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Abstract— The conditions under which images are captured and pixel values, which are forced upon us due to technical
are not always ideal or stable. This can lead to uncertainty |imjtations, also contribute to this uncertainty. In ordertake
regarding the measured pixel values, which in some cases isyyis yncertainty into account — in such a manner that it is
also related to the uncertainty regarding the spatial position of . . .
an object in an image. Such uncertainty can also be caused bylnporporgted in the |m§ge model and can be processed' togethe
technical limitations, in particular by the fact that in practice we ~ With the image — new image models are required. In this paper
always deal with a limited and finite number of pixels and pixel we discuss the interval-valued image model which we regentl
values, which leads to numerical and spatial approximations. In introduced, and the morphological theory that is assotiate
order to deal with this uncertainty we need appropriate image ity it This image model is based on interval-valued fuzey s
models, which also allow image processing without losing the . . A
information regarding the uncertainty. The ability to propagate theory, Wh'.Ch also provides th? tools to bglld Intervr'sllue.li
the uncertainty information during image processing can be Morphological operators (Section Ill). Having establisliee
important in applications, since information on the level of new image model and its basic properties, the field is open for
uncertainty will influence an expert's attitude. In this paper we  further theoretical and practical research (Section I\i)stF

present the interval-valued image model for grayscale images. \ye start with an introductory discussion of the considerei
This model is based on interval-valued fuzzy set theory, and that lead to the int lvalued i del
provides tools to build corresponding morphological operators. at lead 1o the interval-valued image modei.

We will discuss the foundations of both the image model and the ]
morphological theory, and point out the challenges for future !l- A SOLUTION: THE INTERVAL-VALUED IMAGE MODEL

research. ) o ] o The value of a pixel in a grayscale image indicates the
_ Keywords: image processing, interval-valued, image acquisi- 56\ nt of black or white present at that specific location in
tion, fuzzy logic, morphology. .
the image. However, one always assumes that these values
are certain, although in practice the measured values might

|. THE PROBLEM: UNCERTAINTY IN IMAGE CAPTURE be uncertain and merely indicatelikely value of the image

Consider the situation in which you have different takest a specific position. The uncertainty regarding the vatue i
of the same scene, as illustrated in Figure 1: you have the immediate fact if one takes into account that any device
cameraman image with a cloudy sky, a sunny sky, and a sligiitl round captured values up or down to the finite set of
distortion, and consequently you are faced with numericallowed values. The uncertainty grows if several takes of an
and/or spatial uncertainty regarding the measured pixakga image reveal different values for some pixels. This might be
How do you deal with this uncertainty? One option coulthe case under identical recording circumstances, and will
be to choose one of the takes, but how do you know whicurely arise when these circumstances change (e.g., due to
one is the best representation of the real situation? Anotlveeather conditions). Not only the environmental circumsés
option could be to average the values of the three takes, bah play a role. Indeed, pixels that belong to the edge of
then you are working with a forced approximation of the rean object might slightly shift position in different takes.d.,
situation and your information on which pixel values ardest when the camera slightly shifts position). This could regul
certain or uncertain (and to what degree) is lost in the E®celarge differences in the measured value of a specific pixel, a
Furthermore, the resulting image can become quite blurry. consequently in a large uncertainty regarding the realevafu

This example illustrates that image capture can be accomgzat pixel, i.e., for that specific spatial position in theaige.
nied with a large amount of uncertainty due to capture circum For all these reasons, it can be useful not to work with
stances such as illumination and camera position. Furibrermgrayscalevaluesbut with grayscaldntervals where the in-
it is clear that approximations w.r.t. the number of pixelterval represents the set to which the actual grayscalesvalu
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Fig. 2. Representation of the interval width, resultingnfrahe interval-
valued representation of the cloudy/sunny/distorted takéhe cameraman
image.

shown in Figure 2, has a very nice interpretation: the higher
the difference for a certain pixel (i.e., the higher the Wwidt
of the corresponding interval, and the brighter the pixehia
corresponding image), the higher the uncertainty reggritiat
pixel. This example illustrates the natural way in which the
interval-valued approach makes sense in image processing.

[11. FOUNDATIONS OF THEINTERVAL-VALUED IMAGE
AND MORPHOLOGICALMODEL

A. Interval-Valued Fuzzy Set Theory

The interval-valued image model that is described in this
paper finds its origin in fuzzy set theory [15]. The concept of
fuzzy sets was introduced to deal with imprecise infornratio
instead of thinking in terms of “yes/no” or “black/white”.
Fuzzy set theory allows a gradual transition between both
extreme states. Formally, a fuzzy sdt in a universel
is characterized by & — [0,1] mapping, that associates
with every element: of &/ a membership degred(z). This
can be generalized to the notion of @hfuzzy set, where

) _ _ _ L = (L,<1) represents a complete lattice [4]; a complete
Fig. 1. Different captures of the cameraman image: top = tak® aliudy | 5itice js g partially ordered set in which every family of
sky, middle = take with sunny sky, bottom = take with distamti®his example .
illustrates that the capture circumstances can cause aintgrtegarding the €lements has a supremum and infimum. Affuzzy set A
real pixel values. Also, all recorded values and positiaresapproximations in {{ is characterized by al¥ — L mapping; note that the
of the real situation due to technical limitations. class Y of L-fuzzy sets i/ forms a complete lattice if’

is a complete lattice. Whei. = [0, 1], £-fuzzy set theory
reduces to classical fuzzy set theory.

. . . An interval-valued fuzzy set (IVFS) corresponds to a map-
belongs. Such an interval will be small for a pixel that bgjen ing A from I into the class of closed intervalg: , ] C

to a larger object in the image and that was captured un ;1]' Thus, A(z) = [u(x),us(z)] for every = € U.

more or less identical circumstances, but can be large fo Efidently, if 1 (z) = pa(2) for all 2 € U then the interval-

pixel that was captured under different circumstances at th .
belongs to the edge of a larger object in the image valued fuzzy set reduces to a classical fuzzy set. The class

of IVFS can be regarded a&'-fuzzy sets, with the complete
We illustrate this construction with an example. Startingyttice £7 = (L7, <,,) defined by:

from the three different takes (cloudy/sunny/distortetgven s

in Figure 1, the lower and upper bounds of the grayscale L7 = {1, zo|[z1, 2] € [0, 1]},
interval for every pixel are obtained by selecting the lovess! (21, w2] <pr [y, 90] & 21 <y and xy <y
highest value from the images for that pixel. The difference

between the lower bound and upper bound images, which is
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Infimum and supremum of a sef’ = {[as,25] C The minimumT,; and the Kleene-Dienes implicatdy, p
[0,1]|s € Is C N} of closed intervals are given by C = lead to the following interval-valued t-norm and implicato
[infs as,inf, z5) and \/ C' = [sup, as, sup, zs|; smallest ele-
ment0,: = [0, 0], largest element,; = [1,1]. For a complete Tu(z,y) = [min(z1,y1), min(zz,y2)],
lattice £ = (L, <p,), the inclusion of£-fuzzy setsS; and S, Ikp(z,y) = [max(l — xe,y1), max(l — x1,ys2)].

in U is defined by:S; C Sy & Si(u) <p Sa(u), for all u _ _

in 4. The intersection and union of tw6-fuzzy setsS; and Here, the construction of the interval-valued operatocsnfr

S, in U are defined by(S; N Sy)(u) = Sy(u) A S2(u) and their single—valu'ed counterparts is straightforward. 4 e®-

(51U S5)(u) = Sy (u) V Sa(u), for all win U. vious constructions are possible an_d l_Jsef_uI as well: the
It is quite clear that in the context of the interval-valuedukasiewicz t-normly, and the Lukasiewicz implicatofy,

image model as described in Section II, grayscale images lgad to the following interval-valued t-norm and implicato

actually characterized by interval-valued fuzzy sets. $8en

quently, techniques and tools from interval-valued fuzey s Tw(z,y) = [max(0,z1 +y 1),
theory can be used to construct a corresponding morphalogic max(0, x1 +y2 — 1,22 + 51 — 1)),
model to process interval-valued images [8], [11], [13}][1 Iw(z,y) = [min(l,1—21+y1,1— 22+ y2),

As crisp set theory has Boolean logic as underlying logical
framework, the extension to fuzzy set theory comes along
with the extension of Boolean logic to fuzzy logic. The basihe t-norm is called “pessimistic” (due to its modified upper
Boolean logical operators (negation, conjunction, imgdiien) bound), the implicator is called “optimistic” (due to its diie
were extended to fuzzy logical operators, which respdgtivefied lower bound) [3]. These examples illustrate that theee a
model the complement, the intersection, and the inclusion quite a lot of possibilities to construct interval-valuedical
fuzzy sets. These definitions can be easily generalized-to operators.
fuzzy logical operators which play an important role 4h
fuzzy mathematical morphology [3].

Definition 1 (logical operators)Let £ = (L,<;) be a B- Interval-Valued Morphology
complete lattice with smallest elemedyt and largest element  Mathematical morphology was originally introduced for
1r. binary images and binary structuring elements, i.e., for ob

« Adecreasing. — L mappingV is called a negator of jects that can only have values O (representing black) and 1

if A'(0r) =1, andN (1) = 0p; it is called involutive (representing white). In the binary case, images and strinct

min(1,1 — 21 + y2)].

if (Vze L) NWN(z))=ux). elements are represented as crisp subsets of a univerBee
o An L? — L mappingC is called a conjunctor o if dilation and erosion are defined as follows.
C(01,0r) =C(1.,0) =C(0r,1.) = 0r, C(1,11) = Definition 2 (binary dilation and erosion)[12] Let A, B

1z, and if it has increasing partial mappings. It is callete crisp subsets dff. The binary dilationD(A, B) and the
a t-norm (usually denoted &) if it also is commutative, binary erosionE(A, B) are defined by:
associative and satisfi¢¥z € L)(C(1.,z) = z).

« An L? — L mappingZ is called an implicator orC if D(A,B) = {veUlT,(B)NA#0},
Z(0r,0.) =Z(0p,1.) =Z(1p, 1) = 15, Z(11,01) = E(A,B) = {velU|T,(B)C A},
0z, and if it has decreasing first and increasing second ]

For the complete lattice[0,1],<) the standard negatorPoINtv.
N, is defined byN,(z) = 1 — 2 (z € [0,1]). Popular t- These definitions can be extended to non-binary objects
norms on[0,1] are Ty (x,y) = min(z,y) and Ty (z,y) = [11, [2]. [7], in particular to interval-valued objects [8]14],
max(0,z + y — 1) (Lukasiewicz), popular implicators onby fuzzifying the underlying logical framework (cfr. Semti
[0,1] are Ixp(z,y) = max(1 — z,y) (Kleene-Dienes) and !ll-A). Note that it makes sense to include interval-valued
Iy (z,y) = min(1,1 — 2 + y) (Lukasiewicz), always with Structuring elements in this extension. Also regarding the
x,y € [0,1]. values of those pixels some uncertainty might exist, even

For our purposes we are interested in logical operators Bpugh it is chosen by the user. Indeed, if one wants the
the complete lattic&! = (L!, <, ). There are different ways structuring element to reflect the importance or weight that
of representing operations on interval-valued fuzzy sets # associated with a pixel at a certain position w.r.t. thetee
corresponding operations on classical fuzzy sets. We teferof the structuring element, one might not be completely sure
[3] for a nice overview, and limit ourselves here to somBOW to estimate that weight. The use of an interval with kel
Speciﬁc examp|es_ Let = [-1:17372] and Yy = [yl’yg], then values mlght be a solution in that case.
the standard negatdy, leads to the following interval-valued ~Definition 3 (interval-valued dilation and erosion):et

negator: £l = (L',<;r) be the complete lattice corresponding to
interval-valued fuzzy set theory, |6t be a t-norm onZ! and
Nis(z) = [Ns(22), Ns(21)] = [1 — 22,1 — a1]. let Z be an implicator or’’. Let A be an image and® be a

structuring element, both represented as interval-vafuezy
sets ini. The interval-valued fuzzy dilatiod’ (A, B) and
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the interval-valued fuzzy erosioZ(A, B) of A by B are in the end? The answer to this question (which might depend

defined by:

on conditions imposed on the involved operators) not only
improves our theoretical insight in the model, but is also

D1 (A, B)(v)

V T(B(u—v),Au),

ueU

N\ Z(B(u—v), A(u)),

ueU

E7(A, B)(v)
for all v in U.

plicator, a different interval-valued morphological mbde

important in the context of computational efficiency.
Regarding the application of edge detection [11], we have
the advantage that the interval-valued approach givessighin
in the (un-)certainty of the gradient-image, but additipnave
would like to know the source of that uncertainty. For exampl
With every choice of the interval-valued t-norm and imin case of the cameraman image the upper bound gradient-
image will contain real edges, but also false edges caused by

associated. Of course, in practice one is usually intedestde spatial distortion. Both kind of edges will be accompdni
in those models that satisfy some specific properties [&}ith a degree of uncertainty, and the challenge is to make an
We refer to [9] and [10] for a study of the morphologicahutomated intelligent decision about the nature (real Iseja
models based on the Lukasiewicz-operatBy;(andZyy) and of these edges.

on the minimum-operator?; andZxp), respectively. Both
models satisfy properties w.r.t. expansivity and restiiyt
monotonicity, interaction with intersection, interactiavith [
union, and duality.

In [5], [6] we have also investigated decomposition and2]
construction properties of interval-valued morphologimaer-
ators. For example, it turns out that the interval-valuddtidin
based on7,; can be decomposed into binary dilations and[3]
reversely, that this is the only interval-valued dilatidvat can
also be constructed from its binary counterpart. [4

Having a dilated and eroded image, one can take the
difference to result in a gradient-image, just as in the cadél
for regular grayscale images. Note that the difference betw
two intervals [xz1,z2] and [y;,y2] is defined as the interval
[21 — y2, max(z1 — y1, 22 — y2)]. We refer to our work [11] [6]
for some visual examples and discussion. In any case, and
this is an important conclusion, one can observe that the ui#
certainty that was present in the original representatioih®
cameraman image is propagated through the (interval-gialuegg;
morphological operators and the edge detection applitatio
This means that the information regarding the uncertaisty i
not lost, but is fully taken into account and can be used ang
exploited in further processing of the images.

IV. SOME CHALLENGES FORFUTURE RESEARCH

The interval-valued image model and the correspondiiftf]
morphological theory — both based on concepts from extended
fuzzy set theory — succeed in modeling the uncertainty tegar
ing grayscale pixel values, and enables us to propagate this
uncertainty through morphological operators. Severatifipe
morphological models have been investigated and provide th
tools for applications (e.g., edge detection). In such iappli2]
cations, experts will be able to judge the uncertainty of tthag]
results, and can modify their attitude towards the inforomat
accordingly.

It is clear that this image model is also faced with man[}“]
challenges and requires broader and deeper research en diff
ent topics. For example, what is the relation of the interval
valued image model with defuzzification? In other words, &f Wis)
defuzzify the interval-valued representation (leadingitagle
values for the pixels) and then apply regular morphological
operations, to what extent will this result be differentnfro
working with the interval-valued representation and iabr
valued morphological operations followed by defuzzifioati
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