lines

8 — 13) calculates, for each particle, its fitness function (Line
9) and evaluates whether this value is better than the best one
recorded by the particle (Line® — 13). In the positive case,
where w is the inertia weight that controls the interactionthe fitness value of particlg; (Line 11) and its best position,
power between particles, and,r, € [0,1] are random i.e., local maxima, are updated in Lifg. Line 14 retrieves the
variables that give the idea of stochasticity to the PSKest (maximum) fithess value and its position and stores them
method. Constantg; and ¢, are used to guide particlesin the variablesmax fit and maxindex, respectively. If the

into good directions. The whole PSO algorithm is giveobtained best fitness value is greater than the global fithess

and
T = T + Vs, ©)
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the last one is updated with former value (Lings — 18). COLOR DESCRT,/,;\E(;ESIPERFORMANCE
The global best particle is updated with the same position
of the particle that gave the maximum fitness value in the Descriptor ACCUfaOCy Classifier
actual iteration (Lingﬁ). Finally, thg second inner loop (Liqgs |_B£ ggfg;‘; 8§E
19 — 25) is responsible for updating each particle’s position GCH 65.49% OPE
and velocity with Equations 4 and 5 (Lin€8 — 25). LUCOLOR 62.77% OPF
LAS+GCH+LUCOLOR 66.31% | OPF+PSO
V. EXPERIMENTAL RESULTS BIC+LAS 73.38% | OPF+PSO
. , ) , i CAS+GCH 68.61% | OPF+PSO
In this section we describe the experiments regarding the [BICTLASTGCH+LUCOLOR 73.46% | OPF+PSO

descriptor combination by PSO, as well its application for

the Optimum-Path Forest classifier. We used the COREL

dataset [3] with the following color descriptors: BIC [13],COREL image dataset. We used here 3 color and 1 texture

GCH [4] and LUCOLOR. We also used the LAS texture dedescriptors, which had their similarity matrices combiried

scriptor [14]. The Corel dataset used here was extracted &o order to maximize the OPF accuracy over an evaluating set.

database containing 20.000 images from the GALLERY Magj&s our proposed methodology can be described by a linear

- Stock Photo Library2, and our subset is composed by 3.986mbination of variables, the PSO was used to find them

images, in which we have 85 classes of images and the numfegr further dataset transformation. Our results demotesira

of images per class varies from 7 to 98. that the proposed methodology outperformed the individual
For each descriptor, we computed its similarity matricesccuracy of each descriptor. Thus, it can be efficiently used

(i.e., the distance between all pairs of samples), whichewefor classification purposes.

used as input to the OPF algorithm for classification purpose For future works, we intend to combine descriptors from

We divided the dataset into three sets: 25% for training, 258fferent contexts, i.e., shape, color and texture. Anottiea

for evaluating and 50% for testing. The former sets (trajninis to validate our approach for Content-Based Image Retiiev

and evaluating) were used to guide the PSO algorithm, i.e.,

the OPF was trained in the training set and validated in the

evaluating one. The accuracy obtained in the latter was ased[1] N. Arica and F. T. Y. Vural, “BAS: A Perceptual Shape Deptor

the fitness function for PSO. In such a way, the vafie;) in Ej‘fﬁg_°gn_1tgfp?)‘?a‘l"gz/;fglgg”tagfé'g%tég” Recognition Letters/ol.

Line 9 of Algorithm 2 corresponds to the OPF accuracy ovefz] MPEG-7, “Mpeg-7: The generic multimedia content desapiptstan-

the evaluating set. In other words, the PSO task was to find dard, part 1"IEEE MultiMedia vol. 09, no. 2, pp. 78-87, 2002.

the descriptor combination that maximizes the OPF accura i/] Corel Corporation, *Corel stock photo images,’ -, hitmiw.corel.com.
] M. Swain and D. Ballard, “Color Indexing,1nternational Journal of

over the evaluating set. Computer Visionvol. 7, no. 1, pp. 11-32, 1991.
Mathematically speaking, let's say thd®* is the best [5] G. Pass, Zabih R, and J. Miller, “Comparing images usingorcol

; ; ; ; coherence vectors,” iIMULTIMEDIA'96: Proceedings of the 4th ACM
composite descriptor that we could obtain. Our descriptor International Conference on Multimedia996. pp. 65-73.

combination can be represented as a linear combination @ p. Brodatz, Textures: A Photographic Album for Artists and Designers
the aforementioned descriptors, given by Dover, New York, 1966.
[7] J.A. Montoya-Zegarra, J.P. Papa, N.J. Leite, R.S. Brand A.X.
Falcdo, “Learning how to extract rotation-invariant and sdaleariant
features from texture imagesFURASIP Journal on Advances in Signal
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