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Abstract—In this work we have proposed an innovative 

and accurate solution for non-technical losses 

identification using the Optimum-Path Forest (OPF) 

classifier and its learning algorithm. Results in two 

datasets demonstrated that OPF outperformed the state 

of the art pattern recognition techniques and OPF with 

learning achieved better results for automatic non-

technical losses identification than recently ones 

obtained in the literature. 
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I.  INTRODUCTION 

Losses in electric power systems are constituted by 
the difference between the generated/bought energy and 
the billed ones, and can be divided into two distinct 
types: (i) technical and (ii) non-technical losses. The 
former are related with problems in the system through 
the physical characteristics of the equipment, that is, the 
technical losses are the energy lost in the transport, the 
transformation and the equipment of measurement, 
becoming a very high cost to the electric power 
companies [1]. The commercial losses or non-technical 
losses are those associated with the commercialization of 
the supplied energy to the user and refer to the delivered 
and not billed energy, propitiating a loss in the profits. 
They also are defined as the difference between the total 
losses and the technical losses, been strongly related to 
illegal connections in the distribution system [2]. 

Theft and problems with power meters, with the 
purpose to modify the registration of electric power, are 
the main causes of commercial losses in national and 
international electric power companies, evidencing the 
energy frauds. However, it is a hard task to calculate or 
measure the amount of the commercial losses, because in 
most part of the cases it is almost impossible to know 
where they occur [3]. The illegal connections of electric 
power are the reason of constant concern, both for the 
electric power companies and for regulatory agencies. 

Nagi et al. [4] used Support Vector Machines – SVM 
[5] for detection of electricity theft, and Monedero et al. 
[6] proposed to use Artificial Neural Networks – ANN 
[7] together with statistical analysis for fraud detection in 
electrical consumption. A hybrid approach between 
Genetic Algorithms - GA and SVM was also applied for 
non-technical losses detection [8]. Despite the use of 
these artificial intelligence techniques have been 

increasing, some serious flaws of them need to be 
revisited [9]. 

Papa et al. [9] have presented a novel framework for 
graph-based classifiers that reduce the pattern 
recognition problem as an optimum path forest 
computation (OPF) in the feature space induced by a 
graph. These kinds of classifiers do not interpret the 
classification task as a hyperplanes optimization 
problem, but as a combinatorial optimum-path 
computation from some key samples (prototypes) to the 
remaining nodes. Each prototype becomes a root from its 
optimum-path tree and each node is classified according 
to its strongly connected prototype, that defines a 
discrete optimal partition (influence region) of the 
feature space. The OPF-based classifiers have some 
advantages with respect to the aforementioned 
classifiers: (i) one of them is free of parameters, (ii) they 
do not assume any shape/separability of the feature space 
and (iii) run training phase faster, which allows the 
development of real time applications for fraud detection 
in electricity systems. 

Recently, we have addressed the non-technical losses 
identification by means of OPF [10]. However, there 
exist situations which limit the size of the training set, 
e.g., limited storage capacity devices. In such situations, 
we need to use small training sets, but it is also desirable 
to keep high accuracy levels in the test set. Papa et al. [9] 
have presented a learning algorithm for OPF classifier 
which can identify the most relevant samples from the 
training set using a third evaluating set. In such a way, 
the OPF classifier is designed using both training and 
evaluating sets and is validated over the test set. This 
work presents some additions regarding to the previous 
one [10], in which we propose to increase the 
performance of the commercial losses automatic 
identification by using a learning algorithm for OPF. 
Some comparisons among OPF, SVM with Radial Basis 
Function - RBF and linear kernels and ANN-MLP are 
also performed. The remainder of this paper is organized 
as follows. Section II describes the theory of Optimum-
Path Forest and Section IV presents the dataset and 
recognition features used. Finally, experimental results 
and conclusions are stated in Sections V and VI, 
respectively.  
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II. OPTIMUM-PATH FOREST CLASSIFIER 

Let Z1, Z2 and Z3 be training, evaluation, and test sets 
with |Z1|, |Z2| and |Z3| samples of a given dataset. As 
already explained, this division of the dataset is 
necessary to validate the classifier and evaluate its 
learning capacity from the errors. Z1 is used to project 
the classifier and Z3 kept unseen during the project. A 
pseudo-test on Z2 is used to teach the classifier by 
randomly interchanging samples of Z1 with misclassified 
samples of Z2. After learning, it is expected an 
improvement in accuracy on Z3. 

Let λ(s) be the function that assigns the correct label 

i, i=1, 2,…,c, to any sample s∈Z1∪Z2∪Z3, S⊂Z1 be a set 
of prototypes from all classes, and v be an algorithm 

which extracts n features from any sample s∈Z1∪Z2∪Z3 

and returns a vector )(sv
r

. The distance d(s,t)≥0 between 

two samples, s and t, is the one between their 

corresponding feature vectors )(sv
r

 and )(tv
r

. One can 

use any distance function suitable for the extracted 
features. The most common is the Euclidean one. 

Our problem consists of projecting a classifier which 

can predict the correct label λ(s) of any sample s∈Z3. 

Training consists of finding a special set S*⊂Z1 of 
prototypes and a discrete optimal partition of Z1 in the 
feature space (i.e., an optimum-path forest rooted in S*). 

The classification of a sample s∈Z3 (or s∈Z2) is done by 
evaluating the optimum paths incrementally, as though it 
were part of the forest, and assigning to it the label of the 
most strongly connected prototype. 

A. Training 

Let (Z1, A) be a complete graph whose the nodes are 
the samples and any pair of samples defines an arc in 

A=Z1×Z1. The arcs do not need to be stored and so the 
graph does not need to be explicitly represented. A path 

is a sequence of distinct samples πt=〈s1,s2,…,sk〉 with 

terminus at a sample t. A path is said trivial if πt=〈t〉.  We 

assign to each path πt a cost f(πt) given by a connectivity 

function f. A path πt is said optimum if f(πt)≤f(τt) for any 

other path τt. We also denote by πs⋅〈s,t〉 the concatenation 

of a path πs and an arc(s,t). 

We will address the connectivity function fmax. 
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such that fmax(πs⋅〈s,t〉) computes the maximum distance 

between adjacent samples along the path πs⋅〈s,t〉. The 

minimization of fmax assigns to every sample t∈Z1 an 

optimum path P*(t) from the set S⊂Z1 of prototypes, 
whose minimum cost C(t) is 

( ) ( ) ( ){ }
1
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min

t
tZ A

C t f
π

π
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The minimization of fmax is computed by Algorithm 1, 
called OPF algorithm, which is an extension of the 
general image foresting transform (IFT) algorithm [11] 
from the image domain to the feature space, here 
specialized for fmax. As explained in the Section I, this 
process assigns one optimum path from S to each 

training sample t  in a non-decreasing order of minimum 

cost, such that the graph is partitioned into an optimum-
path forest P (a function with no cycles which assigns to 

each t∈Z1/S its predecessor P(t) in P*(t) or a marker nil 

when t∈S. The root R(t)∈S of P*(t) can be obtained from 
P(t) by following the predecessors backwards along the 
path, but its label is propagated during the algorithm by 

setting L(t)= λ(R(t)). 

Algorithm 1 - OPF Algorithm 
Input: A training set Z1, λ-labeled prototypes S⊂Z1 and the pair (v,d) 

for feature vector and distance computations. 

Output: Optimum-path forest P, cost map C and label map L. 

Auxiliary: Priority queue Q and cost variable cst. 

1. For each s∈Z1/S, set C(s)←+∞. 

2. For each s∈S, do 

3. C(s) ←0, P(s) ←nil, L(s) ←λ(s), and insert s in Q. 

4. While Q is not empty, do 

5. Remove from Q a sample s such that C(s) is minimum. 

6. For each t∈Z1 such that t≠s and C(t)>C(s), do 

7. Compute cst←max{C(s), d(s,t)}.  

8. If cst<C(t), then 

9. If C(t)≠+∞, then remove t from Q. 

10. P(t) ←s, L(t) ←L(s) and C(t) ←cst. 

11. Insert t in Q. 

 

We say that S* is an optimum set of prototypes when 
Algorithm 1 minimizes the classification errors in Z1. S* 
can be found by exploiting the theoretical relation 
between minimum-spanning tree (MST) and optimum-
path tree for fmax [12]. 

By computing an MST in the complete graph (Z1,A), 
we obtain a connected acyclic graph whose nodes are all 
samples of Z1 and the arcs are undirected and weighted 
by the distances d between adjacent samples. The 
spanning tree is optimum in the sense that the sum of its 
arc weights is minimum as compared to any other 
spanning tree in the complete graph. In the MST, every 
pair of samples is connected by a single path which is 
optimum according to fmax. That is, the minimum-
spanning tree contains one optimum-path tree for any 
selected root node. 

The optimum prototypes are the closest elements of 
the MST with different labels in Z1. By removing the 
arcs between different classes, their adjacent samples 
become prototypes in S* and Algorithm 1 can compute 
an optimum-path forest with minimum classification 
errors in Z1. Note that, a given class may be represented 
by multiple prototypes (i.e., optimum-path trees) and 
there must exist at least one prototype per class. 

B. Classification 

For any sample t∈Z3, we consider all arcs connecting 

t with samples s∈Z1, as though t were part of the training 
graph. Considering all possible paths from S* to t, we 
find the optimum path P*(t) from S* and label t with the 

class λ(R(t)) of its most strongly connected prototype 

R(t)∈S*. This path can be identified incrementally, by 
evaluating the optimum cost C(t) as 

( ) ( ) ( ){ }{ }
1

min max , ,s ZC t C s d s t∀ ∈= . (3) 

Let the node s*∈Z1 be the one that satisfies (3) (i.e., 
the predecessor P(t) in the optimum path P*(t)). Given 

that L(s*)=λ(R(t)), the classification simply assigns 

L(s*) as the class of t. An error occurs when L(s*)≠λ(t). 
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Similar procedure is applied for examples in the 
evaluation set Z2. In this case, however, we would like to 
use misclassified samples of Z2 to learn the distribution 
of the classes in the feature space and improve 
classification performance on Z3. 

III. LEARNING FROM ERRORS ON THE EVALUATION 

SET 

There are many situations that limit the size of Z1: 
large datasets, limited computational resources, and high 
computational time as required by some approaches. 
Mainly in applications with large datasets, it would be 
interesting to select for Z1 the most informative samples, 
such that the accuracy of the classifier is little affected by 
this size limitation. It is also important to show that a 
classifier can improve its performance along time of use, 
when we are able to teach it from its errors. This section 
presents a general learning algorithm which uses a third 
evaluation set Z2 to improve the composition of samples 
in Z1 without increasing its size. 

From an initial choice of Z1 and Z2, the algorithm 
projects an instance I of a given classifier from Z1 and 
evaluates it on Z2. The misclassified samples of Z2 are 
randomly selected and replaced by samples of Z1 (under 
certain constraints). This procedure assumes that the 
most informative samples can be obtained from the 
errors. The new sets Z1 and Z2 are then used to repeat the 
process during a few iterations T. The instance of 
classifier with highest accuracy is selected along the 
iterations. The accuracy values LA(I) obtained for each 
instance I form a learning curve, whose non-decreasing 
monotonic behavior indicates a positive learning rate for 
the classifier. Afterwards, by comparing the accuracies 
of the classifier on Z3, before and after the learning 
process, we can evaluate its learning capacity from the 
errors. 

The accuracies LA(I), I=1,2,…,T, are measured by 
taking into account that the classes may have different 
sizes in Z2 (similar definition is applied for Z3). If there 
are two classes, for example, with very different sizes 
and a classifier always assigns the label of the largest 
class, its accuracy will fall drastically due to the high 
error rate on the smallest class. Details about accuracy 
computation can be found in Papa et al. [9]. Algorithm 2 
presents this learning procedure. 

Algorithm 2 - OPF Learning Algorithm 
Input: Training and evaluation sets, Z1 and Z2, labeled by λ, number T 

of iterations, and the pair (v,d) for feature vector and distance 

computations. 

Output: Leaning curve LA and the OPF classifier with highest 

accuracy. 

Auxiliary: Arrays FP and FN of sizes c for false positives and false 

negatives and list LM of misclassified samples. 

1. Set MaxAcc← -1. 

2. For each iteration I=1,2,…,T, do 

3. LM(s)=←0 

4. Train OPF/SVM/ANN-MLP with Z1. 

5. For each class i=1,2,…,c, do 

6. FP(i)←0 and FN(i)←0 

7. For each sample t∈ Z2, do 

8. Use the classifier obtained in Line 3 to classify t 

9.  with label L(t). 

10. If L(t)≠ λ(t), then 

11. FP(L(t)) ←FP(L(t))+1 

12. FN(λ(t)) ←FN(λ(t))+1 

13. LM←LM∪ t. 

14. Compute accuracy LA(I) according Papa et al. [9]. 

15. If LA(I)>MaxAcc then save the current instance  

16. of the classifier and set MaxAcc←LA(I). 

17. While LM≠0 

18. LM←LM/t 

19. Replace t by a randomly selected sample of 

20.  the same class in Z1, under some constraints. 

Line 4 is implemented by computing S*⊂Z1 as 
described in Section II-A and the predecessor map P, 
label map L and cost map C by Algorithm 1. The 

classification is done by setting L(t)←L(s*), where 

s*∈Z1 is the sample that satisfies (3). The constraints in 
Lines 19-20 refer to keep the prototypes out of the 
sample interchanging process between Z1 and Z2. Lines 
5-6 initialize the false positive and false negative arrays 
for accuracy computation. The classification of each 
sample is performed in Lines 7-13, updating the false 
positive and false negative arrays. Misclassified samples 
are stored in the list LM (Line 13). Line 14 computes the 
accuracy LA(I) and Lines 15-16 save the best instance of 
classifier so far. The inner loop in Lines 17-20 changes 
the misclassified samples of Z2 by randomly selected 
samples of Z1, under the aforementioned constraints. 

IV. MATERIAL AND METHODS 

For the development of this work, we used two 
datasets obtained from a brazilian company of electric 
power, say that Bi and Bc datasets. The former is a 
dataset composed by 5190 industrial profiles, and the last 
one, i.e., Bc is composed by 8067 commercial profiles. 
Notice that both datasets were previously labeled by 
technicians of the aforementioned company. Each 
consumer profile is represented by four features, as 
follows: 

• Contracted Demand: the value of demand to be 
continuously available by the energy company and 
shall be paid likewise whether the electric power is 
used or not by the consumer, in kilowatts (kW); 

• Measured Demand or Maximum Demand (Dmax): 
the maximum demand for active power, verified by 
measurement, at intervals of fifteen minutes during 
the billing period, in kilowatts (kW); 

• Load Factor (LF): the ratio between the average 
demand (Daverage) and maximum demand (Dmax) of 
the consumer unit, recorded in the same time period; 

• Installed Power (Pinst): the sum of the nominal 
power of electrical equipments installed and ready 
to operate at the consumer unit, in kilowatts (kW).  

V. EXPERIMENTAL RESULTS 

We performed two series of experiments: in the 
former (Section V-A) we used 30% of the whole dataset 
for training and 50% for testing classifiers (the 
remaining 20% will be used in the next experiment), and 
in the last round (Section V-B) we executed the OPF 
with its learning algorithm (Section III) using 30% for 
training, 20% for the evaluation set and the remaining 
50% for testing. For all experiments, we executed OPF, 
OPF with learning, SVM-RBF (SVM with RBF as 
kernel function), SVM-LINEAR (SVM with a linear 
kernel function) and ANN-MLP (ANN-MLP trained by 
backpropagation algorithm) 10 times with randomly 
generated training and test sets, to compute the mean 
accuracy and its standard deviation.  
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For SVM-RBF, we used the latest version of the 
LibSVM package [13] with Radial Basis Function (RBF) 
kernel, parameter optimization and the one-versus-one 
strategy for the multi-class problem. With respect to 
SVM-LINEAR, we used the LibLINEAR package [14] 
with default C=1 parameter. For OPF we used the 
LibOPF [15], which is a library for the design of 
optimum-path forest-based classifiers, and for ANN-
MLP we used the Fast Artificial Neural Network Library 
(FANN) [16]. The network configuration is i:h1:h2:o, 
where i=4 (number of features), h1=h2=10 and o=2 
(number of classes) are the number of neurons in the 
input, hidden and output layers, respectively. Note that 
we used here two hidden layers, i. e., h1 and h2. The 
ANN-MLP was trained with a backpropagation 
algorithm, and its architecture was empirically chosen.  

A. Classifiers Evaluation 

We evaluate here the OPF, SVM-RBF, SVM-
LINEAR and ANN-MLP for non-technical losses 
detection using 30% for training and 50% for testing. 
Table I shows the mean accuracies and their standard 
deviations after 10 runnings with randomly generated 
training and test sets. We can see that OPF outperformed 
all classifiers in both Bc and Bi datasets with a large 
advantage.  

TABLE I.  MEAN ACCURACY AND STANDARD DEVIATIONS FOR 

OPF, SVM-RBF, SVM-LINEAR AND ANN-MLP 

Classifier Accuracy  Bi Accuracy Bc 

OPF 83.31±1.92 84.48±1.48 

SVM-RBF 74.21±3.03 75.87±2.51 

SVM-LINEAR 48.23±2.81 53.46±3.10 

ANN-MLP 52.01±5.95 73.33±3.48 

B. OPF Learning Algorithm 

In this section we evaluated the robustness of the 
OPF learning algorithm into learning the most relevant 
samples from the training set from an evaluating set. 
Table II presents the results. We can see that OPF with 
learning can provide better results than OPF without 
using the learning procedure. 

TABLE II.  MEAN ACCURACY AND STANDARD DEVIATIONS FOR 

OPF AND OPF WITH LEARNING 

Classifier Accuracy  Bi Accuracy Bc 

OPF 83.31±1.92 84.48±1.48 

OPF with learning 85.49±2.01 85.49±2.39 

The OPF learning algorithm can finds the most 
relevant samples in a reduced training set by assuming 
that the misclassified ones in the evaluating set are the 
most informative samples. This affirmative states that a 
classifier can learn with its own errors and also can 
improve its performance over an unseen test set. 

VI. CONCLUSIONS 

In this work we have presented an innovative 
approach for improving the non-technical losses 
recognition rate by applying the OPF learning algorithm. 
Results in two datasets composed by commercial and 
industrial consumers demonstrated that OPF without the 
learning algorithm outperformed the state of the art 
pattern recognition techniques, i.e., Support Vector 
Machines and Artificial Neural Networks. Another 
round of experiments demonstrated that our proposed 

approach outperformed the recently results obtained by 
Ramos et al. [10]. 
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