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Abstract—Alzheimer’s disease (AD) is the most 

common cause of dementia among elderly, initially 

taking place in the hippocampus. Volumetric evaluation 

of the hippocampus can be an important biomarker for 

AD, but its manual volumetric assessment is time-

consuming and depends on previous and specific 

anatomical knowledge, forbidding its use on clinical 

practice. This work analyzes three medical image 

analyzing tools, Freesurfer, IBASPM and FSL, in order 

to identify the best method for hippocampus volumetric 

assessment. Nineteen magnetic resonance image (MRI) 

from cognitively intact individuals were used for 

qualitative comparison among these methods. More 

concordant results were found using FSL and Freesurfer 

in terms of hippocampus delineation. 

Keywords- automated image analysis methods, magnetic 

resonance imaging, Alzheimer’s disease, hippocampus, 
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I.  INTRODUCTION 

Alzheimer’s disease  (AD) is the most common 
cause of dementia (49.9% to 84.5% of all dementia in 
Latin America), with a  progressive course, beginning 
with  neuronal dysfunction, and evolving  to irreversible 
loss of neurons [1]. Early AD detection and treatment 
allow better clinical results, preserving the loss of 
cognitive functions for longer periods, with great social-
economical impact. Subtle hippocampus and amygdala 
volumetric atrophy can be observed even in early AD, 
becoming an important biomarker for the disease, 
especially with disease progression. Volumetric MRI 
studies can already indicate small volume loss of those 
anatomical structures [2]. However, hippocampus 
manual 3D identification relies mainly on highly time-
consuming segmentation procedures. An expert may 
need 30 minutes to trace a single structure such as the 
hippocampus [3]. Moreover, automated methods have 
provided consistent results comparable to manual 
segmentation [4]. 

This paper compares three fully automated methods 
implemented on public-domain applications: (1) 
Freesurfer, (2) IBASPM and (3) FIRST/FSL. Freesurfer 
(http://surfer.nmr.mgh.harvard.edu/) is a set of software 
tools for the study of cortical and subcortical anatomy 

developed by members of Athinoula A. Martinos Center 
for Biomedical Imaging [5]. IBASPM 
(http://www.thomaskoenig.ch/Lester/ibaspm.htm) is a 
toolbox for brain segmentation of structural MRI, 
developed by Cuban-Neuroscience Center [6]. 
FIRST/FSL (http://www.fmrib.ox.ac.uk/fsl) is a model-
based segmentation and registration tool applied to get 
subcortical brain segmentation using Bayesian shape and 
appearance models, developed by FMRIB group from 
Oxford University [7]. Our primary goals are: (1) 
analyze and synthesize the imaging processing for each 
of the three tools above described; (2) compare the 
left/right hippocampus volumes obtained in each 
method, quantifying the volume agreement among them; 
and (3) discuss the quality of the volume segmentation 
obtained with each method. 

Regarding related works, Powell et al. [8] compared 
four fully automated brain structure segmentation 
methods: template-based, probabilistic-based, artificial 
neural network-based (ANN) and support vector 
machine-based (SVM) segmentation. The image base 
was composed by 25 normal control subjects. The 
segmentation methods results were compared to 
manually defined regions. The comparison evaluation 
between automatic and manual segmentation was 
performed using three overlapping metrics: relative, 
similarity and spatial. The relative overlap for the 
hippocampus was lower than 59%. The comparison 
evaluation between automatic segmentation was 
performed using t-test p-values of relative overlap 
measured between the segmentation methods. The 
results showed a little disparity between the ANN and 
SVM, getting a p-value upper to 0.48. Morey et al. [9] 
compared the performance of FSL/FIRST and 
Freesurfer. The left/right hippocampus volumes derived 
from each automated measurement were compared to 
expert hand tracing for percent volume overlap, also 
called Dice’s coefficient, and across-sample correlation. 
A total of 20 normal control subjects were collected. 
When comparing automated measures to manual tracing, 
the left-right hippocampus segmentation volume overlap 
produced by Freesurfer (83% and 82% respectively) was 
superior to FIRST (79% and 80% respectively). The 
conclusions were that the automated methods generated 
systematically larger volumes than manual tracing. 
Freesurfer and FIRST are not equal when compared to 
manual tracing and Freesurfer was superior for 
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segmenting the hippocampus by all the objective 
measurement performed. Tae et al. [10] included T1-
weighted MRI of 21 patients with chronic major 
depressive disorder (MDD) and 20 normal controls. 
They compared the hippocampus volume achieved from 
two fully automated tools to manual segmentations. The 
automated segmentation methods use surface-based 
using Freesurfer and individual-atlas using IBASPM. 
The agreement test between the volumetric methods got 
an ICC right 0.84 and left 0.85 when comparing 
Freesurfer to manual, and ICC right 0.65 and left 0.71 
when comparing IBASPM to manual. Their conclusions 
were that the automated hippocampal volumetric 
methods showed good agreement with manual 
hippocampal volumetry, the absolute volume measured 
using Freesurfer was 35% larger than manual and the 
agreement was questionable with IBASPM.  

Different from our work, those related works did not 
perform the comparison among different automated-
segmentation methods. They compared automated 
segmentation with manual segmentation. Manual 
segmentation is sensible to manual tracing method and 
expert’s skill, as well as it is highly time-consuming [4]. 

II. AUTOMATED IMAGE ANALYSIS 

METHODS 

A. Image Database 

MR images used in this work were provided by 

LABS D´Or Network Research Group, Rio de Janeiro – 

Brazil. Nineteen exams from distinct cognitively intact 

patients, scanned on high field Philips magnets, were 

divided in two groups: group I, aged from 37 to 57 years 

old (average of  48), 4 male and 9 female, was scanned 

in a 1.5 Tesla MR unit, using images with 256x256 

resolution and a total of 128 slices; group II, aged from 

21 to 54 years old (average of  33), 1 male and 8 female, 

was scanned in a 3 Tesla MR unit (total of 9 exams), 

using images with 512x512 resolution and a total of 386 

slices. Volumetric T1-weighted images were acquired in 

the sagittal plane. 

B. Hippocampus Anatomical Definition 

The hippocampus is part of middle arc of the limbic 

system. It is located in the medial temporal lobe inferior 

to the choroidal fissure and temporal horn. The gray 

matter of the hippocampus is an extension of the 

subiculum of the parahippocampal gyrus. The 

hippocampus itself consists of two interlocking C-shaped 

structures: the cornu of Ammonis and the dentate gyrus 

[11]. Figure 1 shows the hippocampus representation  

extracted from Purves  [12]. 

C. Automated Image Segmentation Methods 

Medical image segmentation methods can be 
grouped into two classes: (1) voxel-based methods and 
(2) vertex-based methods. Voxel-based methods are 
region-based segmentation methods, where the 
anatomical structures are represented by their voxel 
features (signal intensity, spatial position) and 
neighborhood-based features. Vertex-based methods are 

boundary-based segmentation methods, where the 
anatomical structures are represented by their boundary 
surface parameterized by vertices grouped in a mesh. 

 

Figure 1.  Subcortical structures graphical representation 

Figure 2 shows the general image segmentation 
process used by the three methods applied on this work. 
In the preprocessing phase, we performed image 
reorientation and image format conversion to NIFTI files 
(http://nifti.nimh.nih.gov/). Despite the axial slicing 
information being saved in image header section, we 
preferred to deal with the source image with the same 
axial slicing as the standard template image: Right-Left, 
Posterior-Anterior and Inferior-Superior, based on 
radiological convention orientation. Image registration is 
the process of aligning images so that corresponding 
features can easily be related [13]. The image 
registration stage was used by the three studied methods 
to align the source image to a common space, achieving 
a voxel-to-voxel correspondence for all subjects. The 
goal of the segmentation stage is to simplify the 
representation of an image into something that is more 
meaningful and easier to analyze. In the segmentation 
stage, the brain tissue is segmented into four or five 
classes: gray matter, white matter, cerebro-spinal fluid, 
non-brain regions and skull. In the labeling stage, the 
brain structures mapped into an anatomical atlas are 
assigned to the source image. Finally, the volume stage 
computes the volume of the structures of interest. 
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Figure 2.  General image segmentation process 
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Table I summarizes the main differences among the 
three methods studied, grouping them into the generic 
image segmentation defined previously. 

TABLE I.  IMAGE SEGMENTATION PROCESS COMPARISON 

F
re

es
u

rf
er

 

Image 

registration 

Affine registration driven by 9 degrees of 

freedom. 

Template 

image 
Tailarach space. 

Segmentation Removes the skull scalp. 

Labeling 
Generated by assigning each voxel to the class 

for which the probability is the greatest. 

Anatomical 

atlas 

GCA atlas (each structure is represented by a 

class in a probability function). 

Volume 
It counts the labeled structures assigned in the 

previous stage. 

F
S

L
 

Image 

registration 

Performed in two stages. The first makes a 

standard 12 degrees of freedom registration to 

the template. The second stage applies a 12 

degrees of freedom registration using MNI 152 

subcortical mask to exclude voxels outside the 

subcortical regions. 

Template 

image 
MNI 152 space at 1mm resolution. 

Labeling 
It performs a shape and appearance active 

surface model. 

Anatomical 

atlas 

Shape appearance models constructed from 

336 subjects, consisting of children and adults, 

normal individuals and subjects with 

pathologies. The result is a vertex set 

structured in a mesh. 

Volume 
Volume is computed filling the meshes 

obtained from the previous stage. 

IB
A

S
P

M
 

Image 

registration 

The image registration and segmentation 

image segmentation stages are performed in a 

unified model. The registration is driven by 12 

degrees of freedom and a non-linear 

registration model. The result is a 

transformation composed by an affine matrix 

and non-linear registration model. 

Template 

image 

MNI ICBM AVG 152 smoothing with 8mm 

Gaussian kernel. 

Segmentation 

The input parameters are the brain tissue 

probability maps published by ICBM 

(International Consortium of Brain Mapping). 

It performs an iterative probability function 

maximization using a Bayesian framework. 

Labeling 

It uses the gray matter mask segmented 

previously. The brain structures presented in 

the atlas are mapped to the source image using 

a simple binary association. 

Anatomical 

atlas 
AAL atlas (binary atlas) 

Volume 

The source image is deformed again applying 

the inverse transformation model and labeled 

structures are carried to the original space. 

III. SEGMENTATION RESULTS AND 

EVALUTATION 

With the purpose of quantify the volume agreement 
of the structures segmented automatically by the three 
methods studied, we propose two volume agreement 
indexes: (1) the relative volume overlay (RVO), as 
shown in Equation 1, and (2) the intraclass correlation 

(ρ), as shown in Equation 2 . 
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 medical image analyzing 
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where ρ is the correlation between variables A and B, E[] 

is the expected value function and µi, and σi are the 
mean and variance of variable i, respectively. 

In order to work with average volumes, it is 
necessary to use normalized volumes. A common 
denominator usually selected for this purpose is the 
intracranial volume. We used the estimated total 
intracranial volume (eTIV) obtained from Freesurfer 
[14]. Equation 3 shows how the normalized volume for 
each individual is obtained. The mean normalized 
volumes shown in Table II were obtained by 
corresponding arithmetic average. Table III shows the 
relative overlay volumes (RVO) and the intraclass 

correlation index (ρ). The volumes are correlated when 
the index is close to one (or minus one). 

 10000⋅=
i

i
i

eTIV

Vol
nVol  (3) 

where Voli is the structure volume of a given individual 
and eTIVi is the estimated total intracranial volume. 

TABLE II.  AVERAGE NORMALIZED VOLUMES  

Hipp. c Groupb Freesurfera IBASPMa FSLa 

Left  

(LH) 

I 29.9 (2.7) 20.1 (1.7) 34.8 (3.5) 

II 27.1 (1.3) 22.6 (3.2) 29.5 (1.6) 

Right  

(RH) 

I 29.1 (4.0) 15.9 (2.3) 35.4 (5.5) 

II 26.3 (1.8) 17.3 (1.7) 29.1 (2.2) 
a. Volume normalized by estimated total intracranial volume as shown in Equation 3 

represented by its average and standard deviation between parentheses. 

b. Group I is composed by exams scanned in a 1.5 Tesla MR unit (total of 10) and Group II is 

composed by exams scanned in a 3 Tesla MR unit (total of 9). 

c. We have abbreviated hippocampus as Hipp. 

TABLE III.  RELATIVE OVERLAY VOLUMES (RVO) AND 

INTRACLASS CORRELATION INDEX (ρ) 

 

 
Freesurfer 

IBASPM 

Freesurfer 

FSL 

IBASPM 

FSL 

Freesurfer 

IBASPM 

FSL 

  RVOa ρb RVOa ρb RVOa ρb RVOa 

LH 
I 43.00 0.76 61.75 0.60 61.42 0.43 30.72 

II 45.35 0.49 67.59 0.92 60.95 0.43 35.42 

RH 
I 23.23 0.32 61.48 0.76 56.26 0.30 14.85 

II 20.35 0.81 63.61 0.70 52.92 0.54 12.33 
a. Relative overlay volume average. The unit is percentage (%) 

b. Intraclass correlation index. An index equal to one (or minus one) means that both volumes 

are correlated. An index equal to zero means that the correlation does not exist. 

 

Freesurfer and FSL presented better relative overlay 
indexes as shown in Table III. Regarding the intraclass 
correlation, Freesurfer and IBASPM presented better 
results in general, as shown in Table III. Despite 
referring to the same anatomical structure, the three 
methods diverged when considering relative overlay 
volume. The highest relative overlay volume value was 
about 35%. Figure 3 shows the segmentation results of 
three computational methods used in this study, 
displayed on 2D coronal images. When the sulcus 
between the hippocampus and the parahippocampus 
gyrus is not clearly defined, the upper cortex of the 
parahyppocampus gyrus was included in the 
hippocampus volume segmentation, as shown in Figure 
3 (a1, b1, c1). Probably, this problem would not occur in 
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the elderly population as this sulcus would be more 
pronounced between these two structures, allowing 
better boundaries discrimination. Regarding Freesurfer, 
the dentate gyrus, subiculum and upper area of 
parahippocampal gyrus (entorhinal cortex) appear to 
have been included in hippocampus volume, as shown 
by the red arrows in Figure 3 (a3). Freesurfer included 
also the inferior cornu of the lateral ventricle. In the most 
posterior images, Freesurfer included part of the fornix, 
as shown by the red arrow in Figure 3 (a1). The 
Freesurfer definition of the hippocampus anatomical 
boundaries is not clearly presented in program’s 
technical manual [10]. We noticed that the hippocampal 
segmentation obtained from IBASPM was discontinuous 
with clear exclusion of easily recognizable areas 
belonging to the hippocampus, as shown in Figure 3 (b3, 
b4). The errors in hippocampal volume segmentation 
from IBASPM arose from inaccurate image registration 
and use of the MNI single-subject for the manually 
predefined region of interest of the hippocampus [15]. In 
FSL, the limits of the hippocampus have been expanded, 
including the adjacent white matter and other neighbor 
structures, providing volumes significantly inflated. FSL 
also included the fornix and entorhinal cortices. 

 

Figure 3.  Coronal right (R) and left (L) hippocampus slices. 

segmented with Freesurfer, FSL and IBASPM: Labels from 1 to4 

indicate the most posteriorto the most anterior slices, respectively. 

IV. FINAL REMARKS 

An important aspect of automated volumetric 
methods is its reproducibility, assuring consistent 
findings. However, accuracy is very important for 
volumetric studies. We provided a complete and detailed 
comparison of three medical imaging packages applied 
to get hippocampus volumetric measures. Volume 
measures show disagreements among the three methods, 
indicating the need of more exhaustive research in this 
field. Despite being sensible to human skills and time-
consuming, manual segmentation is used as a reference 
from which might be calculated a deviation. As future 
works, we will perform comparisons against manual 
segmentation, in order to evaluate the hippocampus 
segmentation accuracy. 
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