
ULTRA SOM

- Usa ondas de som para interagir com tecidos
- Mostra características específicas de tecidos
- Ondas mecânicas e longitudinais que viajam através da matéria
- Em ondas longitudinais, o movimento do mecanismo que forma a onda direção de propagação da ond

ULTRA SOM

 A frequência usada na medicir varia entre

- As ondas são uma série de compressões e expansões mecânicas na direção do trajeto da onda
- Portanto são ondas longitudinais que viajam pelo meio vibrando a matéria e carregando a energia produzida com a colisão das moléculas/partículas gerando calor

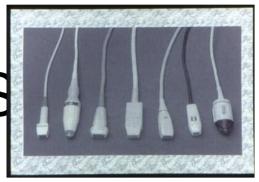
SOM

44 KHz

- Som não viaja no vácuo
- Depende da matéria para vibrar e gerar energia
- A faixa de som audível tem frequência entre 20 e 20.000 Hz
- Abaixo disso chama-se infra som
- Acima disso chama-se ultra som

ULTRA SOM - HISTÓRIA

- 1794 Lazzaro Spallanzini demonstrou que morcegos se orientavam mais pela audição que pela visão
- 1877 Lorde Rayleigh publica a Teoria do Som
- 2ª Guerra Mundial uso de radar
- 1948-49 Douglas Howry e W. Roderic Bliss primeiros usos na medicina
- 1950 primeira imagem seccional
- 1971 Kossof usou imagens em escala de cinza


ULTRA SOM - VANTAGENS

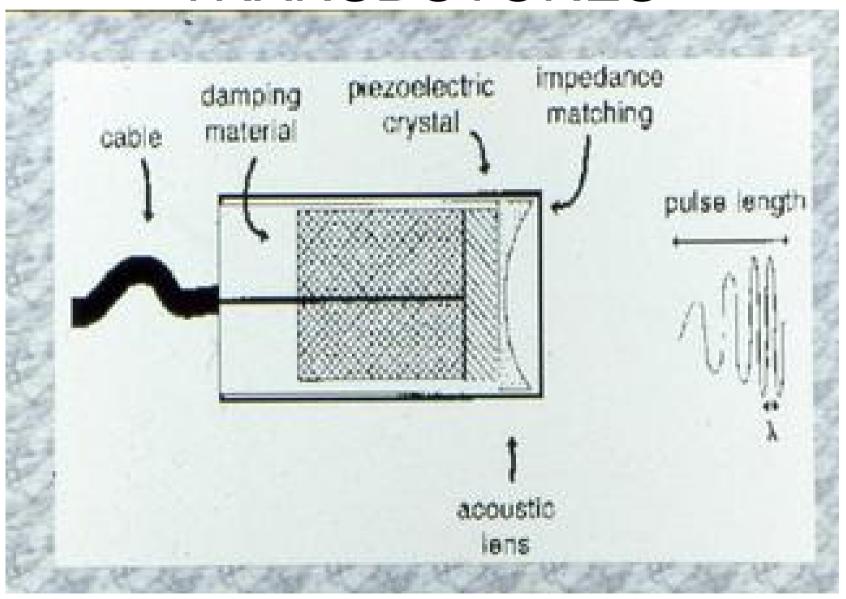
- Tecnologia barata por conta de HW de baixo custo
- Imagens de alta resolução comparadas às imagens de Raio-X
- Provê informações de tecidos "moles" / de baixa densidade
- Resolução axial na ordem de milímetros
- Resolução radial depende do diâmetro de emissão

ULTRA SOM - VANTAGENS

- Energia aplicada n\u00e3o ionizante
- Produz imagens em tempo real
- Equipamentos de fácil portabilidade
- Mostra importantes dados fisiológicos
 - Fluxo e direção de fluídos como sangue através do efeito Doppler
- Se propaga em diferentes velocidades em diferentes tecidos

TRANSDUTORES

 Definição geral: um dispositivo que recebe um sinal e o retransmite, independentemente de conversão de energia.


Definição específica e mais utilizada:

recebe um tino de energ

out

TRANSDUTORES

GERAÇÃO DE ONDA ULTRASÔNICA

- Através de materiais magnetoestritivos
 - Sofre modificações estruturais perante um campo magnético gerando oscilações de mesma frequência que o campo magnético
- Através de cristais piezoelétricos
 - Mais frequente
 - Oscila com a presença de uma carga elétrica gerando pressão mecânica (ultra som)
 - gera corrente elétrica sob a uma pressão mecânica (eco)

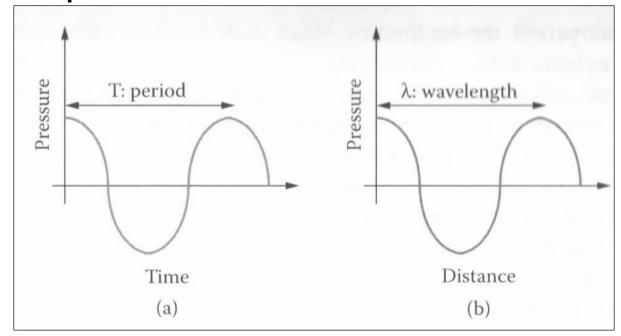
GERAÇÃO DE ONDA ULTRASÔNICA

- Os cristais piezoelétricos podem ser feitos de vários materiais:
 - O mais usado é o zirconato titanato de chumbo
 - Podem ser também: cerâmica, quartzo, titanato de bário e difluoreto de polyvinylidine (PVDF)
- Cristais são colados entre dois eletrodos que aplicam uma corrente elétrica que faz com que o cristal se expanda e contraia produzindo ondas sonoras nas frequências desejadas

RECEPÇÃO DE ONDA ULTRASÔNICA

- Um pulso (onda ultra som) é emitido e viaja pelos tecidos internos.
- Quando o pulso encontra uma mudança de tecido (mudança de meio) aproximadamente 1% da onda é refletiva e o restante é refratada.
- A porção refletida (eco) é percebida pelo transdutor (mesmo que emitiu) que calcula a profundidade
- A velocidade é conhecida: 1540 m/s

RECEPÇÃO DE ONDA ULTRASÔNICA


- As lentes acústicas percebem o eco e passam a pressão de onda (força mecânica) para o cristal piezoelétrico.
- O cristal converte o som do eco em energia elétrica que é passada para os eletrodos
- Com base no pulso elétrico a imagem é gerada
- Esse processo é muito rápido pois depois de "ouvir" o eco por um certo tempo, o cristal emite novo pulso
- Quanto maior a demora pelo eco, mais distante está a parede do tecido (diferença de meio)

COMPRIMENTO DE ONDA

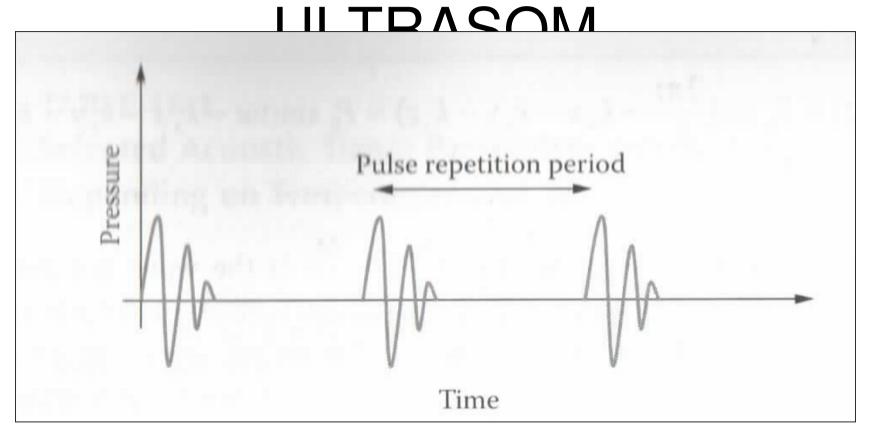
$$\lambda = VT$$

(16.1)

- V = velocidade
- T = tempo

FREQUÊNCIA DO SOM

$$f = \frac{1}{T} \tag{16.2}$$


- Número de ciclos produzidos em 1 segundo
- Infra som (f < 20 Hz), som audível (f > 20 e < 20.000 Hz) e ultra som (f > 20.000 Hz)
- Quanto > a f, < o λ e melhor a resolução espacial
- Transdutor de 3,5 MHz para exames mais profundos
- Transdutor de 7,5 MHz para exames mais

VELOCIDADE DE PROPAGAÇÃO DO SOM

$$V = \sqrt{\frac{K}{\rho}} \tag{16.3}$$

- K = módulo elástico do material
- p = densidade do meio

PROTOCOLO DE PULSO

 Atraso entre a emissão e detecção do pulso é chamado de tempo de vôo

IMPEDÂNCIA ACÚSTICA

$$Z_A = \rho V \tag{16.4}$$

- Impedância acústica do meio
- facilidade de propagação do som no meio
- Depende da velocidade e da densidade do som no meio
- Quanto > a diferença de impedância entre dois meios, maior a reflexão

EQUAÇÃO DA ONDA

$$\nabla^2 P = \frac{\partial^2 P}{\partial x^2} + \frac{\partial^2 P}{\partial y^2} + \frac{\partial^2 P}{\partial z^2} = \frac{1}{v^2} \frac{\partial^2 P}{\partial t^2}$$
 (16.5)

$$P(z,t) = P_0 \sin(\frac{2\pi t}{\lambda} - k_x x - k_y y - k_z z) = P_0 \sin(\omega t - k_x x - k_y y - k_z z)$$
 (16.6)

ATENUAÇÃO

 $dP = \alpha P dz \tag{16.7}$

- É a diminuição da força da onda sonora
- Pela transformação da onda sonora em calor que é absorvido pelas células
- Pela reflexão da onda
- Pela refração da onda

LEI DE ATENUAÇÃO DE BEER-LAMBERT-BOUGUER

$$P(z) = P_0 \exp[-\alpha z] \tag{16.8}$$

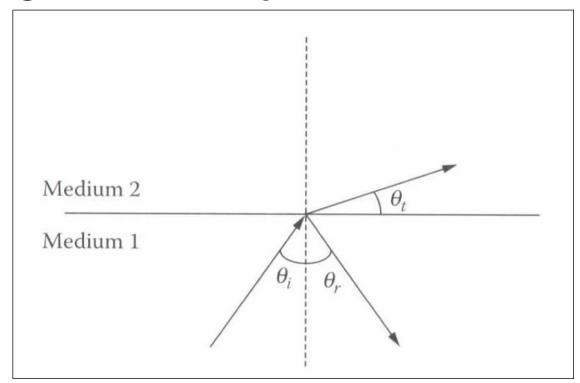

- Esta equação mostra que o coeficiente de atenuação varia de um tecido para o outro
- P0 é a pressão em z=0.

TABLE 16.1
Selected Acoustic Tissue Parameters with Values
Depending on Temperature and Pressure

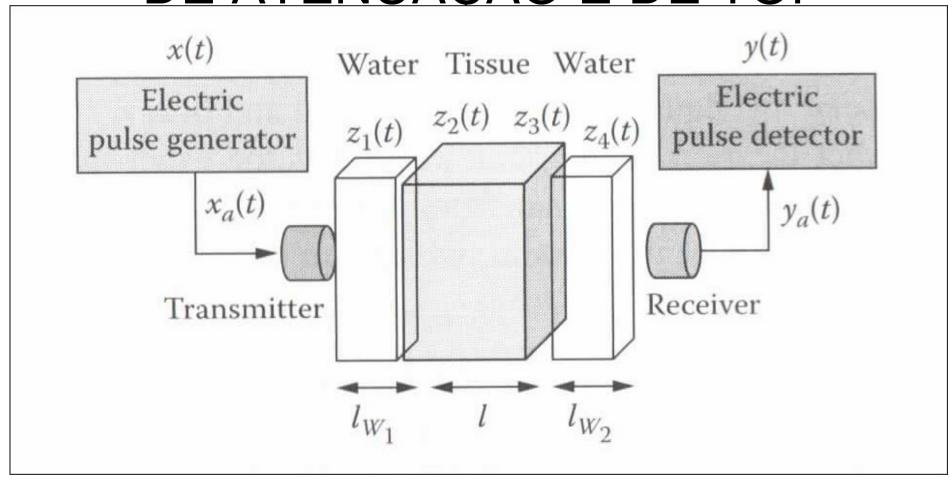
Tissue	Acoustic Impedance Z_A (kg/m ² × 10 ⁻⁶)	Attenuation Coefficient α at 1 MHz (dB/cm)	Density ρ (kg/m³)	Propagation Velocity V (m/s)
Water	1.48-1.53	0.002	1000	1480
Blood	1.58-1.61	0.2	1030	1570
Fat	1.37	0.6	900	1450
Muscle	1.68	3.3	1080	1580
Bone	6.0-8.0	12	1850	3500-4300

Reflexão

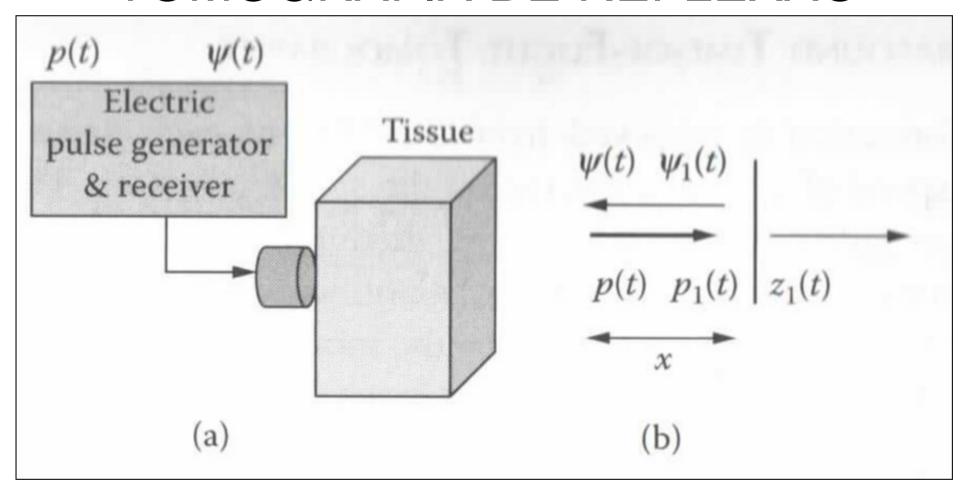
- Ângulo de incidência $\theta i < 3$ graus
- θr ângulo de reflexão
- θt ângulo de refração

REFLEXÃO

$$r = \frac{P_r}{P_i} = \frac{Z_{A2}\cos\theta_1 - Z_{A1}\cos\theta_2}{Z_{A2}\cos\theta_1 + Z_{A1}\cos\theta_2}$$
(16.10)

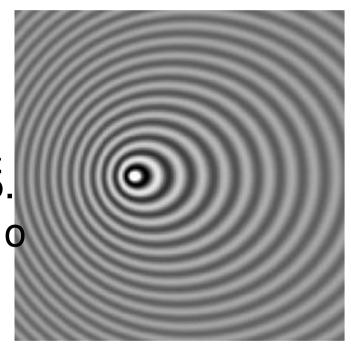

$$t = \frac{P_t}{P_i} = \frac{2Z_{A2}\cos\theta_1}{Z_{A2}\cos\theta_1 + Z_{A1}\cos\theta_2}$$
(16.11)

- r = coeficiente de reflexão de pressão
- t = coeficiente de transmição de pressão
- Zax = impedância acústica do meio
- Pr = pressão refletida
- Pi = pressão incidente
- Pt = pressão transmitida


MODALIDADES DE IMAGENS ULTRA SOM

- Tomografia de atenuação
 - Conforme passa pelos tecidos as ondas ficam mais fracas
 - Usado para formar a imagem
- Tomografia TOF (time-of-flight sobrevida)
 - Fornece informações como densidade e elasticidade do meio
- Tomografia de reflexão
 - Fornece informações dos limites dos tecidos, das interfaces entre tecidos
 - Efeito Doppler tipo de tomografia de reflexão

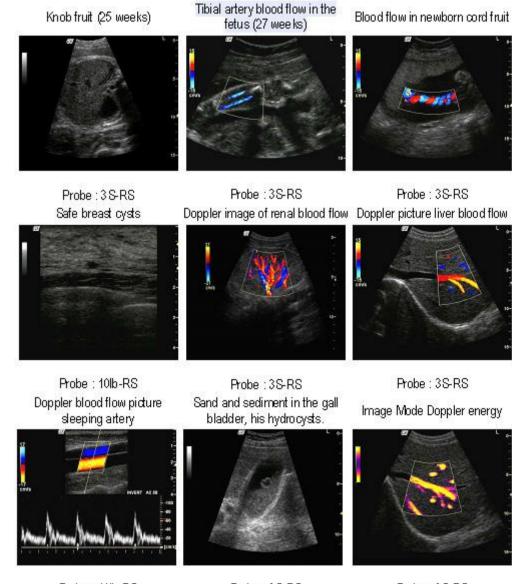
ESQUEMA PARA TOMOGRAFIA DE ATENUAÇÃO E DE TOF


ESQUEMA E O MODELO MATEMÁTICO PARA TOMOGRAFIA DE REFLEXÃO

 Christian Andreas Doppler descreveu teoricamente pela primeira vez em 1852

 Christoph B. Ballot – crompovou numa experiência com ondas sonoras, em 1845.

 Hippolyte Fizeau – descobriu o fenômeno em ondas eletromagnéticas, em 1848. também é chamado efeito Doppler-Fizeau.



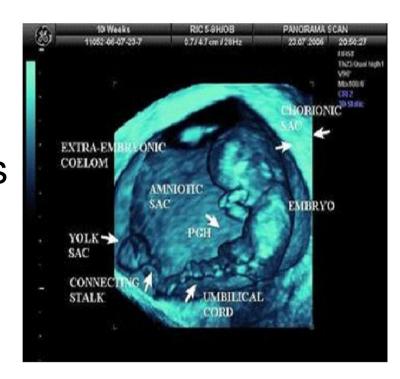
$$f = f_0 \frac{V}{V - V_{source}} \tag{16.43}$$

- A diferença entre a frequência emitida e recebida caracteriza a reflexão
- Aumento de frequência -> aproximando
- Diminuição de frequência -> afastando

Vídeo

Probe: 10lb-RS Probe: 3S-RS Probe: 3S-RS

MODO DE REPRESENTAÇÃO DE IMAGENS DE ULTRASOM


TABLE 16.2

Various Applications of Ultrasonic Imaging Diagnosis in B-Mode or M-Mode within a Selected Frequency Range

Organ	Indication	Ultrasound Modality and Frequency Range
Blood vessels	Thrombosis, stenosis	B-mode; 3–7.5 MHz; color doppler
Heart	Blood flow, ventricular enlargement, pathological conditions, volumetric determination	B-mode; 2–7.5 MHz, M-mode; color doppler
Liver	Tumors, cysts	B-mode; 2–7.5 MHz M-mode; color doppler
Gall bladder and bile ducts	Calcification, stones, volume changes	B-mode; 2-7.5 MHz
Uterus	Fetal diagnosis, positioning	B-mode; 2-7.5 MHz
Joints and muscles	Inflammation, defects, calcifications	B-mode; 5-7.5 MHz

ULTRA SOM 3D

- Em 2D a reconstrução de várias fatias 2D é feita na mente do técnico
- Reconstrução 3D é um dos mais recentes avanços em ultra som
- Reconstrói volumetricamente as camadas
- A reconstrução de várias fatias é feita por SW

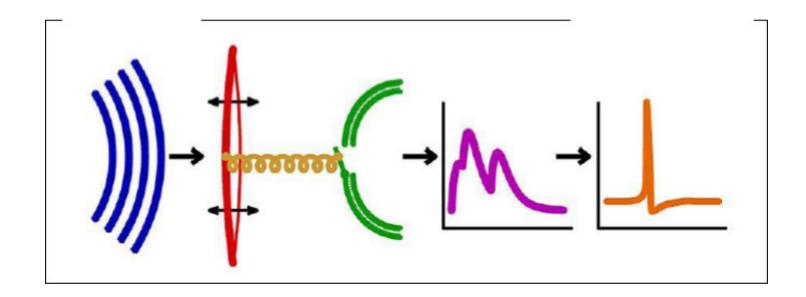
ULTRA SOM 3D

- Renderização de superfície
 - Baseado na visualização de superfícies
 - Ecocardiografia e obstetrícia
- Reformatação multiplanar
 - Permite selecionar um ou múltiplos planos inclusive oblíquos
- Renderização de volume
 - Mostra a visão 3D depois de ter sido projetada em um plano 2D
 - Imagens fetais e vasculares com imagens Doppler
- Projeção de intensidade máxima

USOS DO ULTRA SOM

- Acompanhamento de fetos, ver sexo
- Doppler enfermidade artéria carótida
- Doppler azul fluxo crescente e vermelhos fluxo decrescente
- 3D cirurgia vascular mini câmera
- Coleta de líquido amniótico
- Em geral é uma técnica que garante imagens em tempo rea

DESVANTAGENS ULTRASOM


- Depende do "humor" do técnico
 - Caixa para ultrassonografia de mama
- Imagens de ossos e pulmões não são viáveis
- Quanto maior a quantidade de proteína,

FIM

• Perguntas?

