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Abstract— This paper presents a new application and 

evaluation of the Optimum-Path Forest (OPF) classifier to 

accomplish synthetic material porosity segmentation and 

quantification obtained from optical microscopic images. 

Sample images of a synthetic material were analyzed and the 

quality of the results was confirmed by human visual analysis. 

Additionally, the OPF results were compared against two 

different Support Vector Machines approaches, confirming the 

OPF superior fast and reliable qualities for this analysis purpose. 

Thus, the Optimum-Path Forest classier demonstrated to be a 

valid and adequate tool for microstructure characterization 

through porosity segmentation and quantification using 

microscopic images, manly due its fast, efficient and reliable 

manner.  

Keywords- Optimum-Path Forest, Synthetic Material 

Porosity Segmentation, Image Foresting Transform. 

I.  INTRODUCTION 

The analysis of porosity on synthetic materials through of 

its fast and reliable segmentation is an important and crucial 

task for the evaluation of their mechanical properties, e.g., (i) 

following the propagation and coalescence of microcracks 

we can better control the mechanical behavior of brittle 

regimes, (ii) porous zones are pathways for fluid flow and 

solute diffusion, (iii) orientation of microfissures controls the 

anisotropy of mechanical properties of materials that can 

indicate stress regimes. For example, in hydrothermal 

systems, porosity segmentation and quantification of altered 

and unaltered rocks can be used as a tool for prevision of 

fluid/rock ratio and for the recognition and quantification of 

pathways to control hydrothermal alterations [1], [2]. 

Automatic analysis of material porosity from images has 

been recently addressed. Malcolm et al. [3] used an edge 

linking approach to refine the image segmentation step, and 

the porosity analysis results are obtained by the pores 2D 

characterization. Du and Sun [4] proposed an automatic 

method for pore characterization of pork ham from images 

considering three steps: (i) ham extraction, (ii) enhancement 

of the input image and (iii) pore segmentation. A watershed 

algorithm was used for segmentation of the input images. 

Taud et al. [5] used a gray level method that considers the 

input computed tomography image as a surface. Further, the 

volumes required for the porosity estimation were obtained 

by integrating this surface with simple operations applied to 

the input image histogram. 

Recently, a novel graph-based classifier that reduces the 

pattern recognition problem as an optimum-path forest 

(OPF) computation in the feature space induced by a graph 

was presented [6]. The OPF classifier does not interpret the 

classification task as a hyperplanes optimization problem, 

but as a polynomial combinatorial optimum-path 

computation from some key samples (prototypes) to the 

remaining nodes. Each prototype becomes a root from its 

optimum-path tree and each node is classified according to 

its strongly connected prototype. This process defines a 

discrete optimal partition (influence region) of the feature 

space. The OPF classifier has some advantages with respect 

to the traditional classifiers: (i) is free of parameters, (ii) do 

not assume any shape/separability of the feature space, (iii) 

run training phase faster and (iv) make decisions based on a 

global criteria. Results in several applications, such that 

fingerprint and face recognition, remote sensing image 

classification, biomedical signal processing and many other 

works, have been demonstrated that OPF is superior than 

Artificial Neural Networks using Multilayer Perceptrons and 

Self Organizing Maps, and similar to SVM, but much faster 

[6]. 

In such a way, this paper aims to present and evaluate an 

innovative computational technique based on OPF classifier 

for analyzing synthetic material porosity images obtained 

from optical microscopy, which looks for optimizing the 

process of segmentation and quantification of such 

microstructures. The main contribution of this work relies on 

the fact that we are the first into applying the optimum-path 

forest classifier in this research field. In order to accomplish 

comparisons about computational cost and segmentation 

accuracy through OPF classifier, we also applied the SVM 

classifier with Radial Basis Function kernel (SVM-RBF) 

and SVM without kernel mapping (SVM-LINEAR) for 

synthetic material porosity segmentation. Additionally, 

visual and analytical comparisons were also addressed. The 

remainder of this paper is organized as follows. Sections II 

and III present some review about synthetic materials and 

porosity and the OPF classifier theory, respectively. Section 

IV discusses the experimental results and, finally, Section V 

states conclusions and future works. 
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II. SYNTHETIC MATERIALS AND POROSITY 

Synthetic materials, i.e., those that have been 

manufactured or otherwise created by human beings, are 

extensively used in industrial manufacturing and 

engineering. In the opposite side, we have the natural 

materials, which remain in widespread use. In the 

construction of buildings, wood and stone are used 

throughout the world. For clothing, wool, cotton, silk, and 

occasionally fur are still used, sometimes in combination 

with synthetic fibers. For jewellery, natural stones and pearls 

remain the ornaments of choice. However, for the 

overwhelming majority of industrial processes, synthetic 

materials offer enormous advantages of properties and cost, 

and in many cases they enable products to be made that 

simply could not be conceived of using natural materials as, 

for instance, composite materials, cement, optical fiber, 

metallic alloy, polymers, semiconductors, among other types 

of materials used in mechanical and industrial application. 

Recently, a notable increasing in the number of 

applications involving synthetic materials can be stressed. 

The amount of pores in their structure presents some unique 

properties that are extremely important for many 

applications [7]. The presence of pores in materials allow 

these spaces to be filled with other materials, which in turn 

can help improve the weaker characteristics of the original 

material [8]. However, to get benefits from this feature, 

appropriate porosity of the base material is necessary; high 

porosity could mean significant alterations in properties of 

the base material and low porosity is often undesirable in 

many applications. Therefore, accurate and reliable 

quantification of the porosity of the material is demanded. 

Nowadays, as aforementioned, synthetic materials are 

often used in several fields, such as instrumentation [9], 

medicine [10] and engineering [11]. In engineering, for 

example, some compressors use pistons made from a 

porous materials. The pores contain oil that appears on 

the surface of the pistons when the pressure increases 

and can thus reduce the friction during operation [11]. 

In instrumentation, gas sensors have been developed by 

integrating a closed electric circuit made of a porous 

synthetic material. When there exists gas in the pores of 

the material, the circuit operates normally; otherwise, 

the circuit closes and the alarm sensor is activated. In 

such a way, in this case, the level of porosity is used to 

control the sensitivity of the sensor [9]. In medical 

applications, such as in synthetic bones, the pores of the 

materials allow the live cells to be integrated with the 

artificial parts, therefore reducing the probability of 

rejection [10]. 

III. OPTIMUM-PATH FOREST CLASSIFIER 

Let 1Z  and 2Z  be training and test sets with 1Z  and 

2Z  samples of a given  dataset. Here, we use samples as 

pixels of images. Let ( )sλ  be the function  that assigns the 

correct label cii ,,2,1, K= , to any sample 

21 ZZs ∪∈ ,  1ZS ⊆  be a set of prototypes from all 

classes, and v  be an algorithm that extracts  n  features (Red, 

Blue and Green values from each pixel) from any sample  

21 ZZs ∪∈  and returns a vector ( )sv
r

. The distance 

( ) 0, >tsd  between two  samples, s  and t , is the one 

between their corresponding feature vectors ( )sv
r

 and  ( )tv
r

. 

One can use any distance function suitable for the extracted 

features, been the  most common the Euclidean norm [12]. 

Our problem consists of projecting a classifier that can predict 

the correct label ( )sλ  of any sample 2Zs ∈ . Training 

consists of finding a special set 1

* ZS ⊆  of prototypes and a 

discrete optimal partition of 1Z  in the feature space (i.e., an 

optimum-path forest rooted in 
*

S ). The classification of a 

sample 2Zs ∈  is done by evaluating the optimum paths 

incrementally, as though it were part of the forest, and assigning 

to it the label of the most strongly connected prototype. 

 

A. Training 

Let ( )AZ ,1  be a complete graph whose nodes are the 

training samples and any pair of samples defines an arc in 

11xZZA = . The arcs do not need to be stored and so the 

graph does not need to be explicitly represented. A path is a 

sequence of distinct samples tsst ,,, 21 K=π  with 

terminus at a sample t . A path is said trivial if tt =π . We 

assign to each path tπ  a cost ( )tf π  given by a connectivity 

function f . A path tπ  is said optimum if ( ) ( )τππ ff t ≤  

for any other path τπ . We also denote by tss ,⋅π  the 

concatenation of a path sπ  and an arc ( )ts, . 

We will address the connectivity function 
maxf : 

( )

( ) ( ) ( ){ },,,max,

,

0

maxmax

max

tsdftsf

otherwise

Ssif
sf

ss ππ =⋅





∞+

∈
=

 

 

 

(1) 

 

such that ( )tsf s ,max ⋅π  computes the maximum distance 

between adjacent samples along the path tss ,⋅π . The 

minimization of 
maxf  assigns to every sample 1Zt ∈  an 

optimum path ( )tP*
 from the set 1ZS ∈  of prototypes, whose 

minimum cost ( )tC  is:  

( ) ( ) ( ){ }.min max,1 tAZ ftC
t

ππ ∈∀=  (2) 

 

The minimization of 
maxf  is computed by  OPF, which is an 

extension of the general image foresting transform (IFT) algorithm 
[7] from the image domain to the feature space, here specialized for 

maxf . This process assigns one optimum path from S  to each 

training sample t  in a non-decreasing order of minimum cost, such 

that the graph is partitioned into an optimum-path forest P  (a 

function with no cycles which assigns to each SZt \1∈  its 
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predecessor ( )tP  in ( )tP*
 or a marker nil  when St ∈ . 

The root ( ) StR ∈  of ( )tP*
 can be obtained from ( )tP  by 

following the predecessors backwards along the path, but its label is 

propagated during the algorithm by setting ( ) ( )( )tRtL λ= . 

We say that S is an optimum set of prototypes when OPF 

Algorithm minimizes the classification errors in 1Z . 
*

S can be 

found by exploiting the theoretical relation between minimum-

spanning tree (MST) and optimum-path tree for 
maxf  [6]. By 

computing a MST in the complete graph ( )AZ ,1 , we obtain a 

connected acyclic graph whose nodes are all samples of 1Z  and the 

arcs are undirected and weighted by the distances d between 

adjacent samples. The MST is optimum in the sense that the sum of 

its arc weights is minimum as compared to any other spanning tree 

in the complete graph, and every pair of samples is connected by a 

single path which is optimum according to 
maxf . That is, the 

minimum-spanning tree contains one optimum-path tree for any 

selected root node. The optimum prototypes are the closest 

elements of the MST with different labels in 1Z . By removing the 

arcs between different classes, their adjacent samples become 

prototypes in 
*

S  and Algorithm 1 can compute an optimum-path 

forest in 1Z . 

B. Classification 

For any sample 2Zt ∈ , one considers all arcs connecting t  

with samples 1Zs ∈ , as though t  were part of the training graph 

(Fig. 1c). Considering all possible paths from 
*

S  to t , one finds 

the optimum path ( )tP*
 from 

*
S  and label t  with the class 

( )( )tRλ  of its most strongly connected prototype ( ) *StR ∈ . 

This path can be identified incrementally, by evaluating the 

optimum cost ( )tC  as:  

( ) ( ) ( ){ }{ }.,,maxmin
1

tsdsCtC Zs∈∀=  (3) 

 

Let the node 1

* Zs ∈  be the one that satisfies Equation 3 (i.e., 

the predecessor ( )tP  in the optimum path ( )tP*
). Given that 

( ) ( )( )tRsL λ=*
, the classification simply assigns ( )*sL  as 

the class of t . An error occurs when ( ) ( )tsL λ≠*
. 

IV. EXPERIMENTAL RESULTS 

In this section, we will describe the dataset used, as 

well as the evaluation methodology for the synthetic 

material porosity segmentation. 

A. Dataset 

For the application of the computational tool used in 

this paper, it was necessary to accomplish images 

acquisition through optical microscopy, accomplishing 

an ideal adjustment of brightness and contrast. Figure 1 

displays the images used in our work, which has been 

captured with 480x480 pixels. 

 

 

(a) 
 

(b) 

Figure 1. Synthetic materials porosity images: (a) this image was used 

in Section IV-C1 for the quantitative evaluation of the robustness of 

the classifiers and (b) used in Section IV-C2 for visual quality 

assessment. 

B. Classifiers 

In this work, we evaluate the synthetic materials 

porosity segmentation by three supervised classifiers: 

Support Vector Machines using Radial Basis Function 

(SVM-RBF) for kernel mapping, Support Vector 

Machines without kernel mapping (SVM-LINEAR), 

and Optimum-Path Forest (OPF). For SVM-RBF, we 

used the latest version of the LibSVM package [13] 

with Radial Basis Function (RBF) kernel, parameter 

optimization and the one-versus-one strategy for the 

multi-class problem. With respect to SVM-LINEAR, we 

used the LibLINEAR package [14] with parameter 

optimized using cross validation. For OPF we used the 

LibOPF [15], which is a library for the design of 

optimum-path forest-based classifiers. 

C. Evaluation and Discussion 

1) Robustness of the classifiers: In this section we 

used 1% (2303 samples) of the whole image for training 

classifiers and 99% (228097 samples) to test them (the 

images were labeled by a technician). Notice that here 

the SVM-RBF, SVMLINEAR, and OPF algorithms 

were executed 10 times with randomly generated 

training and test sets, to compute the mean accuracy and 

its standard deviation, and the mean training and test 

execution times in seconds. The accuracy was computed 

by taking into account that the classes may have 

different sizes using a methodology proposed by Papa et 

al. [6]. Table I displays the results for the porosity 

segmentation accuracy.  

We can see that OPF and SVM-RBF achieved similar 

results and outperformed SVM-LINEAR. However, 

with respect to the whole execution time, i.e., training 

and test phases, the OPF was 4.01 times SVM-RBF. 

Regarding SVM-LINEAR, the former was 1.69 times 

faster than OPF. If we take into account only the 

training step execution time, OPF was 125.22 times and 

19.98 times faster than SVM-RBF and SVM-LINEAR, 

respectively 

Although the reader argues that training is executed 

only once, there are several situations in which we need 

to execute training at a new instance of the problem, 

such as medical image segmentation and even so 

synthetic material image segmentation. In this case, the 

user needs to select some samples for training and 

further to correct the classification results by marking 

new samples to improve the classifier’s accuracy. This 
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process is repeated until some convergence criteria to be 

established. 

TABLE I.  MEAN ACCURACY AND MEAN TRAINING 

AND CLASSIFICATION TIMES IN SECONDS FOR OPF, SVM-
RBF AND SVM-LINEAR. 

Classifier Accuracy 
Training 

time 
Classification time 

OPF 100% ± 0.0 0.55 18.15 

SVM-RBF 100% ± 0.0 69.02 6.00 

SVM-

LINEAR 99.53% ± 0.23 11.01 0.28 

 

2) Synthetic material porosity segmentation 

analysis: In this section we show the experimental 

results for automatic synthetic material porosity 

segmentation. We used 1% of the image used in the 

previous experiment (Figure 1a) to train the classifiers. 

Further, we evaluated them in another image (Figure 

1b), in which the results of their segmentation are 

displayed in Figure 2. 

Through experimental analysis, the Optimum-Path 

Forest classifier and SVM-RBF achieved similar results 

and outperformed SVM-LINEAR. Additionally, it is 

important to be aware that specialists in this area of 

materials science frequently use commercial systems to 

perform the porosity segmentation. However, these 

kinds of applications are sometimes inappropriate for 

this type of analysis, because the porosity evaluation is 

based on the color histogram built from the image under 

analysis, thus being less efficient than the solution 

proposed here. 

 

 

(a) 

 

(b) 

 

(c) 

Figure 2. Segmentation results: (a) OPF, (b) SVM-RBF and (c) 

SVM-LINEAR. 

V. CONCLUSIONS 

This paper presents an application of the Optimum-

Path Forest classifier to accomplish the porosity 

segmentation and quantification of synthetic materials 

obtained from microscopic images. Notice that we are 

the first into applying the OPF in this research field. 

Regarding the analysis purposes, the results obtained by 

OPF were compared against those from SVM-RBF and 

SVM-LINEAR classifiers. OPF and SVM-RBF 

achieved similar results, outperforming SVM-LINEAR. 

However, the OPF execution time was 4.01 times faster 

than SVM-RBF. Based on this comparison, one can 

clearly conclude that the Optimum-Path Forest classifier 

was easier, faster and reliable for the proposed 

application here. Thus, the Optimum-Path Forest 

classifier is a solution suitable for researchers and 

specialists, which work with digital image processing. 
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