
IWSSIP 2010 - 17th International Conference on Systems, Signals and Image Processing

Image Retrieval by
Multi-Scale Interval Distance Estimation

Carlos Elias Arminio Zampieri Jorge Stolfi
UNICAMP - Campinas, Brazil UNICAMP - Campinas, Brazil

carlos.zampieri@students.ic.unicamp.br stolfi@ic.unicamp.br

Abstract—We describemulti-scale interval search(MuSIS),
a general method or for query-by-example retrieval in image
collections, using interval arithmetic and special image
pyramids to perform multi-scale distance estimation. The
interval estimates are used to quickly eliminate candidate
images by looking only at the upper levels of the pyramids,
as in the branch-and-bound optimization paradigm. Experi-
ments indicate that MuSIS can provide significant speedup
relative to exhaustive search. The metdod is exact (it always
returns the exact best match) and can be adapted to work
with many image similarity functions.
Keywords: Content-based image retrieval; interval arith-
metic; multiscale distance.

I. I NTRODUCTION

Content-based image retrieval systems [3] often assume
that the database is pre-processed by computing adescriptor
for each image, which is a numerical summary of the image
features that are considered relevant for searching. Sincethe
search algorithms operate on the descriptors, the types of
queries that users may pose are necessarily limited by the
nature of the precomputed descriptors.

Here we describe a different approach that does not use
any specialized descriptors, and relies instead onmulti-scale
or (multi-resolution) techniques to speed up the queries.
In this method, the preprocessing phase merely creates
several reduced copies of each image, at various scales.
Each pixel of the reduced images consists of the averageµ
and deviationσ of the corresponding pixels in the original
image. Using only the upper levels of the pyramids, we can
quickly compute guaranteed upper and lower bounds for the
distance between two images; which allow us to efficiently
discard most database candidates without ever computing
the corresponding exact distances.

II. N OTATION AND DEFINITIONS

In this paper we consider the following problem: given
a largeimage databaseB1, B2, . . . BN , and aquery image
A, find the imageB∗ in the database that is closest toA,
in some arbitrary metricdist(∗, ∗).

We assume that each imageI is a function defined on
some finite rectangulardomainD ⊂ Z×Z. For simplicity,

we will assume that all images in the database (as well
as the query image to be searched) have the same size and
shape and are monochromatic; so that the value of an image
I at a pointp of the domain, called apixel and denoted by
I[p], is a single real number in the interval[0, 1]. However,
the algorithms we describe can be trivially extended to work
with color images, and/or with images of different sizes.

For each imageI we define animage pyramidI =
(I(0), I(1), . . . , I(m)), where eachI

(k) is a version ofI
reduced by a factor of1/2k in each direction, and therefore
a factor1/4k in area. The parameterm is usually chosen
so thatI(m) has a single pixel.

We will denote byD(k) the common domain of all
images reduced to scalek. Each pixelI(k)[p] of a reduced
imageI

(k) is a pair of real numbersµI
(k)[p], σI

(k)[p] where

µI
(k)[p] =

1

4k

∑

q∈P(k)[p]

I[q] (1)

σI
(k)[p] =

√

√

√

√

1

4k

∑

q∈P(k)[p]

(I[q]− µI(k)[p])2 (2)

andP(k)[p] is the set of pixels inI that correspond to pixel
p of I

(k). We refer to these formulas as theµσ-reduction
process.

Figure 1. A monochromatic image, and the reduced versions
of the same obtained byµσ-reduction.

Note that the level zero versionI(0) does not have to be
computed or stored, since it can be trivially recreated from
the original image; namelyµI

(0)[p] = I[p] andσI
(0)[p] = 0,

for all p. Therefore, the pyramid of an image occupies about

IWSSIP 2010 - 17th International Conference on Systems, Signals and Image Processing

1 + 2(1/4 + 1/42 + · · · + 1/4m) < 5/3 ≈ 1.67 times as
much space as the original image.

III. M ULTI -SCALE INTERVAL SEARCH

A. Description of the algorithm

Our algorithm, which we callmulti-scale interval search
(MuSIS), is shown in figure 2. It assumes thatµσ-pyramids
have been precomputed for all imagesBi in the database
and for the query imageA. The algorithm keeps a setC of
candidate imagesthat is guaranteed to contain the correct
answer — namely, the image from the database that is
closest to the query imageA, in the metricdist(∗, ∗).

The setC is kept as a collection of quadruplesc =
(c.B, c.B, c.k, c.d), wherec.B is a handle to an image of
the database,c.B is the precomputed pyramid ofc.B, c.k
is a scale of resolution, andc.d is an interval estimate for
dist(A, c.B), computed from the reduced versionsA

(k) and
c.B(k). Here and in the following, aninterval is a pair of
numbersv = [v↓, v↑] that represents the set of all real
valuesx such thatv↓ ≤ x ≤ v↑. The algorithm also main-
tains a global intervald∗ such thatdist(A, B∗) ∈ d∗. This
interval is the minimum of all the intervalsc.d in C, that is
d∗↓ = min { e.d↓ : e ∈ C } andd∗↑ = min { e.d↑ : e ∈ C }.

1. SetC to contain all quadruples(B, B, m+1, [0 1])
such thatB is in the database. Setd∗ ← [0 1].

2. Let c be a candidate with minimumc.d↓. If
#C = 1, return c.B as the answer to the query and
stop. Otherwise lete be some after candidate with the
second-smaleste.d↓. If c.d↑ ≤ e.d↓, then returnc.B
as the answer to the query and stop.

3. Select some candidatec from C. Compute a
new interval estimated′ for dist(A, c.B), using the
reduced imagesA(c.k−1) and c.B(c.k−1). Set d′ ←
d′ ∩ c.d. Replace the candidatec in the queue by
c′ = (c.B, c.B, c.k−1, d′), and updated∗ accordingly.

4. Remove fromC every candidatec which has
c.d↓ > d∗↑. Repeat from step2.

Figure 2. The MuSIS algorithm.

The general situation during the MuSIS search is illustrated
in figure 3 (top). Each error bar indicates the interval esti-
matec.d for some candidatec in C. The dashed horizontal
lines indicate the intervald∗, which here coincides with the
interval c.d of candidate0 At each iteration in step3, we
refine the estimate ofdist(A, c.B) of a candidatec from
the list using the versionsA(k−1), c.B(k−1) at the next finer
scale. We then updated∗, and that may allow us to eliminate
some candidates from the list.

Figure 3 (bottom) shows the outcome of such an event:
after candidate0 was re-evaluated, the intervald∗ came to
be defined in step3 by the low end of the new candidate

0 and the high end of the new candidatec. With the lower
value ofd∗↓, it was possible to discard more than half of the
candidates from the queue—without ever computing their
exact distances fromA.

 0

 0.1

 0.2

 0.3

 0.4

 0

 0.1

 0.2

 0.3

 0.4

Figure 3. Two successive iterations of the algorithm.

The new intervald′ computed in step3 should ideally be
a sub-interval ofc.d. However, depending on howdist
is computed, this may not be always true in practice. In
any case, if bothc.d andd′ are correct interval enclosures
for the exact distancedist(A, B), the same is true of
their intersection. The commandd′ ← d′ ∩ d is therefore
harmless, and it has the merit of ensuring thatd′↑ ≤ c.d↑
and d′↓ ≥ c.d↓. Therefore, to update the high endd∗↑ it
suffices to dod∗↑ ← min {d∗↑, d′↑}. To update the low
endd∗↓ efficiently, on the ofter hand, we need to keep the
candidate tuples in a heap data structure, sorted byd↓, with
the minimum at the root.

B. Correctness

The main loop of the algorithm preserves the following
invariants (a): there is a candidatec in C such thatc.B
is the correct answerB∗ (the image from the database for
which dist(A, c.B) is minimum); and (b) the exact distance
dist(A, c.B) lies in the intervalc.d, for every candidatec
in C. These invariants are obviously true at the beginning,
and step4 only eliminates a candidatec if dist(A, c.B) is
guaranteed to be larger thandist(A, e.B) where e is the
candidate inC that defined the value ofd∗↑.

Moreover, at every step the algorithm either eliminates
one or more candidates, or decrements thec.k field of some
candidate. In a candidatec with c.k = 0, the intervalc.d
must be a singleton (that is, we must havec.d↓ = c.d↑).
Therefore, in step2, if all the candidates ofC havec.k = 0,
then we must havec.d↓ = c.d↑ = e.d↓ = e.d↑, so the
algorithm will stop. The termination and correctness of the
algorithm then follows.

C. Efficiency

The worst case for this algorithm is when no candidates
are eliminated in step4, and the iteration continues until

IWSSIP 2010 - 17th International Conference on Systems, Signals and Image Processing

all candidates in the queue havec.k = 0. Only at that point
will the algorithm stop, because of the second test of step2.

Assuming that the interval-valued version ofdist is at
mostδ times more expensive than the single scale version,
and that the cost of computingdist(A, B) is approximately
αn for images withn pixels, then the worst-case cost —
computingdist

(k)
2 at all scales, for allN database images

— will be Nαn(1 + δ/4 + δ/42 + · · · + δ/4m), which is
less thanNαn(1 + δ/3). In comparison, the brute-force
algorithm has costNαn. Therefore, the worst-case cost of
MuSIS is only 1 + δ/3 times the cost of the brute-force
algorithm.

However, each tuplec with k > 0 that can be eliminated
in step4 will cost only δαn(1/4k+1/4k+1+· · ·+1/4m) ≤
(δ/3/4k−1)αn operations. This isδ/3/4k−1 times the
brute-force cost, and this factor is usually less than1 when
k ≥ 2. Therefore, if enough quadruples get eliminated
when they have largek values, the savings will offset the
overhead.

D. Which candidate to recompute

In step 3, we use the following heuristic to choose the
candidatec that is to be refined: letc and e be the first
two candidates in order of increasingd↓, breaking ties by
decreasingk. If c.k 6= e.k, select the one withlargestk. If
c.k = e.k, select the one with smallestd↓.

Note that one cannot havec.k = e.k = 0 at this time,
since the two intervals would be singletons, in which case
the smallest of the two should have been excluded in step4.

IV. I MAGE DISTANCE

The correctness of the MuSIS algorithm is independent
of the image distance functiondist. In fact, dist does not
have to be a metric in the mathematical sense of the term;
and any metricdist′ that is a monotonic function ofdist
will result in the same output.

In some of our tests, we used the most basic metric for
evaluating the discrepancy between two images, namely the
normalized Euclidean distance, defined by

dist2(A, B) =
1

#D

√

∑

p∈D

|A[p]−B[p]|
2 (3)

For efficiency, it is more convenient to work with the square
of this distance,dist22(A, B). Note that, dist2(A, B) =
rms(A−B), anddist22(A, B) = msq(A−B), where

msq(I) =
1

#D

∑

p∈D

(I[p])2, rms(I) =
√

msq(I) (4)

If the pixel values are real numbers in[0, 1], the value of
dist2(A, B) (or dist22(A, B)) is also in[0, 1]; and it is zero
if and only if the images are identical at every pixelp.

As can be seen in figure 4, the Euclidean distance may
be too simple for pratical applications. However, it can be

used also after a suitable preprocessing of the images (e.g.
replacing each image by its absolute gradient, in order to
reduce the effect of lighting variations).

query 0.238870 0.258277 0.263883

Figure 4. A query image and the three best matches in our
test database, according to the plain Euclidean metricdist2.

A. Estimating distance from mean and deviation

For many kinds of images, such as outdoor photographs,
the Euclidean distancedist2(A, B) can be effectively esti-
mated from the reduced versionsA

(k), B(k) at any scalek.
Namely, letdist

(k)
2 (A, B), be the interval

dist
(k)
2 (A, B) =

√

√

√

√

1

4k

∑

p∈D(k)

∆2(A(k)[p], B(k)[p]) (5)

where∆2(a, b) is the interval with bounds

∆2 ↓(a, b) = (µa− µb)2 + (σa− σb)2 (6)

∆2 ↑(a, b) = (µa− µb)2 + (σa + σb)2 (7)

Formulas (5)– (7) are based on the observation that the
difference between a signal and its mean value is orthogonal
to the constant signal with that mean value. They yield
an interval that contains the distancedist2(A, B) in the
original scale. Note thatdist

(0)
2 (A, B) is a singleton interval

containing onlydist2(A, B).
The µσ-reduction formulas (1)– (2) as well as the

estimator formulas (5)– (7) are affected by roundoff errors,
and by noise due to the quantization ofµI

(k)[p] andσI
(k)[p]

when these are stored as digital images. Therefore, all
those formulas must be computed using Moore’sinterval
arithmetic[2], so that all arithmetic operations are properly
rounded; and the quantization errors must be included
intervals. These precautions are necessary to ensure that the
interval estimate does indeed contain the exact distance.

B. Cumulative image distance

The Euclidean distance (3) is a basic tool for other
image metrics, such as thecumulative multiscale Euclidean
distance dist∗2. This metric is a weighted mean of the
Euclidean distances at all scales, that is,

dist∗2(A, B) =

m
∑

r=0

λr dist2(µA
(r), µB

(r)) (8)

The weightsλr are numbers between0 and1, whose sum is
1. Typically they are chosen in geometric progression with
some ratioβ, that isλr = βr(β − 1)/(βm − 1). If β > 1,
the metricdist∗2(A, B) gives more weight to the diferences

IWSSIP 2010 - 17th International Conference on Systems, Signals and Image Processing

at the finest scales; ifβ < 1, it gives more weight to the
diferences in the coarsest scales. Ifβ = 1 all weights are
equal (1/m). See figure 5 e 6.

query 0.222514 0.243298 0.243907

Figure 5. A query image and the three best matches with
cumulative Euclidean distancedist∗2 with β = 1/2.

query 0.044553 0.047958 0.051262

Figure 6. A query image and the three best matches with
cumulative Euclidean distancedist∗2 with β = 2.

Like the plain Euclidean distance, the cumulative image
distancedist∗2(A, B) can be efficiently estimated by looking
only at the highest levels of the pyramidsA, B. Namely,
suppose we want to compute an estimatedist∗2

(k)(A, B) for
dist∗2(A, B) using only levelsk, k+1, ..., m of the pyramids
A, B. For this, we split formula (8) into four parts:

dist∗2
(k)(A, B) = λ0d0 +

k−1
∑

r=1

λrdr + λkdk +

m
∑

r=k+1

λrdr

wheredr = dist2(µA
(r), µB

(r)), for all r. The first term
λ0d0 is simply λ0 dist2(A, B) so can use the interval
estimatedist

(k)
2 (A, B) of formulas (5)– (7), scaled by

λ0. The third partλkdk can be computed directly. For
the fourth part

∑m

r=k+1 λrdr, we just accumulate the
values ofλrdr previously computed for all higher levels.
These two parts are exactly computedand therefore provide
singleton intervals. Finally, for the part

∑k−1
r=1 λrdr, we

observe that the the distancedr, for all r < k, lies in the
interval u = [dk − ε, dist

(k)
2 (A, B)↑ + ε], whereε is the

expected magnitude of quantization errors in the images
µA

(r) and µB
(r). Therefore, an estimate for the second

part
∑k−1

r=1 λrdr is the intervalu scaled by
∑m

r=k+1 λr.
The interval-arithmetic sum of these four intervals will then
containdist∗2(A, B).

V. RESULTS

To evaluate the efficiency of MuSIS, we performed a
number of closest-image searches on a database with3840
monochromatic images derived from Corel photos [1]. All
images had128×128 pixels, and the search started at level
m = 7, where the images have only1× 1 pixels.

Table I shows the computation costs of the MuSIS algo-
rithm, compared to the brute-force algorithm. The numbers
are averages of100 searches with different query images.

Each search was repeated twice, once using the plain
Euclidean distancedist2 and once using the cumulative
distancedist∗2 with β = 2.

Table I
Costs of the MuSIS algorithm.

k Mk Nk Ck M ′
k N ′

k C′
k

7 0.0 3840.0 0.469 3840.0 3840.0 0.703
6 0.0 2278.8 1.113 651.0 651.0 0.477
5 0.0 1620.5 3.165 104.2 104.2 0.305
4 0.0 890.5 6.957 10.3 10.3 0.121
3 0.0 385.0 12.032 2.8 2.8 0.129
2 0.0 120.8 15.105 1.5 1.5 0.285
1 0.0 31.2 15.585 1.2 1.2 0.870
0 6.7 0.0 6.700 0.7 0.0 0.670

MUS 61.125 3.561
BRU 3840.000 5119.922

ρ 0.01592 0.00070

The columnsMk, Nk, Ck refer to queries usingdist2: Mk

is the number of plain distancesdist2 computed between
images at each levelk; Nk is the number of interval
estimatesdist

(k)
2 for the Euclidean distance at level 0,

computed from the images at levelk; and Ck is the cost
of those operations. ColumnsM ′

k, N ′
k, and C′

k are the
analogous counts and costs for queries usingdist∗2.

As in section III-C, the table assumes that the cost of
dist2 for two images at levelk is 4−k (in particular, 1 for
level k = 0), and that ofdist

(k)
2 is δ4−k. The factor4−k

accounts for the relative number of pixels, and the factor
of δ accounts for the overhead of fetching the two reduced
versions of the image (µB

(k) andσB
(k)), and computing the

interval estimate (5), instead of fetching a single image and
computing a plain distance. For table I, we assumedδ = 2.

Row MUS shows the total cost of a query by the MuSIS
algorithm. RowBRU is the corresponding cost for the brute-
force algorithm. The last row shows the relative efficiency
of MuSIS, that is the ratioρ =MUS/BRU.

VI. CONCLUSIONS

These preliminary tests show that the MuSIS algorithm,
even in its simplest implementation, can substantively re-
duce the cost of searching for the closest image. The basic
algorithm can be improved and extended in many ways, an
can be combined with other traditional techniques such as
clustering and application-specific descriptor extraction.

REFERENCES

[1] Corel Corp. site, http://www.corel.com/. Accessed on 2009-
12-13.

[2] R. E. Moore,Methods and Applications of Interval Analysis.
SIAM, Philadelphia, USA (1979).

[3] R. Datta and D. Joshi and J. Li and J. Z. Wang,Image
Retrieval: Ideas, Influences, and Trends of the New Age.
ACM Computing Surveys,40 (2), 1–60 (2008).

