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Abstract— Subband blind source separation methods have been re-
cently proposed with the objective of reducing the computational
complexity and improving the convergence rate of online adaptive
algorithms. Oversampled subband structures, employing uniform
DFT filter banks, are usually employed in order to avoid aliasing
effects and keep enough samples to estimate the statistics of the
subband signals. In this paper we present a critically sampled
subband structure, composed of real-coefficients uniform filter banks
and reduced-order adaptive subfilters, for the blind separation of
convolutive mixtures. Through experimental results, we evaluate the
impact of the filter banks and lengths of the adaptive filters on the
source separation for different reverberation characteristics.

Keywords - subband Blind Source Separation; convolutive mixtures;
second-order statistics.

I. I NTRODUCTION

Blind source separation (BSS) techniques have been ex-
tensively investigated in the last decade, for applications in
several areas, such as audio systems, image enhancement
and digital communications. These emerging techniques allow
the extraction of a desired source signal from a mixture of
several observed signals without knowledge of the sources
(location, spectrum, etc.) nor of the mixture system. This paper
considers determined convolutive linear mixtures of speech
signals (where the number of sensorsP is equal to the number
of sourcesQ), which takes into account the reverberation in
echoic ambient. In such cases, typically finite impulse response
(FIR) separation filters of large orders are required, making the
separation task very complex. In order to solve such problem,
several methods based on independent component analysis
(ICA), which assume independent non-gaussian sources, have
been proposed in the literature.

Some of these solutions employ FIR separation filters,
whose coefficients are estimated by an ICA algorithm directly
in the time-domain. In real applications, the separation filters
have thousands of coefficients and, therefore, such algorithms
present large computational complexity and slow convergence
in the source estimations [1]. In order to mitigate such
difficulties, frequency-domain BSS methods were proposed,
where the convolutions become products, and the convolutive

mixtures can be treated as instantaneous mixtures in each
frequency bin [2]. The disadvantages of such methods are the
scaling and permutation problems among the bins, besides
the need of using long windows of data for implementing
high-order filters. Owing to the non-stationarity of the speech
signals and mixing systems, the estimates of the needed statis-
tics for each bin might not be correct for long window data.
Such disadvantages can severely degrade the performance of
frequency-domain algorithms. Some of these problems can
be lessened in off-line implementation by minimal distortion
principle, multivariate score function and direction of arrival
(DOA) estimation for sources [1]. In this scenery, subband
methods can be employed mainly due to their characteristics
of breaking the high-order separation filters into independent
smaller-order ones and allowing the reduction of the data
sampling rate.

In this paper we present an online subband BSS method that
employs critically sampled uniform filter banks and reduced-
order separation FIR filters. The coefficients of the subband
separation filters are adjusted independently by a time-domain
adaptive algorithm using second-order statistics [3], making it
possible to assume different reverberation conditions in several
subbands. The proposed structure applies multirate processing
to reduce the computational complexity and extra filters to
cancel aliasing among adjacent bands [4]. Another advantage
of the proposed algorithm is the use of real-coefficients filters,
which is suitable for DSP implementations. An experimental
evaluation of the performance of the proposed method for
speech signal is conducted, considering the filter bank design
and the reverberation characteristics.

II. ONLINE TIME-DOMAIN SUBBAND BSS

Fig. 1 shows thekth subband of the linear TITO (two inputs
and two outputs) configuration for theM -band BSS. In this
structure theqth observed signal (xq(n)) is decomposed by the
direct-path filters (hk,k(n)) and the extra filters (hk,k−1(n)
and hk,k+1(n)). Assuming that the filter prototype used in
the implementation of the analysis filters are sufficiently
selective, we can consider that aliasing effect only exists
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Figure 1. k-th subband of the linear TITO configuration for BSS inM -band.

among adjacent bands being extra filters responsible for its
cancellation [4]. The resulting signals (xk,k

q (n), xk,k−1
q (n) and

xk,k+1
q (n)) are downsampled by the critical decimation factor

(M ) and applied to the separation filters (wk
qp(n), wk−1

qp (n)
andwk+1

qp (n), respectively). The corresponding output signals
are up-sampled and recombined by the synthesis filters (fk(n))
to restore the fullband output signals (estimated sources). With
perfect reconstruction (PR) filter banks, including extra filters
for cancelling aliasing among adjacent subbands, this structure
is able of exactly modeling any FIR unmixing system [4].

Assuming thathp(n) is the impulse response of a prototype
filter of length NP of a cosine modulated multirate system
havingM bands [5], we conclude that the number of coeffi-
cients of each separation subfilter at thekth subband should
be at least [4]

K =

‰

S + NP

M

ı

, (1)

whereS is length of the fullband separation filter. The filters
hk,i(n) of Fig. 1, which decompose the observed signals
xq(n), have impulse responseshk,i(n) = hk(n) ∗ hi(n).

The observed subband signalsxk,i
q (m) of Fig. 1 can be

expressed as
x

k,i
q (m) = xT

p (m)hk,i, (2)

where xp(m) = [xp(mM), xp(mM − 1), . . . , xp(mM −

NH + 1)]T is the vector that contains the latestNH =
2Np − 1 samples of thepth sensor signal andhk,i =
[hk,i(0), hk,i(1), . . . , hk,i(NH−1)]T is the vector that contains
the NH coefficients of the analysis filterhk,i(n).

For colored and non-stationary signals, such as speech
signals, the BSS problem can be solved by diagonalizing
the output correlation matrix considering multiple blocksin
different time instants. The method derived in [3] is based
on second order statistics and explores two characteristics of
the source signals simultaneously: nonwhiteness, and nonsta-
tionarity. This approach, differently of the ICA, is robustto

the permutation problem among sources [3], being interesting
for an implementation in subbands. In this context, we have
extended such algorithm to the subband time-domain, with
multirate processing.

From Fig. 1, assuming that there is no overlap between
the frequency responses of non-adjacent filtershk(n) [4], we
observe that theqth output signals at thekth subband are given
by

y
k
q (m) =

P
X

p=1

k+1
X

i=k−1

[wi
qp]T xk,i

p (m), (3)

where xk,i
p (m) is the vector that contains the latestK sam-

ples of thepth sensor subband signalxk,i
p (m), and wi

qp =
[wi

qp(0), wi
qp(1), . . . , wi

qp(K−1)]T is the vector containing the
K coefficients of the subband separation subfilterswi

qp(m).
The vectorxk,i

p (m) can be written as

xk,i
p (m) = Xp(m)hk,i, (4)

where theK × NH matrix Xp(m) is given by

Xp(m)=

2
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. (5)

In the generic block time-domain subband BSS algorithm,
definingN as the block size andD as the number of blocks
which are used in the correlation estimates (1 ≤ D ≤ K), we
can write thekth output vectors of block indexℓ as

yk
q (ℓ) =

P
X

p=1

k+1
X

i=k−1

[wi
qp]T X̂

k,i

p (ℓ), (6)

with the K × N matrix X̂
k,i

p (ℓ) expressed as

X̂
k,i

p (ℓ)=
ˆ

Xp(ℓK), Xp(ℓK+1), · · · , Xp(ℓK+N−1)
˜

Hk,i , (7)

where theNHN × N matrix Hk,i has the first column
formed by the coefficients ofhk,i(n) followed by (N −1)NH

zeros, and the remaining columns are circularly shifted by
NH positions from one column to the next. TheD × N
matricesYk

q (m) containD subsequent output vectors and can
be written as

Yk
q (ℓ) =

P
X

p=1

k+1
X

i=k−1

Wi
qp(ℓ) Xk,i

p (ℓ) , (8)

with
Xk,i

p (ℓ) =
h

X̂
k,i

p (ℓ), X̂
k,i

p (ℓ − 1)
iT

(9)

andWi
pq(ℓ) is a D × 2K Sylvester-type matrix given by
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Combining allP outputs of each subband, we can rewrite
Eq. (3) concisely as

Yk(ℓ) =
ˆ

Yk
1(ℓ), · · · , Yk

P (ℓ)
˜T

=

k+1
X

i=k−1

Wi(ℓ)Xk,i(ℓ) , (11)

where

Xk,i(ℓ) =
ˆ
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1 (ℓ), . . . , Xk,i

P (ℓ)
˜T

, (12)
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In matrix formulation, the online subband BSS cost function
is given by

ℑ
k(ℓ) = log(det(bdiag(Yk(ℓ)[Yk(ℓ)]T ))−log(det(Yk(ℓ)[Yk(ℓ)]T )).

(14)
where bdiag(A) is the operator that zeroes all the submatrices
which are not located in the main diagonal ofA.

Applying the natural gradient method to the above cost
function, considering a TITO system and omitting indexℓ of
the submatrix correlation to simplify the notation, we obtain

∇
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(15)
whereRk

yqyp
(ℓ) is a submatrix of dimensionD × D.

The online algorithm for adjusting the coefficients of the
separation subfilters of each subband, considering a TITO
system, is given by

W
k(ℓ)=W

k(ℓ−1)−µ
h

λ∇
GN
Wk

ℑ(ℓ−1) + (1−λ)∇GN
Wk

ℑ(ℓ)
i

(16)

whereµ is the step-size of the adaptation algorithm andλ is
a forgetting factor [6].

III. E XPERIMENTAL EVALUATION

In all experiments, the signals were sampled atFs =16
kHz and the subband coefficientswi

qp(n) were initialized
with zeros, except forp = q, in which the coefficients were
initialized with 1. The number of data blocks used to estimate
the correlations (Eq. (15)) wasD = K, the length of the
output blocks wasN =2K, the lengths of the separation filters
were equal to the lengths of the mixture filters (S = U ) and
the forgetting factor wasλ = 0.2. During our experiments
we monitored the correlations among the estimates of the
sources in the several subbands in order to avoid permutation
problems.

A. Experiment 1

In this experiment we evaluate the impact of the filter bank
(through the use of different prototype filters) in the following
performance measures: SIRG (Global Signal to Interference
Ratio), SARG (Global Signal-to-Artifact Ratio) and SDRG

(Global Signal-to-Distortion Ratio). We will establish the
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Figure 2. Virtual scenario used in the experiments.

TABLE I. GLOBAL PERFORMANCE MEASURES FOREXPERIMENT 1

U = 128 U = 256 U = 512

Np SIRG SARG SDRG SIRG SARG SDRG SIRG SARG SDRG

4M 15.5 20.4 14.0 12.3 19.7 11.6 9.9 9.9 6.6

8M 15.3 21.2 14.3 12.8 20.2 12.0 10.5 10.2 7.0

16M 12.3 0.5 −1.2 12.4 0.3 −0.2 9.9 0.6 −0.6

better relation among the number of subbands (M ) and the
prototype length (Np) for the BSS application.

A uniform subband structure was implemented using
critically-sampled cosine modulated filter banks withM = 8
and prototype filters of lengthsNp = 4M , 8M and 16M ,
which yield perfect reconstruction. The adaptation step-size
was set equal toµ = 2 × 10−3. Four speech signals were
used: two female and two male, being two of them spoken in
English and the other two spoken in Portuguese. Theses signals
were convolved with synthetic impulse responses obtained
by simulation of the virtual scenario of Fig. 2, which was
proposed for the 2006 Signal Separation Evaluation Campaign
(SiSEC 2006) [7], presenting reverberation time of250 ms.
Even though the original scenario had four distinct sources
in different directions, our simulations employed only two
sources, as illustrated in Fig. 2, in order to reduce the compu-
tational complexity of the BSS methods. Each pair of speech
signals were mixed, resulting in 6 different combinations.
Table I presents the average values of the SIRG, SARG and
SDRG, considering different reverberation conditions:U =
128, 256 and 512. These measures were obtained using the
toolbox for the calculation of the performance measures of
BSS available in [8].

From Table I we observe that the use of very selective
prototype filters (Np = 16M ) sometimes does not result
in the expected performance in terms of SIRG, SARG and
SDRG, with observed distortions in the source estimates. On
the other hand, the use of less selective filter banks (Np = 4M )
might degrade the separation, since the mean-square error of
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TABLE II. C OMPLEXITY COMPUTATIONAL FOR EXPERIMENT 1

M = 8

Np U = 128 U = 256 U = 512

4M 3.52 × 10
5

2.05 × 10
6

13.83 × 10
6

8M 6.08 × 10
5

2.82 × 10
6

16.42 × 10
6

16M 1.44 × 10
6

4.86 × 10
6

22.53 × 10
6

M = 1 (full band)
U = 128 U = 256 U = 512

33.55 × 10
6

2.68 × 10
8

2.15 × 10
9

the structure is increased [4]. Table II presents complexity
computational from Table I simulations and compares with
fullband algorithm (M = 1) presented in [3].

Therefore, according to Tables I and II, the best global
measures were obtained with the prototypes of lengthsNp =
8M , which also reduces the complexity computational when
compared to fullband implementation. Such relation between
Np andM will be adopted in the next experiment.

B. Experiment 2

The reverberation time is an important factor for the sound
quality of the signals captured by the microphones. In [9],
several experiments in rooms of different dimensions were
conducted, demonstrating that the average reverberation time
decreases as the frequencies of the signals increases, mainly
due to propagation losses caused by the air viscosity for
frequencies above 1 kHz [10]. Based on these results, we
explore the flexibility of the subband BSS structure, which
allows the independent adaptation of the separation subfilters
and the use of different lengths for such filters. The lengths
of the high-frequency subfilters were reduced and the results
of the separation procedure were compared to those of the
fullband algorithm presented in [3], for mixture filters of
lengthsU = 256, 512 and 1024. The subband structure was
first simulated with all subfilters of same length, given in Eq.
(1). Subsequently, the length of the highest-band subfilterwas
reduced to half of its initial value. A last experiment was
conducted reducing the lengths of the one fourth of bands of
highest frequencies to half of their initial values. The results
of these three experiments are presented in Table III. From
such results, we conclude that the reduction in the number of
coefficients in the high-frequency bands does not affect the
performance of the separation algorithm, and still contributes
to reduce the complexity computational.

IV. CONCLUSIONS

In this paper we evaluated experimentally the performance
of a subband structure applied to the BSS problem. The
proposed subband structure, which cancels aliasing due to the
spectral overlap of adjacent analysis filters, was first derived
for the system identification application, where the mean-
square value of the error, obtained comparing a reference
signal and the filter ouptput, was used as cost function. In
BSS applications, where a reference signal is not available, the

TABLE III. SIR WITH DIFFERENT LENGTH SUBFILTERS IN SOME BANDS

SIR without reduced length subfilters
M U = 256 U = 512 U = 1024

1 12.2 10.1 7.4

4 13.1 9.9 7.2

8 12.5 10.7 7.2

16 14.2 12.4 8.2

SIR with reduced length filter in the highest frequency band
M U = 256 U = 512 U = 1024

1 12.2 10.1 7.4

4 13.5 9.9 7.1

8 13.1 10.7 7.2

16 14.2 12.4 8.2

SIR with reduced length filters in the one fourth of bands
of highest frequencies

M U = 256 U = 512 U = 1024

1 12.2 10.1 7.4

4 13.0 9.9 7.1

8 12.4 10.6 7.2

16 14.2 12.4 8.2

cost function is composed by the correlations among the out-
puts, considering blocks of signals in different time instants.
Computer simulations with speech signals were presented
illustrating the influence of the acoustic reverberation and
filter bank characteristics on the performance of the proposed
BSS method. It was verified that a reduction in the number
of coefficients of the subfilters which operate at the high-
frequency components does not degrade the performance of
the subband BSS algorithm.
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