About the feasibility of use of Hurst coefficient in thermal images for early diagnosis of breast diseases

R. Carvalho Serrano , Aura Conci, M. Zamith – IC/UFF e Rita de Cássia Fernandes de Lima – DEM/UFPE

Universidade Federal de Pernambuco

vff Universidade Federal Fluminense

Breast cancer

- Worldwide, breast cancer comprises 10.4% of all cancer incidence among women.
- Breast cancer is commonly diagnosed using a "triple test": clinical breast examination, mammography, and fine needle aspiration cytology.
- In NE of Brazil each year younger women (< 40) present beast cancers

30

°C

Trefl=23 Tatm=24 Dst=0.4 FOV 23

09/02/06 18:20:53 -10 - +55 e=1.00

Trefl=23 Tatm=24 Dst=0.4 FOV 23

09/02/06 14:56:06 -10 - +55 e=1.00

27

°C

Thermology advantages

Thermo graphic imaging + triple test = improve the correction of early diagnosis to 98%.

With no physical contact and without pain.

Image Data Base :

this web-site contains relevant information about patient and their thermo grams for **image analysis**.

http://200.20.11.171/proeng/

Image Data Base uses:

Statistic datum;

- Image Registration for public analysis, where there are at least 6 images of each patient in various position;
- Automatic diagnosis based on images;
- Reconstruction of 3D breast geometry for mathematical and computational modeling.

Main objective of this paper:

- This paper presents a study on the usability on the fractal measures for diagnoses of breast diseases in early stages.
- It is based on the fractal dimension characteristic evaluated by a C# developed algorithm for Hurst coefficient computation.

Automatic diagnosis based on image symmetric degree

It is important to note that the **temperature distribution** in healthy breast occurs in a more **symmetrical** manner

First step: image automatic segmentation

Preprocessing Steps

Second step: analyzes the symmetry of the temperature distribution

An algorithm for **Hurst coefficient** computation is used to evaluate the **Fractal Dimension** of square images parts with 6 sizes *wi*: 5,7,9,11,13 and 15 pixels.

For each NxN image this value is computed:

$$\sum (N - (2i + 3))^2$$

times , where i= 1.. 6

These are used to extract 4 features of each breast and 2 features of the subtracted image of both breast (see scheme).

A total of 36 features for each patient are considered.

These correspond to 7 groups for the classification step

Proposed Method's Steps

Second step: 72 techniques of machine learning are used for diagnose

In this step, we used the software WEKA (http://www.cs.waikato.ac.nz/ml/weka/) and techniques of machine learning, among them: Bayes Logistic Regression, Bayes Net, Complement Naive Bayes, DMNB Text, Naive Bayes, Naive Bayes Multinomial, Naive Bayes Multinomial Updateable, Naive Bayes Simple, Naive Bayes Updateable, Lib Linear, Lib SVM, Logistic, Multilayer Perceptron, RBF Network, Simple Logistic, SMO, Voted Perceptron, IB1, IBK, K Star, LWL, Ada Boost M1, Attribute Selected Classifier, Bagging, Classification Via Clustering, Classification Via Regression, Cost Sensitive Classifier, CV Parameter Selection, Dagging, Decorate, END, Ensemble Selection, Filtered Classifier, Grading, Logit Boost, Meta Cost, Multi Boost AB, Multi Class Classifier, Multi Scheme, Ordinal Class Classifier, Raced Incremental Logit Boost, Random Committee, Random Sub Space, Rotation Forest, Stacking, Stacking C, Threshold Selection Vote, Citation KNN, MI Boost, MISMO, MIW rapper, Simple MI, FLR, Hyper Pipes, VFI, ADTree, BFTree, Decision Stump, FT, J48, J48graft, LADTree, LMT, NBTree, Random Forest, Random, Tree, Rep Tree, Simple Cart, Conjunctive Rule, Decision Table, DTNB, JRip, NNge, OneR, PART, Ridor, ZeroR (Witten and Eibe, 2005). The rules had better results were: Naive Bayes, IB1, Classification Via Regression (CVR), PART.

Conclusions

Correct classification with the machine learning techniques used.

The best results (95 % correct) were obtained USING ALL FEACTURES with Naïve Bayes and Lazy IB1 classifiers.

Next works will consider other two fractal measures to be improve the diagnosis: Lacunarity and Sucolarity

Next parts of the project:

- Continuous population and publication of the databases
- Other features based on texture to evaluate the degree of symmetry
- Numerical modeling
- Experimental comparison

Thermophisical Proprieties

tissue	k (W/m°C)	ho (kg/m ³)	c (J/kg°C)	$\omega(s^{-1})$	$Q_m(W/m^3)$
Normal - (Glandular)	0,480	1080	3000	0,00018	450
Tumor Malign	0,480	1080	3500	0,009 ^(c)	5790

Numerical studies

Bidimensional

mesh	nodes	Temperatures (° C)
1	355	37,144
2	478	37,145
3	942	37,147

- Triangular grid
- 478 nodes
- 868 elements
- 1345 faces

Node size influence

BIDIMENSIONAL

Case1

Case 2

Case	radius (cm)	Temperature (° C)
1	1	36,69
2	3	37,14

BIDIMENSIONAL

Case	Position	Temperature(° C)
1	(1cm,1cm)	36,74
2	(2cm,2cm)	36,77

Numerical studies

Tridimensional

mesh	nodes	Temperature (°C)	Processing time (min)
1	17334	36,37	8
2	23670	36,41	11
3	34068	36,43	16

- Tetradric grid
- 23670 nodes
- 277317 elements
- 138023 faces

Size influence

Case	radius	Temperature (° C)
1	2,0 cm	34,65
2	1,5 cm	32,71
3	1,0 cm	31,72

Position influence

Case	Position	Temperature(° C)
1	(0 cm,0 cm, -1,5 cm)	34,16
2	(0 cm,0 cm, -2,0 cm)	32,99
3	(0 cm,0 cm, -3,0 cm)	31,72

temperature x radius

Experiments with a phantom

Thermo physic proprieties

Material	k (W/m°C)	ho (kg/m ³)	$c (J/kg^{\circ}C)$
Silicone	0,21	970	65,68
Tungsten	132	174	19250
Air	0,0242	1006,43	1,225

Experiments with a phantom

- Tetraedric
- 7855 nodes
- 42481 elements
- 85970 faces

Experiments with a phantom x numerical experiments

maximum temperature 55,1 °C

maximum temperature 53,3 °C

Experiments with a phantom x numerical experiments

maximum temperature 55,1 °C

maximum temperature 55,8 °C

Erro = 1,25%

Numerical experiments

Case	Position	maximum temperature (°C)
1	(2cm,4cm,-3cm)	55,11
2	(2cm,4cm,-4cm)	45,26
3	(2cm,4cm,-5cm)	40,46

Numerical experiments

Case	radius	Temperature(°C)
1	1,3 cm	45,26
2	1,5 cm	43,4
3	1,8 cm	43,0

Acknowledgements

CAPES - Projeto PE021/2008 PROENG.

CNPq

Orthopaupher: Prótese Mámaria Skinmama : <u>www.orthopauher.com</u>

vff Universidade Federal Fluminense