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Abstract— The conditions under which images are captured
are not always ideal or stable. This can lead to uncertainty
regarding the measured pixel values, which in some cases is
also related to the uncertainty regarding the spatial position of
an object in an image. Such uncertainty can also be caused by
technical limitations, in particular by the fact that in practice we
always deal with a limited and finite number of pixels and pixel
values, which leads to numerical and spatial approximations. In
order to deal with this uncertainty we need appropriate image
models, which also allow image processing without losing the
information regarding the uncertainty. The ability to propagate
the uncertainty information during image processing can be
important in applications, since information on the level of
uncertainty will influence an expert’s attitude. In this paper we
present the interval-valued image model for grayscale images.
This model is based on interval-valued fuzzy set theory, and
provides tools to build corresponding morphological operators.
We will discuss the foundations of both the image model and the
morphological theory, and point out the challenges for future
research.
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I. THE PROBLEM: UNCERTAINTY IN IMAGE CAPTURE

Consider the situation in which you have different takes
of the same scene, as illustrated in Figure 1: you have the
cameraman image with a cloudy sky, a sunny sky, and a slight
distortion, and consequently you are faced with numerical
and/or spatial uncertainty regarding the measured pixel values.
How do you deal with this uncertainty? One option could
be to choose one of the takes, but how do you know which
one is the best representation of the real situation? Another
option could be to average the values of the three takes, but
then you are working with a forced approximation of the real
situation and your information on which pixel values are rather
certain or uncertain (and to what degree) is lost in the process.
Furthermore, the resulting image can become quite blurry.

This example illustrates that image capture can be accompa-
nied with a large amount of uncertainty due to capture circum-
stances such as illumination and camera position. Furthermore
it is clear that approximations w.r.t. the number of pixels

and pixel values, which are forced upon us due to technical
limitations, also contribute to this uncertainty. In orderto take
this uncertainty into account – in such a manner that it is
incorporated in the image model and can be processed together
with the image – new image models are required. In this paper
we discuss the interval-valued image model which we recently
introduced, and the morphological theory that is associated
with it. This image model is based on interval-valued fuzzy set
theory, which also provides the tools to build interval-valued
morphological operators (Section III). Having established the
new image model and its basic properties, the field is open for
further theoretical and practical research (Section IV). First,
we start with an introductory discussion of the considerations
that lead to the interval-valued image model.

II. A SOLUTION: THE INTERVAL-VALUED IMAGE MODEL

The value of a pixel in a grayscale image indicates the
amount of black or white present at that specific location in
the image. However, one always assumes that these values
are certain, although in practice the measured values might
be uncertain and merely indicate alikely value of the image
at a specific position. The uncertainty regarding the value is
an immediate fact if one takes into account that any device
will round captured values up or down to the finite set of
allowed values. The uncertainty grows if several takes of an
image reveal different values for some pixels. This might be
the case under identical recording circumstances, and will
surely arise when these circumstances change (e.g., due to
weather conditions). Not only the environmental circumstances
can play a role. Indeed, pixels that belong to the edge of
an object might slightly shift position in different takes (e.g.,
when the camera slightly shifts position). This could result in
large differences in the measured value of a specific pixel, and
consequently in a large uncertainty regarding the real value of
that pixel, i.e., for that specific spatial position in the image.

For all these reasons, it can be useful not to work with
grayscalevaluesbut with grayscaleintervals, where the in-
terval represents the set to which the actual grayscale value
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Fig. 1. Different captures of the cameraman image: top = take with cloudy
sky, middle = take with sunny sky, bottom = take with distortion. This example
illustrates that the capture circumstances can cause uncertainty regarding the
real pixel values. Also, all recorded values and positions are approximations
of the real situation due to technical limitations.

belongs. Such an interval will be small for a pixel that belongs
to a larger object in the image and that was captured under
more or less identical circumstances, but can be large for a
pixel that was captured under different circumstances or that
belongs to the edge of a larger object in the image.

We illustrate this construction with an example. Starting
from the three different takes (cloudy/sunny/distorted) shown
in Figure 1, the lower and upper bounds of the grayscale
interval for every pixel are obtained by selecting the lowest and
highest value from the images for that pixel. The difference
between the lower bound and upper bound images, which is

Fig. 2. Representation of the interval width, resulting from the interval-
valued representation of the cloudy/sunny/distorted takeof the cameraman
image.

shown in Figure 2, has a very nice interpretation: the higher
the difference for a certain pixel (i.e., the higher the width
of the corresponding interval, and the brighter the pixel inthe
corresponding image), the higher the uncertainty regarding that
pixel. This example illustrates the natural way in which the
interval-valued approach makes sense in image processing.

III. F OUNDATIONS OF THEINTERVAL-VALUED IMAGE

AND MORPHOLOGICALMODEL

A. Interval-Valued Fuzzy Set Theory

The interval-valued image model that is described in this
paper finds its origin in fuzzy set theory [15]. The concept of
fuzzy sets was introduced to deal with imprecise information:
instead of thinking in terms of “yes/no” or “black/white”.
Fuzzy set theory allows a gradual transition between both
extreme states. Formally, a fuzzy setA in a universeU
is characterized by aU → [0, 1] mapping, that associates
with every elementx of U a membership degreeA(x). This
can be generalized to the notion of anL-fuzzy set, where
L = (L,≤L) represents a complete lattice [4]; a complete
lattice is a partially ordered set in which every family of
elements has a supremum and infimum. AnL-fuzzy setA
in U is characterized by anU → L mapping; note that the
classLU of L-fuzzy sets inU forms a complete lattice ifL
is a complete lattice. WhenL = [0, 1], L-fuzzy set theory
reduces to classical fuzzy set theory.

An interval-valued fuzzy set (IVFS) corresponds to a map-
ping A from U into the class of closed intervals[µ1, µ2] ⊆
[0, 1]. Thus, A(x) = [µ1(x), µ2(x)] for every x ∈ U .
Evidently, if µ1(x) = µ2(x) for all x ∈ U then the interval-
valued fuzzy set reduces to a classical fuzzy set. The class
of IVFS can be regarded asLI -fuzzy sets, with the complete
latticeLI = (LI ,≤LI ) defined by:

LI = {[x1, x2]|[x1, x2] ⊆ [0, 1]},
[x1, x2] ≤LI [y1, y2] ⇔ x1 ≤ y1 and x2 ≤ y2.
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Infimum and supremum of a setC = {[as, zs] ⊆
[0, 1]|s ∈ IS ⊆ N} of closed intervals are given by

∧
C =

[infs as, infs zs] and
∨

C = [sups as, sups zs]; smallest ele-
ment0LI = [0, 0], largest element1LI = [1, 1]. For a complete
latticeL = (L,≤L), the inclusion ofL-fuzzy setsS1 andS2

in U is defined by:S1 ⊆ S2 ⇔ S1(u) ≤L S2(u), for all u

in U . The intersection and union of twoL-fuzzy setsS1 and
S2 in U are defined by:(S1 ∩ S2)(u) = S1(u) ∧ S2(u) and
(S1 ∪ S2)(u) = S1(u) ∨ S2(u), for all u in U .

It is quite clear that in the context of the interval-valued
image model as described in Section II, grayscale images are
actually characterized by interval-valued fuzzy sets. Conse-
quently, techniques and tools from interval-valued fuzzy set
theory can be used to construct a corresponding morphological
model to process interval-valued images [8], [11], [13], [14].

As crisp set theory has Boolean logic as underlying logical
framework, the extension to fuzzy set theory comes along
with the extension of Boolean logic to fuzzy logic. The basic
Boolean logical operators (negation, conjunction, implication)
were extended to fuzzy logical operators, which respectively
model the complement, the intersection, and the inclusion of
fuzzy sets. These definitions can be easily generalized toL-
fuzzy logical operators which play an important role inL-
fuzzy mathematical morphology [3].

Definition 1 (logical operators):Let L = (L,≤L) be a
complete lattice with smallest element0L and largest element
1L.

• A decreasingL → L mappingN is called a negator onL
if N (0L) = 1L andN (1L) = 0L; it is called involutive
if (∀x ∈ L) (N (N (x)) = x).

• An L2 → L mappingC is called a conjunctor onL if
C(0L, 0L) = C(1L, 0L) = C(0L, 1L) = 0L, C(1L, 1L) =
1L, and if it has increasing partial mappings. It is called
a t-norm (usually denoted asT ) if it also is commutative,
associative and satisfies(∀x ∈ L)(C(1L, x) = x).

• An L2 → L mappingI is called an implicator onL if
I(0L, 0L) = I(0L, 1L) = I(1L, 1L) = 1L, I(1L, 0L) =
0L, and if it has decreasing first and increasing second
partial mappings.

For the complete lattice([0, 1],≤) the standard negator
Ns is defined byNs(x) = 1 − x (x ∈ [0, 1]). Popular t-
norms on[0, 1] are TM (x, y) = min(x, y) and TW (x, y) =
max(0, x + y − 1) (Lukasiewicz), popular implicators on
[0, 1] are IKD(x, y) = max(1 − x, y) (Kleene-Dienes) and
IW (x, y) = min(1, 1 − x + y) (Lukasiewicz), always with
x, y ∈ [0, 1].

For our purposes we are interested in logical operators on
the complete latticeLI = (LI ,≤LI ). There are different ways
of representing operations on interval-valued fuzzy sets by
corresponding operations on classical fuzzy sets. We referto
[3] for a nice overview, and limit ourselves here to some
specific examples. Letx = [x1, x2] and y = [y1, y2], then
the standard negatorNs leads to the following interval-valued
negator:

Ns(x) = [Ns(x2), Ns(x1)] = [1 − x2, 1 − x1].

The minimumTM and the Kleene-Dienes implicatorIKD

lead to the following interval-valued t-norm and implicator:

TM (x, y) = [min(x1, y1),min(x2, y2)],

IKD(x, y) = [max(1 − x2, y1),max(1 − x1, y2)].

Here, the construction of the interval-valued operators from
their single-valued counterparts is straightforward. Less ob-
vious constructions are possible and useful as well: the
Lukasiewicz t-normTW and the Lukasiewicz implicatorIW

lead to the following interval-valued t-norm and implicator:

TW (x, y) = [max(0, x1 + y1 − 1),

max(0, x1 + y2 − 1, x2 + y1 − 1)],

IW (x, y) = [min(1, 1 − x1 + y1, 1 − x2 + y2),

min(1, 1 − x1 + y2)].

The t-norm is called “pessimistic” (due to its modified upper
bound), the implicator is called “optimistic” (due to its modi-
fied lower bound) [3]. These examples illustrate that there are
quite a lot of possibilities to construct interval-valued logical
operators.

B. Interval-Valued Morphology

Mathematical morphology was originally introduced for
binary images and binary structuring elements, i.e., for ob-
jects that can only have values 0 (representing black) and 1
(representing white). In the binary case, images and structuring
elements are represented as crisp subsets of a universeU . The
dilation and erosion are defined as follows.

Definition 2 (binary dilation and erosion):[12] Let A,B

be crisp subsets ofU . The binary dilationD(A,B) and the
binary erosionE(A,B) are defined by:

D(A,B) = {v ∈ U|Tv(B) ∩ A 6= ∅},

E(A,B) = {v ∈ U|Tv(B) ⊆ A},

with Tv(B) = {u ∈ U|u−v ∈ B} the translation ofB by the
point v.

These definitions can be extended to non-binary objects
[1], [2], [7], in particular to interval-valued objects [8], [14],
by fuzzifying the underlying logical framework (cfr. Section
III-A). Note that it makes sense to include interval-valued
structuring elements in this extension. Also regarding the
values of those pixels some uncertainty might exist, even
though it is chosen by the user. Indeed, if one wants the
structuring element to reflect the importance or weight that
is associated with a pixel at a certain position w.r.t. the center
of the structuring element, one might not be completely sure
how to estimate that weight. The use of an interval with likely
values might be a solution in that case.

Definition 3 (interval-valued dilation and erosion):Let
LI = (LI ,≤LI ) be the complete lattice corresponding to
interval-valued fuzzy set theory, letT be a t-norm onLI and
let I be an implicator onLI . Let A be an image andB be a
structuring element, both represented as interval-valuedfuzzy
sets inU . The interval-valued fuzzy dilationDI

T (A,B) and
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the interval-valued fuzzy erosionEI

I(A,B) of A by B are
defined by:

DI

T (A,B)(v) =
∨

u∈U

T (B(u − v), A(u)),

EI

I(A,B)(v) =
∧

u∈U

I(B(u − v), A(u)),

for all v in U .
With every choice of the interval-valued t-norm and im-

plicator, a different interval-valued morphological model is
associated. Of course, in practice one is usually interested
in those models that satisfy some specific properties [8].
We refer to [9] and [10] for a study of the morphological
models based on the Lukasiewicz-operator (TW andIW ) and
on the minimum-operator (TM and IKD), respectively. Both
models satisfy properties w.r.t. expansivity and restrictivity,
monotonicity, interaction with intersection, interaction with
union, and duality.

In [5], [6] we have also investigated decomposition and
construction properties of interval-valued morphological oper-
ators. For example, it turns out that the interval-valued dilation
based onTM can be decomposed into binary dilations and,
reversely, that this is the only interval-valued dilation that can
also be constructed from its binary counterpart.

Having a dilated and eroded image, one can take the
difference to result in a gradient-image, just as in the case
for regular grayscale images. Note that the difference between
two intervals [x1, x2] and [y1, y2] is defined as the interval
[x1 − y2,max(x1 − y1, x2 − y2)]. We refer to our work [11]
for some visual examples and discussion. In any case, and
this is an important conclusion, one can observe that the un-
certainty that was present in the original representation of the
cameraman image is propagated through the (interval-valued)
morphological operators and the edge detection application.
This means that the information regarding the uncertainty is
not lost, but is fully taken into account and can be used and
exploited in further processing of the images.

IV. SOME CHALLENGES FORFUTURE RESEARCH

The interval-valued image model and the corresponding
morphological theory – both based on concepts from extended
fuzzy set theory – succeed in modeling the uncertainty regard-
ing grayscale pixel values, and enables us to propagate this
uncertainty through morphological operators. Several specific
morphological models have been investigated and provide the
tools for applications (e.g., edge detection). In such appli-
cations, experts will be able to judge the uncertainty of the
results, and can modify their attitude towards the information
accordingly.

It is clear that this image model is also faced with many
challenges and requires broader and deeper research on differ-
ent topics. For example, what is the relation of the interval-
valued image model with defuzzification? In other words, if we
defuzzify the interval-valued representation (leading tosingle
values for the pixels) and then apply regular morphological
operations, to what extent will this result be different from
working with the interval-valued representation and interval-
valued morphological operations followed by defuzzification

in the end? The answer to this question (which might depend
on conditions imposed on the involved operators) not only
improves our theoretical insight in the model, but is also
important in the context of computational efficiency.

Regarding the application of edge detection [11], we have
the advantage that the interval-valued approach gives us insight
in the (un-)certainty of the gradient-image, but additionally we
would like to know the source of that uncertainty. For example,
in case of the cameraman image the upper bound gradient-
image will contain real edges, but also false edges caused by
the spatial distortion. Both kind of edges will be accompanied
with a degree of uncertainty, and the challenge is to make an
automated intelligent decision about the nature (real or false)
of these edges.
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