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Abstract—This work presents the conclusions of an 

experimental study that intends to find the best procedure for 

reducing the noise of medium resolution infrared images. The 

goal is to find a good scheme for an image database suitable 

for use in developing a system to aid breast disease 

diagnostics. In particular, to use infrared images in the 

screening and postoperative follow-up in the UFF university 

hospital, and to combine this with other types of image based 

diagnoses. Seven wavelet types (Biorthogonal, Coiflets, 

Daubechies, Haar, Meyer, Reverse Biorthogonal and 

Symmlets) with various vanishing moments (such as 

Symmlets, where this number goes from 2 to 28, Daubechies 

from 1 to 45 and Coiflets 1 to 5) comprising a total of 108 

different variations of wavelet functions are compared in a 

denoising scheme to explore their difference with respect to 

image quality. Three groups of Additive White Gaussian 

Noise levels (σ = 5, 25 and 50) are used to evaluate the 

relations among the approaches to threshold the wavelet 

coefficient (hard or soft), and the image quality after 

transformation-denoising-storage-decompression. Levels of 

decomposition are investigated in a new thresholding scheme, 

where the decision about the coefficient to be eliminated 

considers all variation, aiming for the best quality of 

reconstruction. Eight images of the same type and resolution 

are used in order to find the mean, median, range and standard 

deviation of the 432 combinations for each level of noise. 

Moreover, three evaluators (Normalized Cross-Correlation, 

Signal to Noise Ratio and Root Mean Squared Error) are 

considered for recommendation of the best possible 

combination of parameters.  
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I.  INTRODUCTION  

Medical procedures have become a critical area of application, 

which makes substantial use of image processing and, usually 

employs a great amount of data, need efficient content-based 

retrieval from image database, and improvements of image 

quality. Noise is a critical problem in biomedical images. 

However, it is not more important than its efficient storage and 

retrieval in clinics, hospitals or even repositories for research 

and development of computer aided diagnostic systems. 

Discrete wavelet based analysis combines facilities for these 

three features (denoising, storage and retrieval). This explains 

the importance of denoising procedure, based on a 

thresholding function. Such a technique has been integrated 

into DICOM standard for applications in compression and 

transmission of medical images. Moreover, at the same time 

that wavelets are a very powerful tool for multi-resolution 

analysis, they also allow introduce a broad combination of 

factors that should be analyzed to check their adequacy for the 

type of noise and image being focused on. Image restoration 

after storage and transition is fundamental for the quality of 

the other stages in the image processing (like segmentation, 

classification of the findings and recognition of elements) for 

diagnostic reports. Studies showed that infrared (IR) based 

image analysis could identify breast modifications earlier than 

other methods of examination [1, 16]. However, in order to be 

efficiently used, this type of imaging must first thoroughly 

analyze. Such analysis must consider a great number of 

patients, over a number of years; maintain record and make 

comparisons with others types of diagnoses, and combine and 

integrate data to allow mining possible conclusions for a 

computed aided prognostic (CAP) system [13-16].  

Discrete wavelet transforms (DWT) have proven to be 

very effective in analyzing a very wide class of signals and 

images [6-9]. Wavelets allow a more accurate local 

description and separation of signal characteristics. DWT is a 

form that to reduces the storage area (because the coefficient 

and not the complete image, can be saved), at same time be 

used to improve the image quality, and promote content based 

retrieval of the data saved. Therefore, wavelet noise reduction 

techniques deserve to be investigated in such contexts. The 

main goal of the numerical experiments reported in this work 

is to identify the best wavelet approach to be used in a project 

of an image database on development to verify the 

possibilities of using infrared images in screening of breast 

diseases in a country with tropical climate. We have addressed 

this problem before for other types of medical imaging [5] or 

for using a reduced number of mother wavelets [12]. In this 

paper we improve the idea and the experimental study of using 

different wavelet implementations for a final conclusion about 

the best denoising methodology for digital infrared images. 

This result is currently being implemented in the project on 

the mastologic data base under development [13] for research 

on early breast cancer detection [16]. The obtained results are 

presented in graphs and tables, and used in a scheme to 

improve infrared image reconstruction. 

The next section of this work describes aspects related to 

restoration in wavelet domain. Section 3 presents the data set 

used in our experimentations. Section 4 and 5 are related to 



the results achieved with the DWT denoising techniques 

proposed for IR images. However they are separated in two 

types of texts. In section 4 we consider it in a group of images 

with a known level of noise results (to verify what is the best 

combination of factors on this specific application) while in 

section 5 real images where such a level of degradation is 

known is tested. Finally, section 6 reports the conclusions of 

this work.  

II. ON THE WAVELET DENOISING 

Discrete wavelet transforms (DWT) have attracted more and 

more interest in biomedical image noisy reduction (denoising), 

storage and retrieval [2]. Denoising of images using wavelet is 

very effective because of its ability to capture the energy of a 

signal in few coefficients at various resolutions [7-10]. For 

traditional images, the wavelet transform yields a large 

number of small coefficients and a small number of large 

coefficients. In denoising, orthogonal sets with a single-

mother wavelet function have played an important role. Due to 

merits of the localization of time-frequency characteristics and 

flexibility of choosing diverse methodologies; wavelet based 

restoration approaches have been considered for many 

applications of medical images and firmly established as a 

powerful denoising tool [2-5]. When used on images, DTW 

can be interpreted as 2D signal decomposition in a set of 

independent, spatially oriented frequency channels. The image 

in a spatial domain passes through two complementary filters 

and emerges in the frequency domain as coefficients of 

average and of details. The decomposed components could be 

assembled back into the original image domain without loss of 

information (Inverse Discrete Wavelet Transform - IDWT). 

The decomposed components could be processed before the 

image reconstruction, in order to improve the image or be used 

as a key for retrieving it in the image [6-8]. Generic denoising 

procedures using DWT involve three steps: (i) wavelet 

decomposition, (ii) threshold of coefficients related to noise in 

the wavelet domain and (iii) reconstruction by inverse wavelet 

transform into the spatial domain [9,10]. In the wavelet 

decomposition step, an image is decomposed into a sequence 

of spatial resolution images using DWT. In these, a given j 

level of decomposition can be performed resulting in 3j+1 

different frequency bands of low (L) and high (H) components 

of the original image, namely, LLj , LHj, HLj and HHj, as 

shown in Fig. 1 [7]. 

 
Fig. 1. DWT decomposition in three (j=3) levels of high and low sub bands. 

Variations of DWT are based on diverse selection of this 

level of decomposition. According to image characteristics a 

good level could be defined in order to reduce the computation 

time and the production of redundant elements. The goal of 

this decomposition is to start from a resolution oriented 

decomposition, and then to analyze the obtained signals on 

frequency sub-bands. It corresponds to a tree decomposition 

scheme, in which the result of each filtering process serves as 

input to the next. This generates a tree structure from an initial 

image, which is decomposed (in the first level j = 1) into 

coefficients of averaged information (cA1, from a low pass 

filter) and coefficients of details (cD1, from a high pass 

filtering). The detail coefficients could be in vertical, 

horizontal and diagonal directions: cD1(v), cD1(h) and 

cD1(d). These turn again into approximations and details of 

next level (j = 2), and so on (j = 3, 4,…), until a given number 

of levels of decompositions is reached [7]. The discrete 

wavelet transform is characterized by the used type of wavelet 

function (“wavelet-mother”), as well. Figure 2 shows some 

wavelet mother used in this work. 

 
Fig. 2. Some used wavelet. 

Each one of these offers a particular way of coding signals 

or images in terms of preserved energy, and reconstructed 

features. A family of functions is used recursively with pairs of 

conjugate filters (low and high pass filters). Among all 

admissible bases, a particular one is selected by choosing how 

they are decomposed by means of the conjugate filters. At each 

level four decompositions are possible, so the results have a 

quadtree structure as it is shown in Fig. 3.  
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Fig. 3. Decomposition of DWT of two levels 

Then, by combining level and wavelets types, DWT can be 

used in a lot of ways for a given image. These offer a flexible 

tool for analysis, when the coefficients of details (cD related 

with H) as well as the average coefficients (cA related to L) 

are separated in a fine or at a coarser scale (depending on j). 

Moreover, there are yet more possibilities for analysis in DWT 



scale-oriented decomposition of the frequency sub bands. 

Among them is the possibility of defining rules related to how 

some coefficient, that is less than a particular value 

(threshold), is set to zero. This is based on where the most 

relevant aspect for denoising (low or high frequency elements) 

of a given type of image is, and how the process of defining 

them at zero can be established [6].  

Adequate image compression consists of setting to zero 

values of the coefficients which are considered negligible. It 

could be done by two different kinds of methods, considering 

a suitable threshold chosen in advance. The difference 

between then is that in one the detail coefficients whose 

magnitude is larger than the threshold are kept without 

modification (hard-threshold methods), while in the other they 

are shrunk towards zero (soft-threshold methods). These are 

named Hard thresholding and Soft thresholding techniques 

[7,9]. The Hard thresholding is given by the scheme in Fig. 4, 

where δ is the threshold value. Soft thresholding consists of 

deleting some coefficients and at same time reducing the 

others in order to promote a gradual transition. Soft 

thresholding wavelet coefficients are done by the scheme in 

Fig. 5, where δ is the threshold value, and sgn( ) is the signal 

function (its value 1 when the argument is up to zero and -1 

otherwise). In both cases, the threshold value δ is critical in 

determining which coefficients will be retained or discarded. 

  
Fig. 4. Scheme of the hard threshold 

 

 
Fig. 5. Scheme for soft threshold 

 

Denoising images corrupted by an Additive White 

Gaussian Noise (AWGN) using DWT follows the same idea 

of threshold for image compression. Since the works of 

Donoho [7] and Donoho and Johnstone [8,9] on threshold 

coefficients for restoration many methods have been proposed 

and used resulting in a great number of DWT denoising 

approaches. As has being mentioned before, after the 

coefficients have been suppressed, inverse wavelet 

transformation is carried out to reconstruct the image. Hard 

thresholding is simpler, but for many types of images soft 

thresholding offers better denoising results.  

III. TECHNIQUES USED  

In this work, hard and soft thresholding are tested. Moreover, 

we present a new method for choosing the coefficients to be 

modified (specifically tailored for the quality of the 

reconstructed image), and compared it with all possible 

combination of the other options. They are represented in the 

tables, graphs and figures in Section 3, and identified by 

adequate abbreviations that intend to represent the used 

characteristics. All of the possible combinations of 

characteristics have been tested separately for eight different 

images acquired in conditions very similar to those in use for 

the breast exams and processes on similar conditions in the 

same computer environment as the wavelet process.  

The main intention of this work is to find the best 

combination among the level of decomposition, type of 

wavelet function and threshold to achieve the best result on 

denoising infrared images depending on its noise level. To 

achieve this, a series of experiments using the steps presented 

in Fig. 6 is made. In these, three known level of noise has been 

synthetically added to the set of images to be analyzed. 

Resulting in 32 images of same type separated into 4 groups 

with respect to the levels of noise (0, 5, 25 and 50). 

 

 
Fig. 6. Steps used on experiments with synthetic added noise images 

 

The thresholding method proposed is not based on a unique 

value δ for threshold, but by testing all possibilities for 

achieving better quality of the denoised image. Values of the 

threshold in a series of possibilities δ(n) are defined and 

related to each element n of this series. To consider the 

reconstructed image quality the normalized cross correlation 

(NCC) between the original and the denoised images is 

estimated. In this case when the images are more correlated 

the better is the δ.  

Then, with all others parameters defined, the best 

threshold value for a given image is found automatically by 

the system considering best quality possible for the restored 

image. Such a search is put into an admissible computational 

length of time by using discrete possibilities previously 

delimited (e.g. it is set to 256 elements for most of the 

experimentations done). That is, the discrete δ(n) is organized 

in an array where the best δ is found by a function of 

complexity O(log(n)).  

This novel approach to estimate the threshold adaptively 

is implemented using the Matlab environment and verifying 

all coefficients up to a previously defined level, j. Figure 7 

shows the relation among NCC and the thresholding index for 



the case of Biorthogonal 1.3, level 4 and hard threshold. The 

threshold value δ is obtained by associating (using the Matlab 

functions [11] it with a series of discrete possibilities δ(n), as 

it is described in the following. The main idea of this process 

is: First, use in the noise image random threshold level (n) and 

define for δ a discrete number of possibilities: δ(n). Using a 

specific value n the restoration process is done considering 

δ(n) and the reconstructed image quality by computing its 

NCC (related to the original image). The same process is 

executed for all threshold index (0, ..., 255) and the best 

threshold is archived by looking the best NCC value. As this 

process could take some time, an optimization procedure 

based on the merge sort algorithm was implemented. This 

produces results in an algorithm with computational 

complexity of order log(n), i.e O(log(n)). 

Figure 6 presents the steps used in the experiments 

performed using Matlab R2011b (Mathworks Inc.). See 

Wavelets Toolbox for definition of the best combination of the 

parameters considering the noise level [11]. These are: 

Step 1: Image acquisition and storage as raw data. When 

evaluated by the common techniques used when dealing with 

noise as a criterion, all original images are considered without 

noise. 

Step 2: Gaussian noise addition to the original images of 

Step 1. Three levels of a standard deviation value (σnoise = 5, 25 

and 50) are added. 

Step 3: This step is divided into four (4) sub-steps, in the 

first three the user defines the type of wavelet to be employed 

on the decomposition (Coifflets, Bi-orthogonal, Symmlets, 

etc.), the level of adaptive decomposition from j up to level 

j+1 and the threshold process to be applied to modify properly 

the wavelets coefficients. Then the used system selects 

automatically the coefficient threshold based on the NCC that 

produces greater correlation between the original and the 

reconstructed image.  

Step 4: Image restoration: Using the modified 

coefficients the image in the spatial domain is reconstructed 

by applying the inverse wavelet packet transform. 

Step 5: Verification or validation of the process (resulting 

from Step 4) is done by comparing the reconstruction with the 

free-of-noise original image. 

Three validation criteria are used: Normalized Cross 

Correlation (NCC), Signal to Noise Ratio (SNR), and Root 

Mean Square Error (RMSE) for comparison between the 

original and the denoised image.  

Let us stress further the novel aspects of this sketched: 

This use of a variable threshold for each image in order to 

maintain its quality; also the number of coefficients to keep is 

not fixed. This simple idea as far as we know have not bee 

used before, because its implementation is a little bit more 

complex. Differently of all others works, we do not use a fixed 

value δ for the threshold and we test all possibilities for 

achieving a better denoised image. Values of threshold in a 

series of possibilities δ(n) are defined and related to each 

element n of this series. To consider the reconstructed image 

quality the normalized cross correlation (NCC) between the 

original and the denoised images is estimated. This values 

result in a curve like figure 7 for each image, where 256 

possibilities was tested experimentally. These figures present 

an optimal point where the NCC value goes to a maximum. 

For instance, in figure 7, it corresponds to a combination of 

δ(80). Then the best threshold value for a given image is found 

considering the quality based in the NCC of the restored 

image. Such search is put into an admissible computational 

time frame by using discrete possibilities, previously defined 

(256 elements for such experimentations). That is, the discrete 

δ(n) is organized in an array where the best threshold is found 

adaptively considering all wavelet coefficients up to a 

previously defined level, j of the wavelet. Section 3 presents 

the results of these experimentations.  

 
Fig 7. Example of the concave function relating threshold index and NCC for 

the best result of the base Biorthogonal 1.3. 
 

IV. RESULTS CONSIDERING A KNOWN LEVEL OF NOISE 

GAUSSIAN NOISE (AWGN) FUNCTION. 

Adequate estimation of noise level in real images is 

challenging due to the great variation among the available 

approaches to measure it [ 6]. In order to have a “ground truth” 

for experimentations, in all images used, the noise is 

synthetically add at different degradation level. Theses levels 

correspond to the standard deviation of the noise (σ = 5, 25 e 

50) added to the original infrared images by using an Additive 

White Gaussian Noise (AWGN) function. All image used are 

acquired by a Flir SC620 camera (with sensibility of 0.08º 

Celsius) in 640x480 resolution and encoded using 8 bit per 

pixels. Figure 8(a) shows an example of one image when it 

can be considered free of noise. These images are also 

submitted to the usual noise evaluation approaches [2, 10] and 

no part of them presents measurable noise values. 

TABLE I.  USED WAVETETS 
Bior 

1.1 

Bior 

3.7 
db 1 

db 

11 

db 

21 

db 

31 
db 41 

rbio 

2.2 

rbio 

5.5 

sym 

10 

sym 

20 

Bior 

1.3 

Bior 

3.9 
db 2 

db 

12 

db 

22 

db 

32 
db 42 

rbio 

2.4 

rbio 

6.8 

sym 

11 

sym 

21 

Bior 

1.5 

Bior 

4.4 
db 3 

db 

13 

db 

23 

db 

33 
db 43 

rbio 

2.6 

sym 

2 

sym 

12 

sym 

22 

Bior 

2.2 

Bior 

5.5 
db 4 

db 

14 

db 

24 

db 

34 
db 44 

rbio 

2.8 

sym 

3 

sym 

13 

sym 

23 

Bior 

2.4 

Bior 

6.8 
db 5 

db 

15 

db 

25 

db 

35 
db 45 

rbio 

3.1 

sym 

4 

sym 

14 

sym 

24 

Bior 

2.6 

coif 

1 
db 6 

db 

16 

db 

26 

db 

36 
Dmey 

rbio 

3.3 

sym 

5 

sym 

15 

sym 

25 

Bior 

2.8 

coif 

2 
db 7 

db 

17 

db 

27 

db 

37 
Haar 

rbio 

3.5 

sym 

6 

sym 

16 

sym 

26 

Bior 

3.1 

coif 

3 
db 8 

db 

18 

db 

28 

db 

38 

rbio 

1.1 

rbio 

3.7 

sym 

7 

sym 

17 

sym 

27 

Bior 

3.3 

coif 

4 
db 9 

db 

19 

db 

29 

db 

39 

rbio 

1.3 

rbio 

3.9 

sym 

8 

sym 

18 

sym 

28 

Bior 

3.5 

coif 

5 

db 

10 

db 

20 

db 

30 

db 

40 

rbio 

1.5 

rbio 

4.4 

sym 

9 

sym 

19 
- 



Figures 8(b), (c) and (d) show the image of Fig. 8(a) after 

addition of tree noise levels: low, medium and high. In a 

similar way, a small database of 32 different images was 

created, each one with a known level of noise. Each noise 

added image is analyzed considering the steps for identification 

of the best wavelet denoising characteristics described in 

previous section (Fig. 7). A total of 108 different bases is used 

(it is important to remember here that, in fact, Haar and 

Daubechy 1 is the same base), as shown in Table I. In this 

work they are abbreviated as Bior = Biorthogonal, coif = 

Coiflets, db = Daubechies, Dmey = Discrete Meyer, rbio = 

Reverse Biorthogonal, and sym = Symmlets. 

For the 8 images, each of the 108 bases are tested for 

levels 3 and 4 of the decomposition (L3 and L4), and the 2 

possible way of coefficient thresholding (soft and hard). Each 

configuration has been considered for the images with added 

Gaussian noise at three different levels of standard deviation 

(5, 25 and 50), with the best thresholding value automatically 

computed, resulting in a total of 10,368 experiments. Figure 9 

shows the worst and best result for each level of noise of these 

images. Based on such visual results, for all noise levels, the 

proposed method presents adequate denoising proprieties 

considering the best results. Quantitative study is required to 

verify the potential difference among each of the possibilities. 

For each configuration, three evaluators are considered: NCC, 

SNR and RMSE. Tables II and III summarize the results 

related to them. Comparing both visual and numerical 

evaluation, the denoised images obtained is adequate when 

SNR>20, RMSE<7 and NCC>0.99. 

  

  

Fig. 8. Sample of original image and noisy image perturbed by noise level of 
noise ( σ =5, 25 and 50 ) used in experiments 

 

To facilitate a comparative analysis of these values, results 

from each measure were normalized and averaged for all 

images on the same noise level. These values are shown in the 

graph of Fig. 10. This figure allows for the consideration that 

all measures (SNR, RMSE and NCC) follow a pattern. Then in 

further analysis only the data from the NCC are considered 

here. However, complete data for all measures can be accessed 

at www.ic.uff.br/visuallab. Considering the position of each 

base on Tab. I as reference, Tab. IV describes the average 

values of NCC for each base on all noise levels. In table 4 each 

wavelet are represented by its position in Table I. Colors from 

green to red are used to grade these results visually. From this 

table, it can be inferred that the base with the worst result was 

the Reverse Biortogonal 3.1 (rbio3.1 in Table IV), while the 

best was Biortogonal 1.3 (Bior1.3 in Table V). 

The top 10 configurations tested considering the 3 

measures (NCC, SNR and RMSE) and the noise level can be 

compared in Table V for the low noise level that is for 

(Gaussian noise 5). Analyzing the 3 measures NCC, SNR and 

RMSE, in order of importance, the top 10 settings present 

results very similar. It is possible to see that of the 10 best 

results on removing noise level 5, are found using hard 

thresholding, which is in all cases better than soft thresholding. 

The use of Level 3 or Level 4 of decomposition makes 

practically no difference for low level of noise. However, when 

analyzing the influence of the level on the top 50 results, as 

done in Fig. 11, it is possible to see that for the same noise 

level the decomposition on Level 4 usually present better 

results then Level 3. This is the unique previous expected result 

on these experimentations. 

  

  

   
Fig. 9. Restoration by best (left side) and worst (right side) results for each 

level of noise using the scheme presented in section 2. 



TABLE II.  RESULTS FOR THE BEST CASE OF EACH NOISE LEVEL. 

σ W.type l. H\S Tindex SNR RMSE NCC 

  5 coif 1 3 h 18 117.865 1.098 0.999 

25 bior 1.3 4 h 98 33.615 3.857 0.996 

50 bior 1.3 4 h 183 16.850 7.611 0.989 

TABLE III.   RESULTS FOR THE WORST CASES OF EACH NOISE LEVEL. 

σ W.type leve H\S T. index SNR RMSE NCC 

  5 rbio 3.3 3 h 129 39.692 3.174 0.994 

25 rbio 3.1 4 h 80 14.757 8.641 0.910 

50 rbio 3.1 4 h     189 12.708 10.145 0.757 

TABLE IV.  COMPARISON OF THE AVERAGE NCC VALUES FOR ALL 

IMAGES ON ALL NOISE LEVEL FOR THE USED DENOISING METHODS. 
 

A B C D E F G H I J K 

1 
0.9933 0.9896 0.9933 0.9906 0.9897 0.9891 0.9887 0.9908 0.9927 0.9915 0.9911 

2 
0.9938 0.9897 0.9925 0.9905 0.9896 0.9891 0.9886 0.9905 0.9917 0.9914 0.9911 

3 
0.9937 0.9917 0.9922 0.9903 0.9895 0.9890 0.9886 0.9901 0.9925 0.9914 0.9910 

4 
0.9921 0.9894 0.9919 0.9902 0.9895 0.9890 0.9886 0.9898 0.9922 0.9913 0.9909 

5 
0.9924 0.9918 0.9916 0.9901 0.9894 0.9889 0.9885 0.9308 0.9922 0.9913 0.9910 

6 
0.9924 0.9925 0.9913 0.9901 0.9894 0.9889 0.9909 0.9863 0.9920 0.9912 0.9911 

7 
0.9923 0.9921 0.9912 0.9900 0.9893 0.9888 0.9933 0.9877 0.9919 0.9912 0.9910 

8 
0.9705 0.9919 0.9910 0.9899 0.9893 0.9888 0.9933 0.9874 0.9917 0.9912 0.9908 

9 
0.9868 0.9917 0.9908 0.9898 0.9892 0.9888 0.9920 0.9871 0.9917 0.9912 0.9935 

10 
0.9890 0.9915 0.9907 0.9897 0.9892 0.9887 0.9916 0.9925 0.9916 0.9910 - 

 

 
Fig. 10. Comparing the measures SNR, NCC and RMSE for each type of 

wavelet used. 

 

The most important conclusion considering all the 

computation done is that the type of used wavelet presents no 

importance on low noise level but its importance increase 

according the level of noise. The seven most relevant are the 

Coiflet 1, Symmlet 2, Daubechie 2, Symmlet 3, Daubechie 3, 

Biortogonal 2.6 and Reverse biortogonal 5.5. The hard 

threshold is usually better, and that for low level of noise only 

the three levels of decomposition can be used. 

When analyzing the influence of hard or soft threshold in 

the top 50 results (as done in Fig. 12) it is possible to state that 

for the same base in all levels of noise hard threshold usually 

has an advantage over soft threshold. This is very interesting 

because hard threshold is a simpler and faster approach. 

Although it is difficult to find works that like ours go further in 

depth discussion on same analysis on this comparison of hard 

and soft thresholds in the result. Same kind of results has 

appeared on other type of medical images for our group [15]. 
 

TABLE V.  THE 10 BEST COMBINATIONS FOR LOW NOISE LEVEL. 

Base Level H/S NCC SNR RMSE 

Coif 1 L3 H 0.999557 117.865253 1.133402 

Coif 1 L4 H 0.999552 117.273865 1.146983 

Sym 2 L3 H 0.999551 117.129401 1.135497 

Db 2 L3 H 0.999551 117.129401 1.135497 

Sym 3 L3 H 0.999548 116.427425 1.14867 

Db 3 L3 H 0.999548 116.427425 1.14867 

Sym 2 L4 H 0.999547 116.664894 1.148594 

Db 2 L4 H 0.999547 116.664894 1.148594 

Bior 2.6 L4 H 0.999547 116.628034 1.142708 

Rbio 5.5 L4 H 0.999547 116.483195 1.143878 

 

 

 
Fig. 11. NCC values considering noise and level of decomposition. 

 

 

 
Fig. 12. NCC for each base, level of noise and type of thresholding. 

 

V. RESTORATION OF INFRARED OF WHATEVER NOISE LEVEL 

In this section, a brief description of how the last section 

results can be used in denoising infrared images with unknown 



level of noise is provided. As the Coiflet 1 base presents the 

best characteristic for all noise level, only this is the 

implemented in our final project database for infrared images. 

The same occur with the hard threshold scheme that is the 

unique approach considered. The noise level is important on 

the consideration of using level 3 or 4. Then it must be first 

roughly evaluated to verify approximately if it presents 

standard deviation, σ, above 20. In such case the level of 

decomposition is set as 4 and, it is to 3 in other case. Usually, 

biomedical images are considered corrupted by white additive 

Gaussian noise which is characterized by the noise variance σ, 

that could be estimated from the theorem of Donoho and 

others methods by using one or more images [8]. A relatively 

simple approach to estimate the noise variance is to use the 

difference between two matched images of the same object 

[4]. Although the technique is simple to be implement, its 

efficiency relies heavily on the correct alignment of the two 

images. Therefore, most of the times in image processing 

techniques that use a single image are preferred. Some 

methods using a single image are based on manual selection of 

uniform signal or non signal regions [5]. However such 

techniques are time consuming and have a high intra and inter 

user variability. Previous section shows that the level of 

decomposition is only relevant for medium of higher level of 

noise and as in dynamic acquisition protocol a series of 

images of the same patient in obtained at almost same position 

[1], the subtraction method is used to verified if the image on 

analysis present more noise then one of the same type with 

σ=20 (by using simple technique of standard deviation 

computation [5]). If the answer is positive, the system set for 

level 4 of decomposition on the other case level 3 is used. 

Figure 13 presents the steps suggested on performing an 

efficient restoration scheme for infrared images considering 

the noise level. They are: 

Step 1: Image acquisition and storage as a raw data; 

Step 2: Evaluation of noise level and decision about 

decomposition in level 3 or 4; 

Step 3: Coiflet wavelet and hard threshold are used; 

Step 4: Coefficients for thresholding is select automatically 

based on the NCC; 

Step 5: The image is reconstructed using the modified 

coefficients. 

Figure 14 shows, from left to right, typical IR acquired 

[1,16,18], original to be used in the database and its denoised 

version. Table VI compares the second and third image on 

Fig. 14 with the first in terms of quality and size of the file to 

the used in the database. Time of processing this is 0.4063 

seconds. The image needs now 68.79% less space for storage. 

Its quality improves more then 2.7 times considering the SNR, 

RMSE and 1.2 times considering the NCC evaluator. For this 

storage a simple jpeg format is used, that is not only the DWT 

coefficient are saved (this could reduce greatly more the file 

size but is opposite to the idea of a completely public 

database, using a common jpeg format every body can use the 

images for researches). 

 

 
Fig. 13. Proposed restoration steps for IR images. 

 

 
Fig. 14. Original acquired image with size: 49,519 bytes (left), image after 
storage and transmission: 50,846 byte (center) and denoised image by the 

proposed scheme: 15,869 bytes (right). 

TABLE VI.  COMPARING ACHIEVED RESULTS FOR TYPICAL BREAST 

IMAGE. 

Fig 14 SNR RMSE NCC Size (bytes) 

Left-center 5.9197 2.2273 0.8202 50,846 

left- right 16.0751 0.8202 0.9997 15,869 

VI.  CONCLUSIONS 

Methods using wavelets has become very important in 

biomedical image researches for improve image based 

diagnosis in many ways from the initial storage and 

transmission possibilities, passing by the retrieval of the 

information based on the image content and going up to the 

possible image quality improvement by promoting its noise 

reduction. On such aspects, the JPEG2000 part II standard that 

is designed to support medical image compression and 

transmission applications is based on the discrete wavelet 

transform using the Daubechies (9,7) biorthogonal wavelet 

(also known as Cohen- Daubechies-Feauveau 9/7). However, 

this could not be the best possible wavelet for every conditions 

and kind of images.  

This work tries to find the best combination of wavelet 

based denoising parameters for medium resolution (640 x 480) 

infrared image acquired by a FlirSC620 camera (considering a 

human being distant from 1 to 1.2 meters). In order to verify 

this, results of experiments from 108 different bases and 1296 

denoising schemes are performed to compare their difference. 

They are analyzed considering low, medium and high levels of 

Additive White Gaussian Noise. The performance of each 

approach is evaluated by comparing the originals without 

noise versus the same images after compression/denoising and 

decompression using all possible combination of aspect. Three 

well known measures are used to evaluate the relation among 

fidelity they are: Root mean square error, signal to noise ratio 

and the normalized cross correlation. The decomposition is 



tested on two levels (3 and 4) of the image wavelet 

coefficients representation. They are reconstructed after 

compression and denoising by hard and soft coefficient 

modifications by thresholding. The goal is to grade 

combinations of processes considering the visual quality. 

Although, in all tested images hard threshold present best 

results considering the visual quality for all parameters. 

Decomposition up level 3 presents same results than 

decomposition up level 4 for low level of noise. All testes 

realized consider Coifelet 1 the best wavelets. Slightly worse 

results are achieved by Symmlet 2, Daubechie 2, Symmlet 3, 

Daubechie 3, Biortogonal 2.6 and Reverse biortogonal 5.5. It 

is observed that higher the noise level the greater is the 

difference among all methodologies. In averaging the images 

for each others aspect of the methods, the measures presents 

equally well when they are grading of the best to the worst 

results. That is SNR, RMSE and NCC values, follows the 

same orders for each method. However, according to the 

results shown in Tables IV and V and in Figures 11 and 12, as 

the images become harder to be restored (higher noise level), 

the difference among all methodologies gets larger. The 

difference on computational demands and time among 

approaches is no relevant (they are very imperceptible). For 

the hardest images in this restoration sense (i.e. σ = 25 and 

50), the order of the 10 best results reveal the same of those 

with smaller noise level and more simple degradation. This 

behavior leads us to think that is possible to advise best form 

for image denoising for all level of noise contained using the 

automatic selection of parameters based on the a more 

efficient results and relating the noise level only to the control 

of the level of decomposition (such scheme becomes an 

approach presented and tested in the second series of results). 

That is based on the experimentations an efficient and fast 

denoising approach is proposed and tested for breast infrared 

images with unknown level of noise. In order to turn possible 

to choose the threshold values based on the image 

reconstructed quality an new method for threshold definition 

based on series of n discrete possibilities is presented. The 

quality is considered represented by the NCC (or any other 

measure) between original and denoised image. The main 

advantage of this method is its low level of computational 

complexity, which is of order O(log(n)) and its robustness. 

Although the experimentation and denoising approach 

proposed are performed for IR images, the presented idea is 

generic for wavelet based restoration and can be used of other 

type of images to found algorithms most appropriated, related 

to the noise level, type of decomposition and threshold to be 

used. 
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