
IWSSIP 2010 - 17th International Conference on Systems, Signals and Image Processing 

300 

 

A platform for multi-language component-based 

software development 

 

 

Carlos Edmilson da Silva Maia 

Laboratório de Computação Aplicada 

Universidade Federal de Santa Maria 

Santa Maria, RS, Brazil 

edmilsonmaia@gmail.com 

 

Marcos Cordeiro d’Ornellas 

Laboratório de Computação Aplicada 

Universidade Federal de Santa Maria 

Santa Maria, RS, Brazil 

ornellas@inf.ufsm.br

 

Abstract— Creation and usage of modules with specific 

functionalities have been appearing in many stages of 

software development. The goal is that the end product 

turns out to be easier to maintain and that the provided 

functionality is easily reused in further software 

projects. Many times those functionalities are more 

easily or quickly implemented with different 

programming languages that might prove more adequate 

for the problems at hand. The goal of this work is to 

offer programmers a platform that allows for the use of 

several different scripting languages in a simple and 

accessible way. 

Keywords-component-based software development;software 

engineering;design patterns. 

I.  INTRODUCTION 

The use of modules and creation of modular systems 
is becoming more common within software 
development. Such components bring several advantages 
to the process, including reduction of the initial 
development time, lower costs for individual 
components, higher quality and easier and more 
manageable maintenance [7]. Component-based 
software development is generally recognized as crucial 
to development of dependable software systems [8][9]. 
When developing software this way, it might become 
easier to reuse code that was originally developed for 
other projects while standing useful for solving current 
problems. 

According to this software development 
methodology, it would be handy if the programmer is 
able to write the modules included in the system using a 
set of different languages. Among the benefits of such 
improvement we can highlight: 

• The functionality of a given module might be 
more easily implemented with a specific 
programming language; 

• The programmers available for development 
might be limited to of have more experience 
with certain languages; 

• It might be preferable to reuse code or to use 
libraries written in a specific language; 

• It might be desirable to develop a prototype of 
the module before implementing the final 
version, with this prototype being written in a 
language that performs worse but offers a 
shorter development time. 

This work resulted in a platform that allows for the 
development of a component-oriented system using 
independent modules written in different scripting 
languages. 

II. TECHNOLOGY 

The platform, originally development to facilitate the 
quick prototyping of games, allows for communication, 
done through function calls and event dispatching, 
between modules written in Java and any scripting 
language supported by (or that has support for it written 
in accordance to) the Java Specification Request 223 
(JSR223), Scripting for the Java Platform. JSR223 
provides several new features in the usage of scripting 
languages, allowing the loading and execution of script, 
access to Java objects from those scripts, passing of 
arguments from Java to the scripts and access of script 
objects from Java [5]. The usage of scripting languages 
like Python, Perl, Ruby and Groovy usually allows a 
higher abstraction level than static languages like C and 
Java, facilitating the use of their features, expediting, for 
the programmer, the usage of pre-existing components 
and functionality [4][5]. 

The choice for Java has been made due to the fact 
that it has a good flexibility and consistency in the task 
of dealing with scripting languages and dynamic class 
loading. In addition to that, the synergy between the Java 
platform and scripting languages provides an 
environment in which developers and users can 
collaborate to create more dynamic and useful 
applications [5]. It is also worth noting that Java is a 
language that was created for the purpose of being a 
object-oriented programming language, and the use of 
reusable software components is considered to be a 
natural extension of the object-oriented paradigm [3][6]. 
Other characteristics of the Java language include static 
typing, C/C++ derived syntax and compiling to a 
intermediate code that can be executed under any 



IWSSIP 2010 - 17th International Conference on Systems, Signals and Image Processing 

301 

 

platform, as long as the Java Virtual Machine is 
installed. 

With the discussion upon technologies and 
programming languages set up on a stable stage, the 
research moved its focus on the matter of which 
technology might be used to manage and allow for the 
communication between the modules. One of the most 
prominent ways of using modules with Java is found in 
the OSGi platform, which is a service platform for the 
creation of service-oriented modular programs with the 
Java language. It is a platform composed of four layers – 
the security layer, the modularization layer, the lifecycle 
layer and the service layer – that was created to offer to 
the modularization problem in Java [1]. The main 
problem with OSGi is exactly the abundance of services, 
interfaces and layers that are made available. Even 
though they are very useful for large projects like 
Eclipse, they will result in an unnecessary complexity to 
the platform. 

During the development process, we might observed 
that the OSGi was the best option available till the Java 
1.6. By using that version of Java, it became much more 
viable and simple to use the functionality provided by 
Java’s Service Loader API, since this API was reviewed 
and improved in this new version. This API allows for a 
simple management of classes – modules – that can be 
dynamically loaded and used during runtime. It was 
noted that this API offers enough functionality for the 
platform’s needs without adding the inherited 
complexity of the OSGi platform, which would result in 
an additional barrier for development and usage of the 
final system. 

Based on those conclusions, the module manager, 
which would be the core of the system, was developed 
using the ServiceLoader functionality to load modules 
written in Java, allowing that each module has its most 
adequate implementation to be used [2].The 
functionality for loading modules written in scripting 
languages was developed specifically for the platform. 
At the end, the system offered an abstraction level that 
allows for the programmer to use different modules 
without noticing any difference between Java modules or 
modules developed in scripting languages. There is a 
single interface that is used by modules of all languages 
to access functionality present in other components of 
the system. 

III. IMPLEMENTATION 

The initial approach was the creation of well-defined 
interfaces that would be implemented by the modules. 
This implied, however, that the functionality that would 
be implemented on a system written on this platform 
would have to be statically defined beforehand. 
Whenever a programmer needed to add new 
functionality, he would need to add new interfaces to the 
platform so other modules could access it. Those 
interfaces would invariably be implemented in Java to be 
either included in the platform’s code or to be 
dynamically loaded, when their features would finally be 
accessible to other modules. 

The problems of updating and implementing new 
features in existing modules have to be managed. Every 

time a module has to offer a new method to the rest of 
the system or to change the signature of an existing 
method, the programmer needs to include or update that 
functionality in the module's interface. Components that 
use that module need to be rebuilt in order to be 
compatible with the new version of the platform. The 
implementation has to take into account the usage and 
integration of different scripting languages with Java. 
Therefore, this integration needs to be clear to the 
programmer. 

It is necessary to allow for the programmer to have 
the mentioned limitations alleviated or removed in such 
a way that allows the applications to be easily extended 
and for the communication between modules to be as 
straightforward as possible (from the programmer's point 
of view). To achieve this goal, two communication 
systems were defined and adopted: event dispatching 
and method calling. These methods were tailored for the 
platform in order to achieve the goals of the project. 

The event dispatching present in the platform is quite 
simple: modules can register their interest on being 
notified by certain events (which includes listening to 
categories of events or even all events generated in the 
system) and can also dispatch their own events to the rest 
of the system. All modules that requested to be notified 
of the event receive information regarding it from the 
platform when it is dispatched. The event includes its 
name and an optional arguments list of variable size. 
This list works like an arguments list of a method call. 

The direct method calls, however, are offered up by 
the modules, which are allowed to register them in the 
platform so other components can call them directly. 
When one of those calls is made, the platform will 
forward the call, including its argument list, to the 
providing module, and will return the method’s results to 
the caller. The platform, however, does not generate fatal 
errors if the methods invoked in the system do not exist. 
This is done so the programmer is allowed to call 
methods that have not been implemented yet or that are 
implemented in a module that is not available at runtime. 

The platform deals with all needs of argument 
conversion of basic types between modules of different 
languages, both for event arguments and for method’s 
arguments and return values. The event listening 
registration and method offering made by the modules is 
done through the usage of methods of the platform 
specific for this task. In the case of modules 
implemented in Java, it is also possible to do such 
registrations by using Java Annotations. In case of Java 
modules, the platform also provides automatic 
functionality to dynamically load libraries made 
available in Java Archives (JARs) and the usage of 
functionality provided by native functions through the 
use of the Java Native Interface (JNI). The files relevant 
for both cases can be kept inside the module’s directory, 
together with any additional assets used by it, in a way 
that it is easier to maintain isolation and portability of the 
components.  

It can be also noted that even though the platform 
only allows for direct usage of Java and scripting 
languages, it is also possible to use libraries written in 
compiled languages such as C/C++ and assembly by 



IWSSIP 2010 - 17th International Conference on Systems, Signals and Image Processing 

302 

 

usage of the aforementioned JNI support. The 
programmer that whishes to do so will need to write a 
wrapper module in Java or to look for a library written in 
Java that already does so. 

Fig. 1 shows what the directory structure looks like 
for an application implemented using the platform. There 
is a directory called “jsr223.lib” that stores the Java 
libraries required for handling scripting languages. The 
“modules” directory has a folder for each module present 
in the application, each with his “lib” and “jni” 
directories (for Java libraries and for Java Native 
Interface libraries, respectively) if the module requires 
any additional libraries. Those are loaded automatically 
by the platform at runtime. 

The modules themselves are represented by a single 
JAR file (in the case of a Java module) or a file, named 
after the module’s name, with the extension related to 
the language used (in the case of a script module). Each 
module can add more files and directories under its own 
directory if needed.  

The example presented in Fig. 1 is a simple 
application that consists of a small keyboard-controlled 
colored circle drawn on the screen. The logic of the 
program is present in the SimpleGame module, which is 
written in JavaScript on a single file as shown in fig. 2. 
This module created the application window, handles 
user input and updates the screen by using functionality 
provided by other modules. An “assets” directory can 
also be found inside the module’s directory; it contains 
the texture for the circle. The creation of the assets 
directory to hold texture files was arbitrarily decided by 
the module creator; besides the initial script or JAR file 
(mandatory) and the “jni” and “lib” folders (optional), all 
the other resources the programmer needs can be 
organized inside the module’s directory as he sees fit. 

 

 

Figure 1.  Directory structure of a sample application 

 

Figure 2.  SimpleGame.js 

The Simple2D module is a module written in Java 
that uses the Java OpenGL (JOGL) library to draw two-
dimensional textures on the screen. The JOGL library 
files are placed in the “lib” directory, while the native 
libraries (“.dll”, “.so” and “.osx” files for the Windows, 
Linux and Mac OS X operating systems, respectively) 
are placed in the “jni” directory. The SimpleInput 
module is also written in Java and follows a similar 
pattern as the Simple2D module, using the JInput library 
to handle input from the user. 

The last module needed for this application is the 
Timer module. It is also written in Java and the 
SimpleGame module uses it to update the application 
logic as time passes. 

It is important to notice that each module is isolated 
inside its own folder; any module can be added or 
removed by moving its directory into the modules 
directory or out of it, respectively. Since the platform 
intentionally generates no fatal errors if inexistent 
methods are called, changes caused by addition of 
removal of modules in the system are noticed as soon as 
the platform is restarted with no need to change any of 
the module’s code. In the case of the example 
application, for instance, if we removed the Timer 
module then the application would stay frozen in the 
same initial state. If we removed the SimpleInput 
module, the application would work as usual but ignore 
player input. If we removed the Simple2D module, the 
input would be correctly processed but the user would 
have no visual feedback, since no application window 
would even be created. Finally, if we removed the 
SimpleGame module, all the others module would be 
loaded and the platform would enter an idle state, since 
no active module would do any actions like create a 
window and update the logic of the application.  

var texture = Module.getDirectory()+"/assets/circle.png"; 

var x = 0; var y = 0; var speed = 1.5; 

  

function onLoad() { 

    // system.init is generated by the ModuleManager after 

    // all modules have been loaded 

    Module.addEventListener("system.init", "init"); 

    // timer.fixed is generated a hundred times per second 

    // by the Timer module 

    Module.addEventListener("timer.fixed", "update"); 

} 

 

function init(event) { 

    // creating a window using a method provided by the 

    // Simple2D module 

    Module.doMethod("2d.doWindow", 800, 600, "My Game"); 

} 

 

function update(event) { 

    // moving the texture on the screen based on the data 

    // obtained from the Input module 

    if(Module.doMethod("input.isPressed", "left")==true) 

x -= speed; 

    if(Module.doMethod("input.isPressed", "right")==true) 

x += speed; 

    if(Module.doMethod("input.isPressed", "up")==true) 

y -= speed; 

    if(Module.doMethod("input.isPressed", "down")==true) 

y += speed; 

  

    if(x < 0) x = 0; if(x > 800) x = 800; 

    if(y < 0) y = 0; if(y > 600) y = 600; 

 

    // drawing the texture on the screen using methods 

    // provided by the Simple2D module 

    Module.doMethod("2d.begin"); 

    Module.doMethod("2d.draw", texture, x, y); 

    Module.doMethod("2d.end"); 

} 



IWSSIP 2010 - 17th International Conference on Systems, Signals and Image Processing 

303 

 

 

Figure 3.  General overview of the platform structure 

Fig. 3 shows a general overview of how the platform 
handles modules. The module manager and the interface 
modules are part of the system and are written in Java. 
The interface modules are created and handled 
automatically by the platform as needed during runtime 
to manage modules written in scripting languages. Those 
components are responsible for handling argument 
translation, method forwarding and event dispatching 
related to the script module they manage. The interface 
modules extend the same functionality as the Java 
modules; this allows the system to provide the same 
access to both kinds of components with no difference. 

IV. RESULTS 

To create a new module using a scripting language, 
the programmer only needs to create a directory for the 
component containing a file, written in the chosen 
language, with a single initialization method. The 
integration of the newly-written module to the rest of the 
system is done automatically by the platform during 
runtime, when it finds out which modules are available 
to load and initialize. 

There are some additional tasks that need to be 
performed to implement a new module in Java, such as 
including the platform’s libraries, extending a specific 
interface and including meta-information for the 
ServiceLoader. Besides those additional tasks, however, 
the integration to the rest of the system has no further 
differences from a module written in a scripting 
language. 

Modules can be included and removed from the 
target system simply by handling their directories 
accordingly, as any module found in the modules path is 
automatically loaded by the platform on the next 
execution. All that is needed to get the system running is 
to start the JAR that serves as a basis for the platform. 
The initialization dispatches events that allow for a given 
module to perform the initial tasks of the program by 
using functionality provided by other components. As a 
result, the programmer that wishes to write a program 
that runs over this platform should select the modules he 
needs (or develop them) and write a special module that 
acts as the main application itself. The platform makes 

no distinction between this specific module and the 
others.  

With regards to performance, this system adds a 
noticeable overhead to the final software, reducing yield 
by 10% to 15% in relation to the same application 
written in a single language without the need for a 
central component to translate the method calls. With 
addition to that, several serious performance problems 
related to garbage collection were noticed during 
development. It was later found that in applications with 
continuous execution, like games, where you have 
repeated and frequent method calls every second, the 
allocation and deallocation of memory was done 
constantly by the part of the system that forwards 
method calls to scripting languages. This caused the Java 
Virtual Machine to trigger its garbage collection routines 
more frequently, generating pauses and delays during 
execution. In the case of games, this resulted and 
frequent pauses in the graphics processing. This problem 
was solved by configuring Java to use the low 
interruption concurrent garbage collector (Concurrent 
Mark Sweep Garbage Collector, CMS) and the Parallel 
Young Generation collector for the tenured generation 
and young generation garbage collections, respectively. 

V. CONCLUSION 

The developed platform proved to be good enough in 
accordance with the original goals that were set for the 
project. The creation of new modules has the simplicity 
expected by the original project. 

This work promoted the idea of quick prototyping 
and systems development, providing functionality for 
easier and more maintainable software development. It 
should be pointed that performance is not a primary 
concern and its impact on the final system may be 
ignored in face of the features in the platform. 

ACKNOWLEDGMENT 

The authors would like to thank the Laboratório de 
Computação Aplicada (LaCA) of Universidade Federal 
de Santa Maria (UFSM) for the provided infrastructure. 

REFERENCES 

[1] D. Chappell and K. Kand, "Universal middleware: what's 
happening with OSGi and why you should care," unpublished, 
2009. 

[2] M. Fowler, "Inversion of control containers and the dependency 
injection pattern, " unpublished, 2004. 

[3] J. Hopkins, "Component primer," Communications of the ACM, 
2000. 

[4] J. K. Ousterhout, "Scripting: higher level programming for the 
21st century," IEEE Computer, 1997. 

[5] J. O'Conner, "Scripting for the java platform," unpublished, 
2006. 

[6] C. Szyperski, "Component software: beyond object-oriented 
programming,” Addison Wesley Longman Ltd, 1998. 

[7] P. Vitharana, "Risks and challenges of component-based 
software development," Communications of the ACM, 2003. 

[8] G. Blair, T. Coupaye and J. Stefani, “Component-based 
architecture: the fractal initiative,” Annals of 
Telecommunications, 2009. 

[9] L. Bass, P. Clements and R. Kazman, “Software architecture in 
practice,” SEI Series in Software Engineering 2nd ed., 2003. 

 


