## REPRESENTAÇÃO DE DADOS EM CG

MODELAGEM E ESTRUTURA DE DADOS

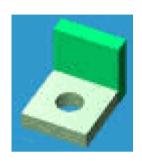
Aula 2 – UFF – 2019/2

# FORMAS DE REPRESENTAÇÃO

- Representação Aramada (Wire Frame):
- -representação ambígua com margem para várias interpretações;
- -dificuldade de realizar certas operações como a determinação de massa ou volume. e
- -não tem como garantir que o objeto desenhado seja um sólido válido,

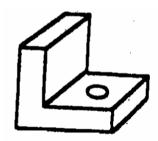


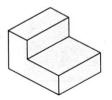
## Representação por Faces (ou Superfícies Limitantes)


- Essas superfícies são supostas fechadas e orientáveis.
- Orientáveis = significa que é possível distinguir entre dois lados da superfície, de modo que um esteja no interior e o outro no exterior do sólido.

Formula ou lei de Euler-Poincaré: V-A+F-H=2(C-G)

H= loops de faces fechadas;


C= numero de partes separadas do objeto

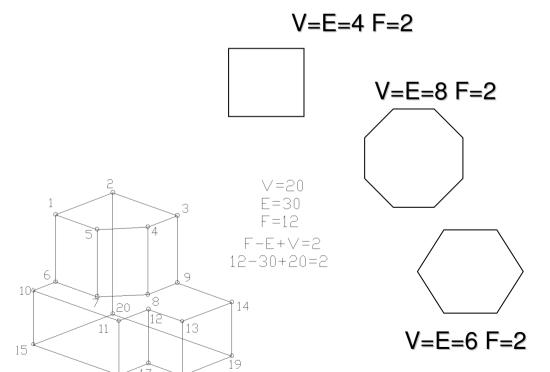

G= numero de buracos (genus)





Boundary representation
B-rep






#### Leonhard Euler

Fórmula ou lei de Euler: V-E+F=2

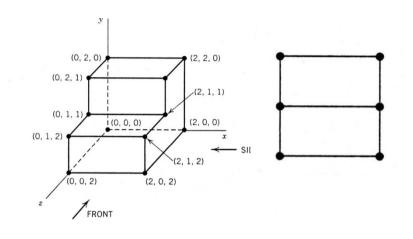


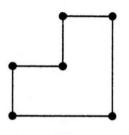
(1707-1783)

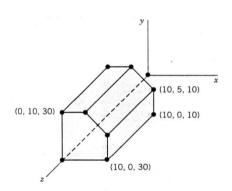


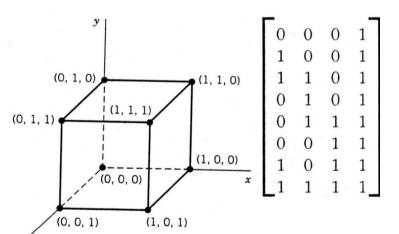


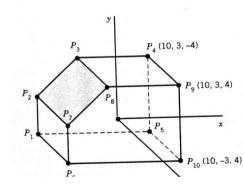



### Descrição da:


• topologia e a geometria das faces;


relações entre os elementos;


 posições dos elementos no espaço, e sua forma geométrica (semi-reta, arco de círculo, etc)

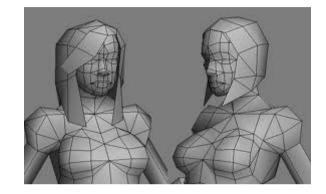

### Geometria x topologia





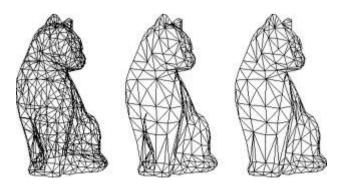







$$[P] = \begin{bmatrix} -10 & -3 & -4 & 1 \\ -10 & 1 & -4 & 1 \\ -8.5 & 3 & -4 & 1 \\ 10 & 3 & -4 & 1 \\ 10 & -3 & -4 & 1 \\ -10 & -3 & 4 & 1 \\ -10 & 1 & 4 & 1 \\ -8.5 & 3 & 4 & 1 \\ 10 & 3 & 4 & 1 \\ 10 & -3 & 4 & 1 \end{bmatrix}$$

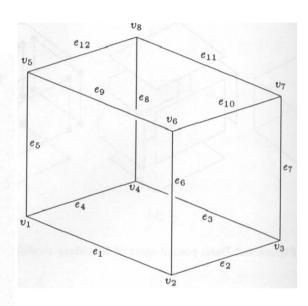
### Representação dos limites do sólido

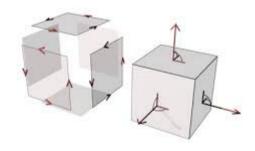

- Boundary Representation Brep
- É a forma mais usada
- Nela toda a topologia é considerada para garantir que o objeto seja realizável e continue realizável após as operações que serão realizadas nele.
- A topologia deve ser validada não só a geometria gerada (Equação de Euler)

estrutura de dados do objeto.

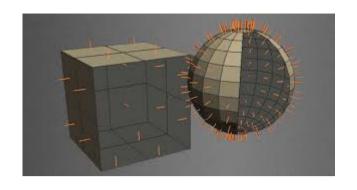


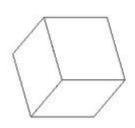
#### **Data structure**


- Polygon-based (Face list)
- Vertex-based
- Edge-based

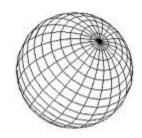



#### Estrutura de dados baseada Faces e Vértice


| vertex | coordinates       |
|--------|-------------------|
| $v_1$  | $x_1 \ y_1 \ z_1$ |
| $v_2$  | $x_2 y_2 z_2$     |
| $v_3$  | $x_3 y_3 z_3$     |
| $v_4$  | x4 y4 z4          |
| $v_5$  | $x_5 y_5 z_5$     |
| $v_6$  | $x_6 \ y_6 \ z_6$ |
| 27     | x7 y7 z7          |
| $v_8$  | x8 y8 z8          |
|        |                   |

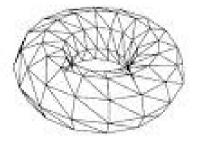

| face  | vertices |       |                       |                |
|-------|----------|-------|-----------------------|----------------|
| $f_1$ | $v_1$    | $v_2$ | $v_3$                 | $v_4$          |
| $f_2$ | $v_6$    | $v_2$ | $v_1$                 | v5             |
| $f_3$ | 27       | $v_3$ | $v_2$                 | $v_6$          |
| $f_4$ | v8       | $v_4$ | <i>v</i> <sub>3</sub> | 27             |
| $f_5$ | $v_5$    | $v_1$ | v4                    | v <sub>8</sub> |
| $f_6$ | $v_8$    | $v_7$ | $v_6$                 | $v_5$          |
|       |          |       |                       |                |

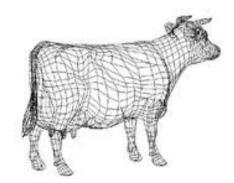



os vértices limites das faces devem ser descritos sempre no mesmo sentido horário (ou anti-horário) do exterior do objeto, para todas as faces.

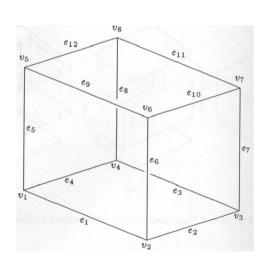







#### Estrutura de Dados Baseada em Arestas ou Lados

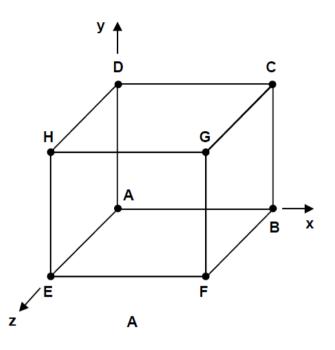

Na estrutura de dados baseada em arestas além das listas de coordenadas de vértices e definição das faces, tem-se uma lista que identifica cada aresta e seus vértices limitantes.



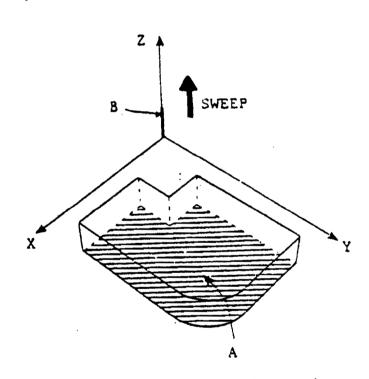


### Baseada em lados (edges)

- Lados são considerados orientados.
- Cada lado pertence a duas faces.
- Faces são consideradas orientadas, positivas se sua lista de lados apontar para fora se for no sentido horário




| edge     | vertices                      |                |                            |                                  |
|----------|-------------------------------|----------------|----------------------------|----------------------------------|
| $e_1$    | $v_1 \ v_2$                   |                |                            |                                  |
| $e_2$    | $v_2 v_3$                     | vertex         | coordinates                |                                  |
| $e_3$    | $v_3 \ v_4$                   | $v_1$          | $x_1 \ y_1 \ z_1 \qquad f$ | ace edges                        |
| $e_4$    | $v_4 \ v_1$                   | $v_2$          | $x_2 y_2 z_2$              | $f_1$ $e_1$ $e_2$ $e_3$ $e_4$    |
| $e_5$    | $v_1 v_5$                     | $v_3$          | $x_3 y_3 z_3$              | $f_2$ $e_9$ $e_6$ $e_1$ $e_5$    |
| $e_6$    | $v_2 v_6$                     | v4             | $x_4 \ y_4 \ z_4$          | $f_3 = e_{10} e_7 e_2 e_6$       |
| e7       | v3 v7                         | $v_5$          | $x_5 y_5 z_5$              | f4 e11 e8 e3 e7                  |
| $e_8$    | $v_4 \ v_8$                   | $v_6$          | $x_6 \ y_6 \ z_6$          | $f_5 e_{12} e_5 e_4 e_8$         |
| e9       | $v_5 \ v_6$                   | 27             | x7 y7 z7                   | $f_6 = e_{12} e_{11} e_{10} e_9$ |
| $e_{10}$ | v6 v7                         | v <sub>8</sub> | $x_8 y_8 z_8$              |                                  |
| $e_{11}$ | v7 v8                         |                |                            |                                  |
| $e_{12}$ | v <sub>8</sub> v <sub>5</sub> |                |                            |                                  |


| Vértices | Coordenadas |
|----------|-------------|
| А        | (0,0,0)     |
| В        | (1,0,0)     |
| С        | (1,1,0)     |
| D        | (0,1,0)     |
| Е        | (0,0,1)     |
| F        | (1,0,1)     |
| G        | (1,1,1)     |
| Н        | (0,1,1)     |

| Aresta | Vértices |
|--------|----------|
| A1     | EF       |
| A2     | FB       |
| А3     | ВА       |
| A4     | AE       |
| A5     | EH       |
| A6     | FG       |
| A7     | BC       |
| A8     | AD       |
| A9     | HG       |
| A10    | GC       |
| A11    | CD       |
| A12    | DH       |

| Faces | Arestas        |
|-------|----------------|
| F1    | A1 A2 A3 A4    |
| F2    | A9 A6 A1 A5    |
| F3    | A6 A10 A7 A2   |
| F4    | A7 A11 A8 A3   |
| F5    | A12 A5 A4 A8   |
| F6    | A9 A12 A11 A10 |



## Sweep: superfícies 2D GERAM o OBJETO 3D



Translational sweeping.

#### Referencias

- D. F. Rogers, J. A. Adams. Mathematical Elements for Computer Graphics, 2dn Ed., Mc Graw Hill, 1990
- E. Azevedo, A. Conci, Computação Gráfica: teoria e prática, Campus; Rio de Janeiro, 2003
- J.D.Foley, A.van Dam, S.K.Feiner, J.F. Hughes. Computer Graphics- Principles and Practice, Addison-Wesley, Reading, 1990.