
Character Recognition based on

Trellis Diagrams

Martin Grafmüller

Vision and Fusion Laboratory

Karlsruhe Institute of Technology (KIT)

76131 Karlsruhe, Germany

grafmueller@kit.edu

Jürgen Beyerer, Kristian Kroschel

Fraunhofer Institute of Optronics, System

Technologies and Image Exploitation (IOSB)

76131 Karlsruhe, Germany

{juergen.beyerer, kristian.kroschel}@iosb.fraunhofer.de

Abstract—Many papers on pattern recognition have

been published in the last decades but character recogni-

tion is still part of current research. However, one main

topic are classifiers that can be easily augmented by

new training data or even new classes. Furthermore, the

classifiers have to have a certain robustness with respect

to noise, i.e., the recognition rate must not be signifi-

cantly affected by the presence of noise in the character

images. For this reason a new classifier approach is

introduced, which is based on trellis diagrams and thus

similar to a Viterbi decoder known from communica-

tion systems. The training as well as the classification

procedure are discussed in detail. Additionally, to show

the competitiveness the performance is compared with

already existing classifiers on a character dataset with

and without noise.

Keywords—character recognition, trellis diagram, Viterbi
algorithm

I. INTRODUCTION

In recent decades many classifiers have been intro-

duced in pattern and character recognition. Basically,

there are four common methods used for character

recognition. Those are statistical methods, artificial neu-

ral networks, support vector machines, and ensemble

methods where multiple weak learners are combined to

one powerful classifier. All of them have been investi-

gated in detail and the pros and cons are well known.

A detailed overview of the advantages of the classifiers

mentioned and the still remaining problems can be found

in [1].

Even if many different classification methods are

already known we are interested in a classifier that has

the following properties. The classifier must be easily

trainable. That means augmentation of the classifier by

a new class or new training data should be easily pos-

sible without retraining with the old and the new data.

Additionally, it is required that the classifier is robust

to noise and little distortions contained in the character

images. Furthermore, a fast running implementation of

the classifier is very important as well. In this paper

the main focus is on isolated printed characters since

the classification task is to classify numbers printed on

different materials in different sizes and fonts. Hence, a

classifier with a good generalization ability with respect

to different fonts and font sizes is needed. Furthermore,

the different materials the characters are printed on cause

errors, which can be interpreted as noise in the character

images. These are just a few reasons why we want

to introduce a new classifier that can cope all these

requirements.

The idea of the classifier is based on signal de-

tection used in many communication systems, where

the received signal is determined by evaluating a trellis

diagram. In this approach the models are built of trellis

diagrams, which is the main purpose why the Viterbi

algorithm is used for the evaluation of the character

models. The evaluation consists of determining the

“shortest” path through the trellis diagram of every

model. The classification decision is finally taken for

the class with the lowest cost. Moreover, as the Viterbi

algorithm is well known from communication systems

many developments have already been published, which

can be simply applied to the classifier introduced here.

For example, there are many parallel implementations

of the Viterbi algorithm that make classification faster.

Mostly, the Viterbi algorithm is currently used for word

recognition. The words are modeled by hidden Markov

models, which are evaluated with the Viterbi algorithm

to obtain the most likely character sequence [2], [3],

[4]. In some approaches the shape of the characters

are modeled by one or two-dimensional hidden Markov

Models [5], [6] in contrast to our classifier where the

image itself is modeled. Hence, the classifier is not

constraint to character recognition but can be used for

any classification task. The classifier is based on one

model per class, where the models are similar to Markov

models but the states change with the pixel position of an

image. So the number of states changes for every pixel at

a certain position. Furthermore, weights are introduced

IWSSIP 2010 - 17th International Conference on Systems, Signals and Image Processing



that weigh the transitions of the states from one pixel

to the next pixel. In the sense of a Markov model the

weights can be interpreted as the transition probabilities.

Both, the states and the transition weights are determined

in training and mainly depend on the training data.

This paper is organized as follows. In Section II

the training procedure of the trellis based classifier is

discussed in detail. Section III introduces the function-

ality of the classifier whereas the results of different

experiments are presented in Section IV. Finally, a

conclusion is drawn and some remarks are given in

Section V.

II. TRAINING OF THE CLASSIFIER

The classifier we introduce consists of Nc models,

where Nc denotes the number of classes. Hence, in

the training procedure for every class one model has

to be built and for classification all of them have to be

evaluated. For convenience the superscript indicating the

class is neglected for the derivation of the classifier. It is

introduced in Section III-B where we discuss the entire

classifier. Before the training procedure of the trellis

based classifier is described some assumptions are made.

Let character image G ∈ B
M×N with M columns,

N rows, and gray values in B = {0, 1, . . . , 255} ⊂ N0

be also denoted as column vector g ∈ B
K of dimension

K = M ·N . Now the image can be interpreted as signal

sequence similar to a received discrete signal transmitted

over a communication channel.

The model consists of vertexes sj(k), which are

called states in the following and edges assigned with

weights wij(k), where both are determined during the

training procedure. Furthermore, the weights represent

the cost of the transition from state si(k − 1) to state

sj(k), where k denotes the pixel position of the image

in vector g. The model of a certain class can be written

as matrix

S :=
[

g1 g2 . . . gP

]T
,

which contains the P present training samples of one

class line-by-line. Moreover, the rows of matrix S can be

interpreted as the states sj(k), where the columns denote

the position k. It is possible that matrix S contains the

same gray values multiple times in a column. Since those

states have to be considered only once they are merged

to one state with the corresponding gray value, i.e.,

every possible state is contained only once in a column.

Thus, the obtained valid states are put at the beginning

of each column, where the remaining elements of the

columns are filled with −1. This is only done to keep the

matrix structure, but these parts of S are not evaluated

in classification.

A part of a model for one class is illustrated in

Figure 1, where the states are vertically and the pixel

positions are horizontally displayed. Furthermore, the

.
.
.

.
.
.

.
.
.

.
.
.

wij(k) wij(k + 1) wij(k + 2)

sj

k

Figure 1. Basic idea of a part of a model, which represents one class.

weights of the transitions are indicated by arrows. The

weights wij(k) are determined according to

wij(k) =

{

1 , for |eij(k)| > 0
∞ , else

,

where |eij(k)| denotes the number of transitions from

state si(k − 1) to sj(k) for all training samples of

one class. Hence, transitions that have not occurred in

the training data are weighted by infinity, i.e., such

transitions are not evaluated in classification.

As the procedure previously described is just for a

model of one class it has to be performed Nc times for

the discrimination of Nc classes.

One big advantage of this training method is that the

trained models can be easily augmented by new training

data. Only the nonexisting states and the transition

weights have to be added. In the case that a state already

exists only the corresponding transitions weights have

to be adapted. This means a retraining with the entire

training set is not necessary. Moreover, a new class can

be easily added as well. Just a new model for this class

has to be added to the already existing classifier model.

III. CLASSIFICATION

As for each class one model is trained it is necessary

to evaluate each model for classification, i.e., the path

of minimal cost—shortest path—has to be determined

for each model. However, the cost of the paths can be

recursively determined, which allows due to the prin-

ciple of optimality [7] to apply dynamic programming.

This is an efficient way of computing the cost of the

shortest path. As the evaluation of the trellis diagrams

is similar to signal detection in communication systems

we use the Viterbi algorithm. This meets a maximum-

likelihood detection with respect to the image vector g.

A. Viterbi Algorithm

The Viterbi algorithm is a forward dynamic program-

ming algorithm introduced by A. Viterbi [8] in 1967.

It allows the sequential determination of the shortest

path through every trellis diagram to be evaluated.

IWSSIP 2010 - 17th International Conference on Systems, Signals and Image Processing



Furthermore, it reduces the computational effort of the

evaluation of one trellis diagram from a product

O

(

K−1
∏

k=1

B(k − 1)B(k)

)

to a sum

O

(

K−1
∑

k=1

B(k − 1)B(k)

)

,

where K is the length of the image vector g and B(k)
indicates the number of states in the trellis diagram

at position k. The algorithm starts at image position

gk, k = 0 to determine the shortest path through the

trellis diagram. This is done by computing the squared

difference between gk and all given states sj(k) of

the trellis diagram at position k. This can formally be

expressed as follows

λj(k) = (gk − sj(k))
2
, k = 0, . . . ,K − 1 ,

where gk is the kth element of test vector g at position k.

The next step is the computation of the shortest distance

leading to state sj(k) at position k. For k = 0 it is just

the squared difference

Λj(0) = λj(0) .

But for k > 0 it is the minimum of the sum of the

shortest distance in state si at position k − 1 and the

weighted squared difference at position k as given by

Λj(k) = min
i

{Λi(k − 1) + wij(k)λj(k)} ,

k = 1, . . . ,K − 1 .

The recursion ends when the last pixel gk, k = K − 1
of the image is reached. Now, the shortest path can be

determined by computing the minimum over all possible

states at position K − 1 according to

Λmin(K − 1) = min
j

Λj(K − 1) . (1)

At this point the evaluation of one trellis diagram is

finished, i.e., this has to be done Nc times if Nc classes

have to be discriminated. The entire classification task

of all Nc classes is discussed in the next section.

Further information concerning dynamic program-

ming can be found in [7]. For more detailed information

about the Viterbi algorithm and maximum-likelihood

detection see [8], [9], [10], [11].

B. The Classifier

In the previous section we described the Viterbi

algorithm which is used to determine the shortest path

through the trellis diagram. Since the classification task

consists of Nc classes this algorithm has to be performed

Nc times. Hence, the computational effort of the entire

classifier is

O

(

Nc

K−1
∑

k=1

B(k − 1)B(k)

)

.

.
.
.

g

Λ
(1)
min(K − 1)

Λ
(2)
min(K − 1)

Λ
(Nc)
min (K − 1)

argmin
ω ω̂

Figure 2. Block diagram of the entire classifier that discriminates
between Nc classes.

After the shortest paths of all class models have been

determined according to Equation (1) the winning class

ω̂ is given by the minimum over all Nc shortest paths

ω̂ = argmin
ω

Λ
(ω)
min(K − 1) ,

where superscript ω indicates the class. The superscript

has been neglected for convenience of the derivation

of the training and classification procedure. The block

diagram of the entire classifier for Nc classes is given

in Figure 2.

IV. EXPERIMENTS

This section shows how the character dataset was

created and the experiments with the trellis based classi-

fier are performed on this dataset. Furthermore, the char-

acter dataset was affected by additive noise of different

levels to show the performance of the classifier, which

is compared with k-nearest neighbors (NN) classifiers,

linear discriminant analysis (LDA), linear discriminant

analysis using a naive Bayes approach (LDA-NB).

A. Character Image Dataset

The character database was created by printing num-

bers from 0 to 9 in twelve different fonts, three different

sizes, and different styles to make the classifier more

robust to changes in the character images. The printed

pages were afterwards captured with an industrial cam-

era and the single characters were separated and scaled

to [24× 24] pixel images to get a consistent size of all

characters. The character dataset was randomly divided

into a training set with 4556 samples, and one test set

with 2000 samples, respectively. Thus, the test set is not

a subset of the training data. In both datasets all classes

are almost equally distributed.

B. Classification Results

In this section the classification results are shown

and compared to the results of k-NN classifiers, and both

LDA approaches. The trellis based classifier is trained as

explained in Section II with the training dataset of 4556

samples. Due to the 10 classes in the training dataset

the training results in 10 models, where every model

consists of approximately 85 states per pixel. The states

IWSSIP 2010 - 17th International Conference on Systems, Signals and Image Processing



replacements

Original σ = 25.5 σ = 44.2

Figure 3. Image of number 5—original and affected by additive zero
mean white Gaussian noise with different standard deviations.

Table I
ERROR RATES (%) OF THE TRELLIS BASED CLASSIFIER (TBC)

COMPARED TO LDA, LDA-NB, AND k-NN CLASSIFIERS.

Classifier σ = 0 σ = 25.5 σ = 44.2

TBC 0.05 0.15 0.25

LDA 0.05 34.6 60.1

LDA-NB 1.4 1.5 1.55

1-NN 0.1 0.1 0.1

5-NN 0.3 0.3 0.25

10-NN 0.25 0.2 0.3

of one model are connected by approximately 2 · 105

weights on average.

The classification performance is determined on the

test set with 2000 samples on which the trellis based

classifier only one character classifies wrongly. More-

over, the same task is performed with a 1-NN classifier,

5-NN classifier, and 10-NN classifier. The error rates are

0.1%, 0.3%, and 0.25%, respectively. Furthermore, the

test set is classified by the LDA with an error rate of

0.05%, and the LDA-NB with an error rate of 1.4%.

Since we want to show how powerful the trellis based

classifier on noisy data is, white Gaussian noise is added

to the test dataset. First, zero mean white Gaussian

noise with a standard deviation σ = 25.5 is added to

the character images of the test set. The trellis based

classifier shows an error rate of 0.15%, which is close

to the best result of the 1-NN with an error rate of 0.1%.

The 5-NN, and 10-NN are slightly worse with the error

rates 0.3%, and 0.2%, respectively. The LDA result with

an error rate over 30% is useless but the result of the

LDA-NB remains with 1.5% almost constant compared

to the result with the original test dataset. For the second

experiment the standard deviation is increased to σ =
44.2. The experiment on this dataset shows that the error

rate of the trellis based classifier increases just a little

to 0.25% though the error rates of the NN classifiers,

and the LDA-NB are remaining almost constant. The

LDA again shows the worst result with an error rate of

60.1%. All results of the classifiers previously described

can be found summarized in Table I. Furthermore, one

example image of one number with and without noise

is illustrated in Figure 3.

C. Discussion

It can be concluded that the training of the trellis

based classifier is very simple. This makes a classifier

augmentation with new training data or further classes

quite easy, i.e., no retraining with the entire training

data is necessary. One main drawback is that a lot

of states and transition weights have to be stored and

processed in classification. However, classification speed

is comparable to NN classifiers or even slightly faster.

Furthermore, it has been shown that the results of the

trellis based classifier are close or even better than NN

classifiers. Only on very noisy images the classification

rate slightly decreases as expected.

V. CONCLUSION

A new kind of classifier for character recognition

that is based on trellis diagrams has been introduced. We

have discussed the training and classification procedure

in detail. The classifier basically works like the Viterbi

detector known from communication systems, where it

is used for maximum-likelihood detection of received

signals. The performance of the classifier has been

demonstrated on noiseless and noisy character images;

it is competitive to standard classifiers. Part of future

work will be the adaptive determination of the transition

weights in the trellis diagrams, since we assume that

the classification gets more robust. To speed up classi-

fication, a further investigation will be the reduction of

states in the trellis diagrams without losing significant

classification performance.

REFERENCES

[1] C.-L. Liu and H. Fujisawa, “Classification and learning methods
for character recognition: advances and remaining problems,” in
Machine Learning in Document Analysis and Recognition, ser.
Studies in Computational Intelligence, vol. 90/2008, 2008, pp.
131–161.

[2] Y. Kessentini, T. Paquet, and A. B. Hamadou, “Off-line hand-
written word recognition using multi-stream hidden Markov
models,” Pattern Recognition Letters, vol. 31, no. 1, pp. 60–
70, 2010.

[3] F. Einsele, R. Ingold, and J. Hennebert, “A language-
independent, open-vocabulary system based on HMMs for
recognition of ultra low resolution words,” in SAC ’08: Pro-

ceedings of the 2008 ACM symposium on Applied computing.
New York, NY, USA: ACM, 2008, pp. 429–433.

[4] Y.-H. Tseng and H.-J. Lee, “Recognition-based handwritten
Chinese character segmentation using a probabilistic Viterbi
algorithm,” Pattern Recognition Letters, vol. 20, no. 8, pp. 791–
806, 1999.

[5] C.-C. Hsieh and H.-J. Lee, “A probabilistic stroke-based Viterbi
algorithm for handwritten Chinese characters recognition,” in
Proc. th IAPR International Conference on Pattern Recognition

Vol.II. Conference B: Pattern Recognition Methodology and

Systems, 1992, pp. 191–194.

[6] O. E. Agazzi and S. shiaw Kuo, “Hidden markov model based
optical character recognition in the presence of deterministic
transformations,” Pattern Recognition, vol. 26, no. 12, pp.
1813–1826, 1993.

[7] D. P. Bertsekas, Dynamic Programming and Optimal Control,
3rd ed. Belmont, Mass.: Athena Scientific, 2005, vol. 1.

[8] A. J. Viterbi, “Error bounds for convolutional codes and an
asymptotically optimum decoding algorithm,” IEEE Transac-

tions on Information Theory, vol. 13, no. 2, pp. 260–269, 1967.

[9] G. D. Forney, “Maximum-likelihood sequence estimation of
digital sequences in the presence of intersymbol interference,”
IEEE Trans. Inf. Theory, vol. 18, no. 3, pp. 363–378, 1972.

[10] ——, “The Viterbi algorithm,” Proceedings of the IEEE,
vol. 61, no. 3, pp. 268–278, 1973.

[11] T. K. Moon and W. C. Stirling, Mathematical Methods and

Algorithms for Signal Processing. Upper Saddle River, NJ:
Prentice Hall, 2000.

IWSSIP 2010 - 17th International Conference on Systems, Signals and Image Processing


	Introduction
	Training of the Classifier
	Classification
	Viterbi Algorithm
	The Classifier

	Experiments
	Character Image Dataset
	Classification Results
	Discussion

	Conclusion
	References

