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Abstract - This work presents a new study on characterization of 

EEG signal descriptors with possibility of use in mobile devices 

for prevention of heart attack. Various techniques are compared 

in order to design a system for identification of normal or 

abnormal windows in a continuous scanning acquisition. As 

result the potentialities of the considered signal descriptors on the 

identification of normal or abnormal cardiac rhythms are 

discussed.  

Keywords - Electrocardiogram (ECG); Fast Fourier Transform 

(FFT); Wavelets; Signal Processing; Ventricular fibrillation. 

I. INTRODUCTION 

Cardiovascular diseases are the leading cause of death 
worldwide [1]. Heart attack, heart failure, abnormal heart 
rhythms (arrhythmias), and diseases as: coronary artery, heart 
muscle, congenital and heart valve are the main cardiovascular 
affections. Arrhythmias are very frequent, and pathologic 
arrhythmias are related to disorders of excite-conductor system 
of heart. There are many types of arrhythmias, but ventricular 
arrhythmias as ventricular tachycardia (VT) and ventricular 
fibrillation (VF) leads to sudden death if not detected and 
treated in time [2]. Therefore, early detection of VT and VF is 
crucial for the success of the defibrillation therapy. 

Normal ECG, as in Fig.1 and 2-top, are characterized by 60 
to 100 beats per minutes and normal P wave, PR interval, ST 
interval, QRS complex, and QT interval [3]. Such intervals are 
known also as isoelectric intervals [4], and the heart rhythm as 
Normal Sinus Rhythm (NSR). Ventricular tachycardia (VT) 
(Fig. 2-center) is a rapid heart rhythm with more than 100 beats 
per minute, with at least three irregular heartbeats in a row 
starting in the lower part of the heart (ventricles) [5]. The PR 
and ST intervals are missing in VT episodes and QT intervals 
are very short due increment of heart beats rate [6]. VT is a 
potentially threatening arrhythmia because it may lead to 
ventricular fibrillation, non systoles (or asystole, also known as 
flatline, is a state of no electrical activity from the heart and 
therefore no blood flow) and sudden death. Isoelectric intervals 
are missing in ventricular fibrillation (VF) (Fig. 2-bottom) 
which is an emergency that must be treated immediately to 
save a person’s life [5]. If this arrhythmia continues for more 
than a few seconds, it will likely degenerate further into systole 
[3]. 

 

Figure 1.  Normal waves and intervals in ECG. 

 

Figure 2.  Different ECGs from MIT-BIH. 

This paper aims to analyze a number of features in order to 
differentiate normal (NSR) and abnormal (VT and VF) heart 
rhythm transitions from ECGs. They can be used in future 
works to VF detection and discrimination between VF and VT. 
In next section we analyze briefly related works. Then signal 
descriptors are presented in Section III, and their results 
discussed in Section IV. Finally, conclusions and 
recommendations can be found in comments. 

II. RELATED WORKS 

Automatic VF detection is a difficult problem because it 
can be appears as chaotic or non-chaotic signal [7], and VT is a 
quasi-periodic signal sometimes misinterpreted as VF. A wide 
variety of methods to VF detection and discrimination between 
VF and VT have been reported [2, 4-14]. The majority of these 
methods are based on the study of signal descriptors, or 
features, using ECG signal processing. These descriptors 
quantify the amount of information present in ECG signal on 
time, frequency or time-frequency domain [4-6, 8]. Two 
features in time domain and 25 features from Pseudo Wigner-
Ville distribution in time-frequency domain were studied in 
[8]. The notion of short-time multifractality have been used to 
develop a novel approach for arrhythmia detection, assuming 
that cardiac rhythms are characterized by short-time 
generalized dimensions (STGDs) and used a fuzzy Kohonen 
neural network to classify different types of arrhythmias [9]. 
Misplacements are applied to signal based on time-delay signal 
approach for extract different features [10-12] and also 
analyzed by Empirical Mode Decomposition [5, 13, 14]. 
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III. SIMPLE SIGNAL DESCRIPTORS 

A digital ECG is a time-discrete set of electrical values 
(samples) time-ordered registered at same time interval ∆t from 
a continuous ECG signal. The time interval ∆t is the sampling 
interval. The quantity of samples by unit of time (generally one 
second) is the sampling frequency (Fs). The sampling 
frequency must be greater than twice the maximum frequency 
to be sampled [15]. Thus, a digital ECG can be seeing as a time 
series of samples. An ECG window X from one derivation is a 
subsequence X={x1, x2,….., xN} of N samples from a digital ECG. 
Statistically an ECG window can be quantitatively seen as a 
random variable. 

A. Signal Complexity and Signal Mobility 

These descriptors use the first derivative of signal samples: 
d1=xi-xi-1, and the second derivative: g1=di-di-1, to define the S0, 
S1, and S2, as in (1-left), (1-center) and (1-right) [16]: 

𝑆0 =  
 𝑥𝑖

2𝑁
𝑖=1

𝑁
,    𝑆1 =  

 𝑑𝑖
2𝑁

𝑖=1

𝑁−1
,     𝑆2 =  

 𝑔𝑖
2𝑁

𝑖=1

𝑁−2
 (1) 

Signal Complexity (SComp) (2) quantifies the signal 
energy [16]. Signal Mobility (SMob) (3) is known as first-order 
normalized variation: 

𝑆𝐶𝑜𝑚𝑝 =  𝑆2
2/𝑆1

2   −  𝑆1
2/𝑆0

2   1/2, 𝑆𝑀𝑜𝑏 = 𝑆2/𝑆1 (2)(3) 

B. Entropy and Correlation 

Entropy (E) (4) is a measure associated with the amount of 

order, disorder, or randomness in a thermodynamic system 

[17]. Signal with high randomness presents high values of 

entropy. 

𝐸 𝑋 = − 𝑝 𝑥𝑖 𝑙𝑜𝑔2 𝑝 𝑥𝑖  
𝑁

𝑖=1
 (4) 

where p(xi) is the probability of sample xi in the window X. 

Correlation (C) is a statistical measure to quantify the 

strength and direction of a linear relationship of random 

variables: being near 1 it means strong correlation between 

two variables and same direction; a 0 indicates that the 

variables are not correlates, and -1 means that variables are 

strongly correlates but in the opposite direction (i.e. variation 

of a variable causes opposite variation the other variable with 

same magnitude). Here, the Pearson’s correlation coefficient 

(5) is used to correlate two ECG windows X and Y [18]. 

𝐶 𝑋,𝑌 =
𝑁 𝑥𝑖𝑦𝑖 −  𝑥𝑖𝑦𝑖

 𝑁 𝑥𝑖
2 − ( 𝑥𝑖)
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2
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C. Fractal dimension 

Fractal dimension (FD) is a ratio to compare how the detail 

of a pattern changes concerning the scale it is measured. 

Higuchi method is an approximation to determinate FD for 

one-dimensional signal [19]. This value can be estimated as 

the tangent of the angle of the best fitted line for a set of points 

(x;y) (6). 

 𝑥; 𝑦 =  𝑙𝑜𝑔2  
1

𝑘
 ; 𝑙𝑜𝑔2 𝐿 𝑘    (6) 

This line described by (x;y) can be estimated by Least Squares 

adjustment. Sub-sequences at different resolutions k are 

sampled from X (an ECG window). Considering m=1,2,3…k, 

the average length Lm(k) of each sub-sequence at resolution k 

is determined by (7).  

 

(7) 

where 𝑚 = 1,… , 𝑘. The space filled of an ECG with NSR is 

less than to a problematic ECG and, consequently, its FD is 

smaller [19]. 

D. Root Mean Square and Short Time Average Energy 

The Short Time Average Energy (STAE) (8) quantifies the 

signal energy (high values contribute much more to it). The 

root mean square (RMS) (9) is a measure of the energy 

contained in the signal that is independent of the sampled. 

𝑆𝑇𝐸 𝑋 =   𝑥𝑖
2

𝑖 ,  𝑅𝑀𝑆 𝑋 =  
1
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2
𝑖  
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 (8)(9) 

The RMS over time of a periodic function is equal to the 

RMS of one period of this function. The RMS value of a 

signal can be approximated by taking the RMS of a sequence 

of equally spaced samples. Random signals as VF have more 

energy than periodic signals as RSN. See that equation (9) can 

be derived from (8). 

E. Zero Crossing Rate 

Zero Crossing Rate (ZCR) (10) is a measure to determinate 

the number of times the signal changes from positive to 

negative values and vice versa. VF and VT episodes are 

characterized by higher rate of zero-crossing than other 

arrhythmias due the high randomness. 

𝑍𝐶𝑅 𝑋 =
1

𝑁 − 1
  𝑠𝑖𝑔𝑛 𝑥𝑖 − 𝑠𝑖𝑔𝑛 𝑥𝑖−1  

𝑁−1

𝑖=1

 (10) 

Where 𝑠𝑖𝑔𝑛 𝑥𝑖 = 1 if and only if xi ≥ 0, and 𝑠𝑖𝑔𝑛 𝑥𝑖 = 0 if 

and only if xi <0.  

F. Discrete cosine transform 

Discrete cosine transform (DCT) allows a hierarchy in the 

value of information. The first coefficient is called DC and 

other coefficients are the AC. DC coefficient concentrates the 

majority part of signal energy or information [23]. 

𝑋  𝑘 = 𝑎[𝑘]  𝑋[𝑛] cos(
(2𝑛 + 1)𝜋𝑘

2𝑁
)

𝑁−1

𝑛=0

 (11) 

The Inverse DCT (12) (IDCT) is used to obtain the original 

signal values from all DC and AC coefficients [23], 

𝑋 𝑛 =   𝑎 𝑘 𝑋 [𝑘] cos(
(2𝑛 + 1)𝜋𝑘

2𝑁
)

𝑁−1

𝑘=0

 (12) 

where 𝑎 𝑘 =  1/𝑁 1/2  to k=0 and 𝑎 𝑘 =  2/𝑁 1/2  to 

k=1,...,N-1, in both equations (11, 12). Here, two descriptors 

from DCT component are used to characterize ECG signals: 

the energy of the signal (13) and the maximum absolute value 

of the DCT components, MaxCV (14): 

𝐸 𝑋 =   𝑋[𝑘] 2

𝑘

 (13) 

MaxCV X = 𝑚𝑎𝑥𝑘=1,…,𝑁−1  𝑋  𝑘    (14) 

G. Fourier transform 

Discrete Fourier transforms (DFT) is used to transform 

signals from time domain (analysis) to frequency domain (15), 

and vice versa (synthesis) (16).  
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(15)(16) 

for k=0, 1, 2, …, N-1 and  n=0, 1, 2, …, N-1, respectively. 

Here, the sum of absolute values of the complex component 

obtained with Fast Fourier Transform algorithm is used as 

signal descriptor [23].  

H. Wavelet transform 

The Wavelet transform (17) can provides information 

about a signal in time and frequency together at once [20].  

Ψ𝑎 ,𝑏 𝑡 =  
1

 𝑎
Ψ 

𝑡 − 𝑏

𝑎
  (17) 

where  𝑎 = 2𝑗 , 𝑏 = 𝑘2𝑗 ,  𝑗, 𝑘  𝜖 𝑍2. Scale and shift are used in 

wavelet transform being associated with a use of a high-pass 

and low-pass filters bank, respectively [23]. Here the sum of 

the squares of detail coefficients from wavelet transform of an 

ECG window is used as signal descriptor. In the 

experimentations to be described in next section the Haar, 

Daubechies, Coiflets, Symlets, Discrete Meyer, Biorthogonal, 

and ReverseBiorthogonal mother wavelet functions are used. 

IV. EXPERIMENTATIONS  

Experimentations have used MatLab R2014a running in an 
Intel Core i7 computer and annotated ECG signals from 
PhysioBank repository of Physionet [21]. Randomly 905 
episodes of VF, 392 of TV and 5502 of RSN were selected 
with 8 seconds of time-length from 3 databases [21]. Table 1 
presents details of used databases. All episodes were taken 
from channel 1 of the selected records. 

TABLE I.  PHYSIOBANK DATABASES USED 

Database N. records Channels Freq. (Hz) Total time [s] 

MITDB 48 2 360 1805.555  

CUDB 35 1 250 508.928  

VFDB 22 2 250 2100 

ECG signals are filtered as described in [22]. In order to 
evaluate the correlation it is necessary to take a time-delay of 
the window related to signal, for this 3 time delays are used 
(Correlation60, Correlation80 and Correlation100 related to 1s, 
3/4s and 3/5s delays, respectively). They have been considered 
according to what must be a normal cardiac frequency, i.e. 
from 60 to 100 beats/minutes. Fig. 3 shows samples of these, 
where the blue lines represent the original signal and in red 
there are the signals with the delays. From examining the 
signals in such organizations, it is possible to see that major 
correlation for a specific NSR-window appears when a delay of 
3/4s for a frequency (Fc) of 80 beat per minutes is considered. 
Although the graphs in Fig. 3 represent only the here related 
delays, we have experimented a number of then. To construct 
the combination of signal to compute correlations, the 
sampling frequency of a signal is added with a delay of the 
same signal. For instance, if the signal has Fs = 360 Hz, or 360 
samples per second, and if we named A and B initial and final 
samples of the original window (blue), then, for a heart rate is 
Fc=60 bpm (that is, 360 samples per second) it is possible to 
see that a delayed signal with 360 samples (delay = 1s) would 
be correlated (red line) with the original signal and 
consequently 1s would be the period of the sign. Moreover, as 

in general the averaged Fc are close to 80 bpm, i.e. a beat every 
3/4s, then in a second we would have 270 samples instead of 
360, this was observed in the computed windows, because the 
correlation values was higher for such a delay (270 samples). 
In the case of Fc=100 bpm (delay=3/5s, that is 214 samples) 
the correlation was lower. Thereafter, for Figure 3, A and B are 
the initial and final samples of the original window (in blue, 
fixed in the three graphs), the indices of the windows of the 
used delay are: (1) for Fc=60 d=1s represented by A-360 B- 
360, (2) for Fc=80 d=3/4s represented by A-270 B-270, and (3) 
for Fc=100 d=3/5s correspondent to A-214 B-214. 

 
Figure 3.  Original and delayed ECG with 1s, 3/4s and 3/5s of time-delays. 

Table II shows the mean values obtained by descriptor for 
each group of arrhythmias of interest. Although, a variety of 
sub type of the mothers wavelet are here used (Haar, 
Daubechies-2, Daubechies-4, Daubechies-8, Daubechies-12, 
Daubechies-20, Daubechies-32, Coiflets-1, Coiflets-3, Coiflets-
5, Symlets-2, Symlets-10, Symlets-20, Discrete Meyer, 
Biorthogonal-1.1, Biorthogonal-2.2, Biorthogonal-3.1, Bi-
orthogonal-3.9, Rever-se-Biorthogonal-1.1, ReverseBiortho-
gonal-2.2, Reverse-Bior-thogonal-3.1 and ReverseBiortho-
gonal-3.9) in table II, for space restrictions, only the most 
relevant of these descriptors are registered.  

The results show that using these descriptors it is possible 
to separate NSR episodes from VT and VF episodes, but do not 
VT from VF, because of the overlap and similarity between VT 
and VF cardiac rhythms. For example, for the feature Entropy 
the values of VT and VF are very closed (Fig. 4). To 
understand this, the entropy values (in y-axis) from each ECG 
window (in x-axis) are displayed in Fig. 4 as points. To 
construct this graphs, firstly we organized them showing the 
entropy of each of the 5502 episodes of NSR (red points), then 
we display to each of the 905 episodes of VF (green points), 
and finally we represent the 392 episodes of VT (blue points). 
The majority of Entropy values from NSR windows are bellow 
6 and well separated of those from VF and VT, as can be seen 
in Fig. 4. 

V.   CONCLUSIONS 

In order to achieve the conclusion of this work we have 
made a big number of experiments with the 3 used databases. 
Of course they are very dependent of these database and 
differences can be found when other databases will be used. 
Even though, most of the other works in the literature put focus 
on only one features, we have considered a big number of them 
for the ECG records employed an the three DBs. Finally, about 
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our results, it is possible to say: (1) that those descriptors based 
on frequency domain achieved higher values in VT than in VF, 
because many of the VF windows are characterized by low 
intensity values; and (2) the best time delay to be used for 
correlation is related with 100 beat per minute cardiac 
frequency.  

We recommend: (1) make experiments with all ECG 
signals in MIT-BIH databases, (2) use the same filtering 
process over all ECG episodes, (3) use the studied descriptors 
and supervised classification algorithms to classify the heart 
rhythm in real time for detection of ventricular arrhythmias.  

 
a. Entropy  for NSR (red), VF (green) and VT (blue) 

versus grouped windows. 

TABLE II.  MEAN AND STANDARD DEVIATION BY FEATURE 

Feature RSN VT VF 

Signal Complexity 0.171 0.1480  0.106 

Signal Mobility 9.687 9.454 8.087  

Entropy 6.163  7.191 7.959  

Correlation60 0.155 -0.263 0.046  

Correlation80 -0.155 -0.330 0.029  

Correlation100 0.192  0.461 0.026  

Root Mean Square 63.111 69.212 72.848  

S-Time Avg. Ener. 9591397.455 13002136.949 11769349.720 

Zero Cross. Rate 0.021 0.131 0.179 

Energy FFT 1301955.405 1426406.822 1307718.205 

Energy DCT 9591397.455 13002136.949 11769349.7204 

WT-haar 25593.715 54331.789 49110.395 

WT-db2 1018.722 1723.727 1148.823 

WT-db8 14.290779 26.168546 19.235361 

WT-db20 4.022392 16.097732 5.471690 

WTsym10 10.130987 14.141198 13.699269 

WT bior 3.1 10.301357 12.676889 8.752017 
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