
IWSSIP 2010 - 17th International Conference on Syst ems, Signals and Image Processing

239

FIVE - Framework for an Integrated
Voice Environment

Alexandre Maciel
Informatics Center

Federal University of Pernambuco
Recife, Brazil

amam@cin.ufpe.br

Edson Carvalho
Informatics Center

Federal University of Pernambuco
Recife, Brazil

ecdbcf@cin.ufpe.br

Abstract - This paper presents a framework for an
integrated voice-based interfaces development. The
FIVE consists of five modules: speech recognition,
speech synthesis and speaker verification, representing
the digital signal processing areas and other two
modules: integration and application. This is an ongoing
working and currently we are improvements stage of
first three modules. We can achieve 90% of accuracy in
recognition task and almost 80% of intelligibility in our
synthesizer’s words.

Keywords: Voice User Interface, Framework.

I. INTRODUCTION

Human beings have always been looking for new
ways to ease the human-machine interaction. With the
evolution of hardware and software for digital signal
processing (DSP), human speech became one of the
most promising means of interaction.

Although there have been advances, the
development of speech-based applications remains
unattractive to most programmers and small enterprises.
Basically this is due to two factors: DSP technology
requires specific knowledge and still there aren’t
appropriated tools to manage every step of the speech
interface development process in an integrated way.

In recent years, numerous initiatives have taken
place to make speech-based interfaces more appealing.
While the building frameworks have greatly facilitated
the development of these applications, they still work
isolated in specific speech processing tasks, hence their
integration is not an easy deal.

The FIVE idea is to join the best available
techniques for each speech processing task and offer the
developers an integrated tool to seamlessly build speech
recognition, speech synthesis and speaker verification
interfaces for any desired application.

This paper is divided as follows: section II presents a
speech technologies review; section III presents the
FIVE framework with a specific description for each
module; section IV presents the partial results; and
finally section V presents considerations and future
works.

II. REVIEW OF SPEECH TECHNOLOGIES

A. Speech Recognition

The Automatic Speech Recognition (ASR) task is
essentially a pattern recognition task. According to
Duda et al. [1] most pattern recognition systems can be
partitioned into four components as shown in Figure 1.

Figure 1: Pattern classification components

Specifically for speech recognition systems, the
sensor is responsible for audio acquiring and conversion
into digital samples, the feature extractor computes
signal data in symbolic and numeric information, and
the classifier uses this information to assign categories.
Finally, the result block takes account of the
considerations.

According to O'Shaughnessy [2] the main
approaches for feature extraction are Linear Predictive
Coding (LPC) and Mel-Frequency Cepstral Coefficient
(MFCC). The LPC parameters were largely used in the
70’s and became a dominant speech recognition
representation, as an automatic and efficient method to
represent speech because of the advantages that linear
predictive provides in terms of generating a smooth
spectrum, free of pitch harmonics, and its ability to
model spectral peaks reasonably well. On the other
hand, MFCC parameters take advantage of the
perception properties of the human auditory system by
sampling the spectrum at mel-scale intervals.

For the pattern classification task O'Shaughnessy [2]
mentions four techniques: Dynamic Time Warping
(DTW), Hidden Markov Models (HMM), Artificial
Neural Networks (ANN) and Support Vector Machine
(SVM). Each of these approaches has been extensively
studied over the years and complete descriptions can be
found at [3, 4, 5, and 6].

B. Speech Synthesis

A Text-To-Speech (TTS) synthesizer is a computer-
based system that should be able to read any text aloud,

Sensor
Feature

Extraction Classification Result

IWSSIP 2010 - 17th International Conference on Syst ems, Signals and Image Processing

240

whether it was directly introduced in the computer by an
operator or scanned and submitted to an Optical
Character Recognition (OCR) system. The TTS
procedure consists of two main phases. The first one is
Natural Language Processing (NLP), where the input
text is transcribed into a phonetic or some other
linguistic representation, and the second one is Digital
Signal Processing (DSP), where the acoustic output is
produced from this phonetic and prosodic information
[7]. A simplified version of the procedure is presented
in Figure 2.

Figure 2: A simple diagram for TTS systems.

The main goal of the NLP module is to produce the
phonetic representation from an input text along with
the prosody information. To perform this task, the NLP
module is divided into three steps: the text
preprocessing step, where numerals, special characters,
abbreviations, and acronyms are expanded into full
words; the pronunciation analysis step, where the
pronunciation of certain words, including homographs
and proper names, are determined; and the prosodic
analysis step, where the prosodic features of speech are
determined.

The NLP module information is used as input for the
DSP module. The DSP objective is to produce
synthesized speech, which can be done by several
different methods. The methods are usually classified
into three groups: articulatory synthesis, which attempts
to directly model the human speech production system;
formant synthesis, which models the pole frequencies of
speech signal or transfer function of vocal tract based on
source-filter-model; and concatenative synthesis, which
uses different lengths of prerecorded samples derived
from natural speech [8].

C. Speaker Recognition

Speaker Recognition refers to two different tasks:
Automatic Speaker Identification (ASI) and Automatic
Speaker Verification (ASV). In the identification task,
an unknown speaker is compared against a database of
known speakers, and the best matching speaker is given
as result. The verification task consists of deciding
whether a voice sample was produced by a claimed
person. In this work we will focus in the ASV task [9].

Just as ASR, ASV is a pattern recognition task and
can work with the same techniques for feature
extraction and pattern classification with some
particularities. For speaker recognition, features that
expose high speaker discrimination power, high inter-
speaker variability, and low intra-speaker variability are
desired. For these particularities, the MFCC and LPC
parameters can represent them very well.

A large number of methods have been proposed for
speeding up the verification process. For text dependent
verification systems the Vector Quantization (VQ)
technique has presented good results since the speaker's
parameters provide great distinction between them,

making distance measures very efficient [10]. For text-
independent recognition, Gaussian Mixture Model
(GMM) systems [11] have received much attention,
since they are considered as the state-of-the-art method
[12].

III. FIVE

FIVE is an object-oriented framework built from
open source frameworks written in Java. The
frameworks chosen have presented good results in DSP
state of the art. The Java language was chosen because
it’s extremely portable and easy to integrate with the
existing frameworks.

Five is composed of five modules in order to assist
developers in building voice interfaces for their
applications. The base modules represent three areas of
speech processing: Automatic Speech Recognition
engine (ASR), Text-To-Speech engine (TTS) and
Automatic Speaker Verification engine (ASV). The
intermediate module represents the Application
Programming Interface (API) responsible for integrating
base modules and the application development
abstraction. The last module is the Application module
(APP) where developers can instantiate the base module
through the suggested API.

FIVE provides a flexible way in which developers
can create speech-based interface. It's possible to build
interfaces with distinct base-modules alone or
combined. Figure 3 shows a representation of the FIVE
architecture.

Figura 3 – Arquitetura do FIVE

Figure 3: FIVE architecture.

A. Module 1:ASR

The ASR module is a speech recognition interface
engine which comprises five steps. In the first step the
developer builds a word dictionary to use in his
application. In the second step the database recording is
performed by an integrated audio acquiring application
which is able to store files in 8 or 16 kHz, with 8 or 16
bit samples and mono or stereo format. The third step
performs the feature extraction from the files obtained
on the previous step. For that, the MFCC and LPC
techniques are available; in addition, a Voice Activity
Detection (VAD) algorithm optimizes the audio
processing. The fourth step is responsible for
conducting the training process. In this step, samples
from the recorded database are used to create reference
models, functions or parameters for the training data
base. MLP, SVM, DTW and HMM techniques are
available. Finally, the last step performs the pattern
classification of the test database samples using the

Speech Text Natural Language
Processing

Digital Signal
Processing

ASR TTS ASV

API

APP

IWSSIP 2010 - 17th International Conference on Syst ems, Signals and Image Processing

241

same techniques from the training step and provides
results in the form of error rates and confusion matrix.

Java based framework were used for each technique
implementation. The Neuroph framework was used for
the MLP technique. Neuroph is lightweight Java neural
network framework used to develop common neural
network architectures. It contains well designed, open
source Java libraries with small number of basic classes
which correspond to basic neural networks concepts
[13].

The Weka framework was used for the SVM
technique. Weka is a collection of machine learning
algorithms for data mining tasks. The algorithms can
either be applied directly to a dataset or called from
within a Java code [14].

The Java ML framework was used for the DTW
technique. Java ML is a library aimed at software
engineers and programmers, composed of reference
implementations for machine learning algorithms
described in the scientific literature [15].

An adjustment of the HTK framework was used to
implement the HMM technique. HTK is a portable
toolkit for building and manipulating hidden Markov
models which consists of a set of library modules and
tools available in C source form. Script files containing
calls for speech analysis, HMM training, testing and
result analysis were created [16].

B. Module 2: TTS

The TTS module is a text-to-speech interface engine
comprised by two steps. In the first step, a Natural
Language Processing was created using the FurbSpeech
framework. FurbSpeech is a Java-based API that
converts Portuguese text into speech. It performs a
generic input text processing and the correspondent
phonemes are joined with prosodic information [17]. In
the second step, the Digital Signal Processing, a Mbrola
database was used. Mbrola is a project that gathers and
offers sets of synthesized speech diphone-based
databases in many languages, and provides them free
for non-commercial applications [18]. FIVE, through
the phoneme list obtained in the NLP step, joined with
prosodic information and Mbrola samples, is then able
to generate speech using 16 bits codification.

C. Module 3: ASV

Analog to the ASR module, a five steps structure
was developed. First, the developer builds a speaker

IWSSIP 2010 - 17th International Conference on Syst ems, Signals and Image Processing

242

and HMM (3 states per phoneme and 10 Gaussian
mixtures).

For the TTS module, a survey was conducted
through a questionnaire with 20 users. Ten sentences
were generated by the FIVE synthesizer using two
voices from Mbrola in Brazilian Portuguese. Next, users
were asked to transcribe the content of the phrases heard
as they understood it. Table 2 shows the results for
words and phrases sentences.

TABLE II. TTS RESULTS

 Word Sentence
Voice 1 72,95% 58,00%
Voice 2 79,21% 62,00%

A database of 20 speakers (15 male, 5 female)

recorded passwords and the passwords of other two
unknown speakers were used to test the ASV module.
Utterances followed the format 8 kHz, 16 bit, mono.
Then, MFCC and LPC features were extracted. Table 3
shows results for each technique applied.

TABLE III. ASV RESULTS

Technique MFCC results
 FAR FRR TSR
VQ 7,22% 4,41% 88,00%
GMM 9,43% 8,32% 91,12%
 LPC results
 FAR FRR TSR
VQ 6,85% 4,58% 86,24%
GMM 8,14% 8,48% 90,20%

The results show the False Acceptance Rate (FAR),

False Rejection Rate (FFR) and Total Success Rate
(TSR). The main parameters used for each technique
were: VQ (number of centroids: 1 and number of
iterations: 100) and GMM (64 Gaussian mixtures).

V. CONCLUSIONS

The results of the FIVE can be shown in two ways:
quantitatively and qualitatively. Quantitatively, we can
evaluate that rates of acceptance of the recognition
modules are promising. HMM and GMM techniques
obtained values up to 90%. Improvements still to be
carried out expecting higher rates: new techniques for
Voice Activity Detection can be used to obtain better
cuts in utterances; other techniques for features
extraction, based on wavelets, can be used to obtain the
most representative characteristics of the signals; and
classifiers evolutions or hybrid classifiers can be used to
obtain better rates.

The TSS module results were considered
unsatisfactory. Users had difficulties in understanding
sentences and words and several errors were reported as
crucial before implementing this module in a production
environment. We are working on our own database,

recorded in studio with phonetically balanced sentences
and we are studying the feasibility of using the HTS
framework in order to improve the quality of generated
speech [22].

Qualitatively a production environment test was not
possible yet. This test is very important to evaluate the
API usability and portability. We intend to apply this
test for a group of developers in real applications and
draw up a questionnaire arguing the experience of each
one.

In general we evaluate the FIVE as an innovative
tool that provides an easy way to implement and
integrate voice interfaces. Having said this, we believe

