
The GPU Used as a Math Co-Processor in Real Time Applications

Marcelo P. M. Zamith
Esteban W. G. Clua

Aura Conci
Anselmo Montenegro

Instituto de Computação
Universidade Federal Fluminense

Paulo A. Pagliosa
Departamento de Computação e Estatı́stica

Universidade Federal de Mato Grosso do Sul

Luis Valente
VisionLab/IGames

Departamento de Informática
PUC-Rio

Abstract

This paper presents the use of GPU as a math co-processor in real-
time applications, in special games and physics simulation. Game
loop architecture is used to validate the use of GPU such as math
and physics co-processor, thus it is shown by this paper a newgame
loop architecture that employs graphics processors (GPUs)for gen-
eral-purpose computation (GPGPU). A critical issue in thisfield
is the process distribution between CPU and GPU. The presented
architecture consists in a model for distribution and our implemen-
tation showed many advantages in comparison to other approaches
without a GPGPU stage.

The architecture presented here was mainly designed to support
mathematics and physics on the GPU, therefore the GPU stage in
the model proposed works to help the CPU such as a math co-
processor. Nevertheless, any kind of generic computation can be
adapted. The model is implemented in an open source game engine
and results obtained using this platform are presented.

Keywords:: game loop, GPGPU, co-processor.

Author’s Contact:

{mzamith,esteban,aconci,anselmo}@ic.uff.br
*pagliosa@dct.ufms.br
*lvalente@inf.puc-rio.br

1 Introduction

New graphics hardware architectures are being developed with
technologies that allow more generic computation. GPGPU
(general-purpose computation on GPUs) became very important
and started a new area related to computer graphics research. This
leads to a new paradigm, where the CPU — central processing unit
— does not need to compute every non-graphics application issue.
However, not every kind of algorithm can be allocated for theGPU
— graphics processing unit — but only those that can be reduced
to a stream based process. Besides, even if a problem is adequate
for GPU processing, there can be cases where using the GPU to
solve such problems is not worthy, because the latency generated
by memory manipulation on the GPU can be too high, severely de-
grading application performance.

Many mathematics and physics simulation problems can be formu-
lated as stream based processes, making it possible to distribute
them naturally between the CPU and the GPU. This may be ex-
tremely useful when real time processing is required or whenper-
formance is critical. However, this approach is not always the most
appropriate for a process that can be potentially solved using graph-
ics hardware. There are many factors that must be consideredbe-
fore deciding if the process must allocate the CPU or the GPU.
Some of these factors may be fixed and some may depend on the
process status.

A correct process distribution management is important fortwo rea-
sons:

• It is desired that both the GPU and the CPU have similar pro-
cess load, avoiding the cases where one is overloaded and the
other is fully idle;

• It is convenient to distribute processes considering whichar-
chitecture will be more efficient for that kind of problem.

For instance, many real time graphics applications render the scene
more than 60 frames per second, but execute physics or artificial
intelligence simulations less frequently. Almost every video display
has a refresh rate of 60 Hz, when rendering more than 60 framesper
second, many of the calculated frames are discarded. In thiscase,
it would be convenient to reduce graphics calculations and increase
the other ones.

As it is not always possible to tell which processing route (GPU or
CPU) a problem should go through, it is important that the frame-
work or engine being used for the application development tobe
responsible for dynamically allocating jobs.

This paper proposes a new architecture for a correct and efficient
semi-automatic process load distribution, considering real time ap-
plications like games or virtual reality environments. Theuse of
GPU in this model has focus to help the CPU at processing of
mathematics and physics such as mathematic co-processor. The
presented idea is implemented in an academic open source game
engine [Valente 2005].

The paper is organized as follows. Section 2 summarizes the main
functionalities of a physics engine currently being developed and
that is integrated into the academic framework, as a component.
The purpose of that section is to identify which math operations
are more suitable for implementation on GPU. Section 3 presents
related works. Section 4 describes the architecture of framework
adopted and its GPGPU shader support, as well as a first model for
distributing tasks between CPU and GPU. Section 5 presents asim-
ple example and results. Finally, Section 6 points out conclusions
and future works.

2 Math and Physics on GPU

The ODE (Open Dynamics Engine) was integrated to the frame-
work by the authors. This open source component is responsabile
for real time dynamic simulation of rigid and elastic bodiesand
corresponds to one of the state-of-the-art tools availablefor physics
simulation. A rigid body is a (possibly continuum) particlesys-
tem in which the relative distance between any two particlesnever
changes, despite the external forces acting on the system. Thestate
X(t) of a body at timet is defined as [Feijó et al. 2006]:

X(t) =







x(t)
q(t)
P(t)
L(t)






, (1)

whereX is the world position of the center of mass of the body,q is
a quaternion that represents the rotation of the local reference frame
of the body in relation to the world frame,P is the world linear
momentum andL is the world angular momentum of the body. The
main functionality of a physics engine is, known the stateX(t),
to determine the next stateX(t + ∆t) of each rigid body into the
scene, where∆t is the time step. This task involves the integration
of theequation of motionof a rigid body [Feijó et al. 2006]:

d

dt
X(t) =







v(t)
1

2
w(t)q(t)
F(t)
τ (t)






, (2)

wherev = m−1P is the world linear velocity of the center of mass
of the body,w is the quaternion[0, ω], ω = I−1L is the angular
velocity of the body,F is the external force andτ is the external

torque applied to the body, andm andI are the mass andinertia
tensorof the body at timet, respectively.

Equation (2) is a first order ordinary differential equation(ODE);
the component of a physics engine responsible by its integration
(usually by applying a numerical method such as Runge-Kutta
fourth-order) is calledODE solver.

Generally, the motion of a rigid body is not free, but subjectto con-
straintsthat restraint one or moredegrees of freedom(DOFs) of the
body. Each constraint applied to a body introduces an unknown
constraint forcethat should be determined by the physics engine
in order to assure the restriction of the corresponding DOF.Con-
straints can be due tojoints between (usually) two bodies and/or
(collision or resting) contactbetween two or more bodies [Feijó
et al. 2006].

In order to compute the contact forces that will prevent inter-
penetration of bodies, a physics engine needs to know at timet
the set ofcontact pointsbetween each pair of bodies into the scene.
The contact information includes the position and surface normal at
the contact point, among others. This task is performed by a com-
ponent integrated to the engine responsible forcollision detection,
which can be divided in abroadand anarrowphase [Ericson 2005].
In the broad phase only a sort of (hierarchies of) bounding volumes
containing the more complex geometric shapes of the bodies are
checked for intersecting; if they do not intersect, their bodies do not
collide. Otherwise, in the narrow phase the shapes themselves are
checked for intersecting and the contact information is computed.

Once found the contact points, the physics engine must simultane-
ously compute both the contact and joint forces and applies them to
the respective bodies. Mathematically, this can be formulated as a
mixed linear complementary problem(LCP), which can be solved,
for example, by using the Lenke’s algorithm [Eberly 2004]. The
task is performed by a component of the engine calledLCP solver.

In short, the main tasks performed at each time step during the sim-
ulation of a scene made of rigid bodies are: collision detection,
collision handling, and resolution of differential equations.

For collision detection, GPUs can be used as a co-processor for
accelerating mathematics or for fast image-space-based intersec-
tion techniques [Ericson 2005]. These ones rely on rasterizing the
objects of a collision query into color, depth, or stencil buffers
and from that performing either 2D or 2.5D overlap tests to de-
termine whether the objects are in intersection [Baciu and Wong
2003; Govindaraju et al. 2003; Heidelberger et al. 2004]. Section 5
presents an illustrative implementation.

The ODE solver is a component that can be also efficiently im-
plemented on GPU, since the integration of Equation (2) for arigid
body is performed independently of the other ones (therefore in par-
allel). Besides, data in Equations (1) and (2), which are related to
the state of a rigid body and its derivative, can be easily write to
and read from streams; the implementation of a method such asa
Runge-Kutta solver on GPU (the arithmetic kernel) is also straight-
forward.

In the literature there are many works on solving ODEs on GPU,es-
pecially those related to (discrete) particle system simulation. For
example, Kipfer et al. presented a method for this includinginter-
particle collisions by using the GPU to quickly sort the particles to
determine potential colliding pairs [Kipfer et al. 2004]. In a simul-
taneous work, Kolb et al. produced a GPU particle system simula-
tor that supported accurate collisions of particles with scene geom-
etry by using GPU depth comparisons to detect penetration [Kolb
et al. 2004]. Related to particle systems is cloth simulation, Green
demonstrated a very simple cloth simulation using Verlet integra-
tion with basic orthogonal grid constraints [Green 2003]. Zeller
extended this work with shear constraints that can be interactively
broken by the user to simulate cutting of the cloth into multiple
pieces [Zeller 2005].

Realistic physical simulation of deformable solid bodies is more
complicated than rigid ones and involves the employment of numer-
ical methods for solving the partial differential equations (PDEs)
that govern the behavior of the bodies. Such methods are based

on a subdivision of the volume or surface of a solid in a mesh of
discrete elements (e.g. tetrahedrons or triangles); mathematically,
the PDEs are transformed in systems of equations that, once solved,
give the solution of the problem at vertices of the mesh.

Two domain techniques are the finite differences and finite element
methods (FEM). The former has been much more common in GPU
applications due to the natural mapping of regular grids to the tex-
ture sampling hardware of GPUs. Most of this work has focused
on solving the pressure-Poisson equation that arises in thediscrete
form of the Navier-Stokes equations for incompressible fluid flow.
The earliest work on using GPUs to solve PDEs was done by Rumpf
and Strzodka [Rumpf and Strzodka 2005], where they discuss the
use of finite element schemes for PDE solvers on GPUs in detail.

The current research of some of the authors on deformable bod-
ies initially considers perfect linear solids only, which are governed
by Navier equation. The solving technique is based on the bound-
ary element method (BEM) with use of the Sherman-Morrison-
Woodbury formula to achieve real time responses, as suggested in
the work of James and Pai [James and Pai 1999]. One of the possi-
bilities of GPGPU is to use the GPU as a math co-processor for im-
plementation of a number of techniques for numerical computing,
mainly those ones for matrix operations and solving linear systems
of equations.

The design of an architecture for process distribution is a critical
issue for an efficient collaboration between CPU and GPU. The
present work implements some of the mentioned calculationsin or-
der to validate and test this distribution strategy. Very good results
are achieved as discussed in Section 5.

3 Related Works

GPGPU is a research area in expansion and much promising early
work has appeared in the literature. Owens et al. present a survey on
GPGPU applications, which range from numeric computing oper-
ations, to non-traditional computer graphics processes, to physical
simulations and game physics, and to data mining, among others
[Owens et al. 2007]. This section cites works related to mathand
physics of solids on GPU.

Bolz et al. [Bolz et al. 2003] presented a representation formatri-
ces and vectors on GPU. They implemented a sparse matrix conju-
gate gradient solver and a regular grid multigrid solver forGPUs,
and demonstrated the effectiveness of their approach by using these
solvers for mesh smoothing and solving the incompressible Navier-
Stokes equations.

Krüger and Westermann took a broader approach and presented
a general linear algebra framework supporting basic operations
on GPU-optimized representations of vectors, dense matrices, and
multiple types of sparse matrices [Krüger and Westermann 2003].
Using this set of operations, encapsulated into C++ classes, Krüger
and Westermann enabled more complex algorithms to be built with-
out knowledge of the underlying GPU implementation.

Galoppo et al. [Galoppo et al. 2005] presented an approach toeffi-
ciently solve dense linear systems. In contrast to the sparse matrix
approaches, they stored the entire matrix as a single 2D texture, al-
lowing them to efficiently modify matrix entries. The results show
that even for dense matrices the GPU can to outperform highlyop-
timized ATLAS implementations.

Fatahalian et al. did a general evaluation of the suitability of GPUs
for linear algebra operations [Fatahalian et al. 2004]. They focused
on matrix-matrix multiplication and discovered that theseopera-
tions are strongly limited by memory bandwidth when implemented
on the GPU. They explained the reasons for this behavior and pro-
posed architectural changes to improve GPU linear algebra perfor-
mance.

Full floating point support in GPUs has enabled the next step in
physically based simulation: finite difference and finite element
techniques for the solution of systems of partial differential equa-
tions. Spring-mass dynamics on a mesh were used to implement
basic cloth simulation on a GPU [Green 2003; Zeller 2005].

Recently, NVIDIA and Havok have been shown that rigid body sim-
ulations for computer games perform very well on GPUs [Bond
2006]. They demonstrated an API, called Havok FX, for rigid body
and particle simulation on GPUs, featuring full collisionsbetween
rigid bodies and particles, as well as support for simulating and
rendering on separate GPUs in a multi-GPU system. Running ona
PC with dual NVIDIA GeForce 7900 GTX GPUs and a dual-core
AMD Athlon 64 X2 CPU, Havok FX achieves more than a 10 times
speedup running on GPUs compared to an equivalent, highly opti-
mized multithreaded CPU implementation running on the dual-core
CPU alone.

Havok FX supports a new type of rigid body object called debris
primitive. This one is a compact representation of a 3D object
on possible collision that can be processed via shader model3.0
(SM3.0) in a very efficient manner. Debris primitives can be pre-
modeled as part of a game’s static art content or generated onthe
fly during game play by the CPU, based on the direction and in-
tensity of a force (e.g. brick and stone structure blown apart by a
cannon blast). Once generated by the CPU, debris primitivescan be
dispatched fully to the GPU for physical simulation and finalren-
dering. Debris primitives can also interact with game-playcritical
objects, through an approach that provides the GPU with a one-
way transfer of critical information that allows debris primitives to
respond to game-play objects and large-scale world definitions.

It is important to mention that, despite the number of works devoted
to GPGPU available in literature, no work deals with the issue of
distribution of tasks between CPU and GPU, as proposed here.

4 GPU-CPU Process Distribution Model

For games and other real-time visualization and simulationappli-
cations, there are many different known loop models, such asthe
simple coupled, synchronized coupled and the multithread uncou-
pled [Valente et al. 2005].

r e a d p l a y e r i n p u t

u p d a t e (t)

t = c a l u l a t e
e l a p s e d t i m e

r e n d e r

Figure 1: Simple coupled model.

Basically, these architectures arrange typical processesinvolved in
a game in different manners, but always inside a main loop. The
processes consist of the following ones: data input (from keyboard,

joystick, mouse, etc.), update — especially physics, artificial intel-
ligence (AI), and application logic — and rendering.

In the simple coupled model, the stages are arranged sequentially,
as shown in Figure 1.

r e a d p l a y e r i n p u t

u p d a t e (t)

t = c a l u l a t e
e l a p s e d t i m e

r e n d e r

Figure 2: Multithread uncoupled model.

The multithread uncoupled model, depicted in Figure 2, separates
the update and rendering stages in two loops, so they can run in-
dependently from each other. In this model, the input and update
stages can run in a thread, and the rendering stage can run in another
thread.

As presented before, the described models comprise three stages:
input, update, and rendering. With the possibility of usingthe GPU
for generic computation, this paper proposes a new model, called
multithread uncoupled with GPGPU. This model is based on the
multithread uncoupled model with the inclusion of a new stage, de-
fined as GPGPU. This architecture is composed of threads, onefor
the input and update stages, another for the GPGPU stage, andthe
last one for the rendering stage. Figure 3 depicts a schematic repre-
sentation for this approach [Zamith et al. 2007].

In the parallel programming models, it is necessary to detect which
are shared and non-shared parts, which will be treated differently.
The independent sections compose tasks that are processed in par-
allel, like the rendering task. The shared sections, like the GPGPU
and the update stages, need to be synchronized in order to guar-
antee mutual-exclusive access to shared data and to preserve task
execution ordering.

Although the threads run independently from each other, it is neces-
sary to ensure the execution order of some tasks that have process-
ing dependence. The first stage that should be run is the update,
followed by GPGPU stage, while the render stage runs in parallel
to the previous ones. The update and GPGPU stages are responsible
for defining the new game state. For example, the former calculates
the collision response for some objects, whereas the latterdefines
new positions for the objects. The render stage presents theresults
of current game state.

The processing dependence of shared objects needs to use a syn-
chronization object, as applications that use many threadsdo. Mul-
tithread programming is a complex subject, because the tasks in the
application run alternately or simultaneously, but not linearly.

r e a d p l a y e r i n p u t

u p d a t e (t)

t = c a l u l a t e
e l a p s e d t i m e

r e n d e r

G P G P U

Figure 3: Multithread uncoupled with GPGPU model

Hence, synchronization objects are tools for handling taskdepen-
dence and execution ordering. This measure should also be care-
fully applied in order to avoid thread starvation and deadlocks. The
current implementation of the presented model uses semaphores as
synchronization object.

The framework architecture provides the abstract class AbstractAp-
pRunner to run a generic application. The methods in that class rep-
resent game loop stage and other system events, that are dispatched
during the application life cycle. The approach presented in this
work implements the concrete class GPGPUAppRunner, derived
from AbstractAppRunner, which is a composed by a main loop and
two thread objects.

The thread objects are instances of two concrete classes:
GameLoopThread and GPGPULoopThread. The GPGPU-
LoopThread, which extends the abstract class AbstractThread, de-
fines virtual methods to run the thread loop and to change the
semaphores. The GPGPURunner loop runs the data input and ren-
der stages, the GameLoopThread loop runs the update stage, and
the GPGPULoopThread loop runs the GPGPU stage. Figure 7
shows the UML class diagram of this architecture.

Even if the tasks should obey a predefined execution ordering, the
multithread approach makes it possible to run the stages simultane-
ously.

The distribution model presented in this work is fixed, beingthe
distribution of the tasks between the CPU and GPU defined previ-
ously. The implementation of a desirable automatic model ofpro-
cess distribution is a very intricate issue and even more if it is con-
sidered distribution between two different hardware architectures:
the conventional CPU and the GPU. Besides, as it was mentioned
previously, not all kinds of tasks can be processed by the GPU.

GPGPUAppRunner

AbstractAppRunner

GameLoopThread
 GPGPULoopThread

AbstractThread

GPGPU
AbstractTask

CollisionTask

Figure 4: Main classes of the proposed model

5 Example and Results

The case study implements collision detection among moving
solids. In a previous version, the collision detection process was im-
plemented entirely on CPU, in the updated stage. The subsequent
version shows how this process can be performed in the GPGPU
stage.

The use of GPU for general-purpose computation requires an
OpenGL extension called FBO (frame buffer object). A FBO is
configured from parameters related to the storage format of textures
in the GPU, the floating point precision (the floating point precision
is 32bit IEEE standard), and the texel components (RGBA color
channels). The concrete class GPGPU encapsulates details regard-
ing the FBO setup and the fragment shader program. This class
defines and implements methods that help complex manipulation
of resources, like automatic configuration, texture transfering (up-
loading to GPU memory and downloading from frame buffer), and
shader running.

As the GPGPU stage run tasks, it is necessary an intermediatelayer
where the tasks will be implemented. Therefore, an intermediate
layer is built between the application (the game) and the GPGPU
class. The objective of the class GPGPU is to create a communica-
tion interface between the application and the GPU, allowing tasks
to be scheduled either for the CPU or for the GPU, with no interfer-
ence from the developer. To represent the layer, the class Abstract-
Task was defined. This one holds a GPGPU object which in turn
extends from the GPGPU class. The collision task, which extends
AbstrackTask, was defined for implementing collision amongsolid
objects.

Two methods of the class AbstractTask deserve special attention:
execCPU and execGPU. The former is where the CPU algorithm
will be implemented, and in the latter is where the GPU algorithm
will be implemented. Therefore, for each task that will be pro-
cessed on GPU is necessary to write a new class that extends the
class AbstractTask. AbstractThread is an abstract class that imple-
ments APIs for thread creation and manipulation. The class de-
clares a pointer to an object of a class derived from AbstractTask.
GameLoopThread and GPGPULoopThread are extensions of Ab-
stractThread; thus, GameLoopThread runs tasks on CPU by invok-
ing execCPU task method, and GPGPULoopThread runs tasks on
GPU by invoking execGPU task method (see UML class diagram
in Figure 7).

The class AbstrackTask holds a vector of pointers to solid objects.
The method execGPU is responsible for mapping some object prop-
erties to floating point RGBA textures. The properties are position,
velocity, and acceleration. As these properties have threedimen-
sions, the execGPU method uses three textures, one for each prop-
erty. Each value in the property is mapped to a texel in the texture,
so the RGB values store those values. Then, the class GPGPU up-
loads these textures to the GPU memory. As soon as the textures

are uploaded, the GPU will run the shader program(n − 1) times,
wheren is the number of solid objects in scene. The number of
collision tests generated is

C
2

n
=

(

n

2

)

(3)

After the shader program runs, the GPGPU class assembles there-
sults in a output texture. A texel in this texture corresponds to an
object that was tested. For each texel, the RGB values store the
corrected object position and the alpha value indicates if acollision
was found (one) or not (zero).

For example, consider a scene with sixteen objects where their posi-
tions are mapped in a texture. Figure 5 illustrates a simple represen-
tation of how shader variables (handles) are used to access texels,
where each object position is mapped to a color. The first handle
points to the first texel of the texture. The second handle makes it
possible to access neighbouring texels by offsetting the first handle.
Therefore, it is possible to access different solid objects, and then
to perform collision detection among them.

Figure 5: Representation of objects position in texture.

The parallelism between positioning camera and collision detection
happens at a distinct moment. In this case, there is not parallelism
among rendering, object update, and collision detection. The mov-
ing objects represent the part of application that shares resources.

In the case study, there is parallelism among player input update and
object rendering, and camera positioning. Figure 6 shows which
tasks are executed simultaneously and which are executed lineally.
So, the render stage and camera update have even happened, but on
the other hand, collision and update task have never happened to-
gether. The alternation is guaranteed by semaphor signals between
the threads, that is, the signals are realized between the threads
(GameLoopThread and GPGPULoopThread) that execute the up-
dated and GPGPU stages (collision task). The synchronization is
guaranteed by two variables: RedSync and GreenSync, whose val-
ues are shared, i.e., the RedSync variable of one thread shared the
same value that the GreenSync variable of the other thread. Thus,
the tasks are exclusively executed. After time t5 a new iteration
is executed. The figure also shows how tasks are distributed be-
tween CPU and GPU: main thread runs on CPU and is responsible
for camera and object update; render and GPGPU threads runs on
GPU and are responsible for scene rendering and GPGPU collision
detection.

Figure 7 illustrates two colliding objects. At time t0, bothbodies
are about to collide, and at time t1 they enter a collision state, at
this moment the shader program is invoked by GPGPU thread. The
shader program running on the GPU detects this collision andcor-
rects the object positions. At time t2, their positions are updated
because they are read from the FBO.

In order to evaluate the proposed model, its performance wascom-
pared with the original loop model of the framework [Valenteet al.

Figure 7: Collision between two spheres.

2005]. The hardware used was a Pentium D 3.4Ghz, 1GB of mem-
ory, and a GPU NVIDIA GeForce 6200 AGP.

Two classes of tests were constructed using the framework. The
first one uses the single coupled synchronized model and the other
the multithread uncoupled with GPGPU, as proposed in this work.
For each class, 10 tests were executed to measure the processing
time in the GPU and the CPU. Each class consists in 500 collisions
between 16 moving solids positioned in the scene in an arbitrary
way, without any user interaction.

Tables 1 and 2 show the results corresponding to the multithread
with GPGPU and simple coupled synchronized models, respec-
tively. Column labeledtotal col. t. represents the time for com-
puting the 500 collisions,total app. t. is the total running time of
the application,work is the effective time in the GPU and CPU (all
of them in seconds), andFPS the number of frames per second.

Table 1: Results: multithread uncoupled w. GPGPU model
total col. t. total app. t. works FPS

1,578 0,015 0,030000014 77,3131
1,938 0,016 0,047000030 79,9794
1,703 0,016 0,062999996 76,9231
2,219 0,016 0,032000001 84,2722
1,719 0,016 0,032000004 77,9523
2,093 0,016 0,032000085 84,5676
2,234 0,016 0,016000003 83,2587
1,968 0,016 0,045999954 82,8252
1,312 0,016 0,030999969 70,8841
2,203 0,016 0,015999996 83,9764

Table 2: Results: simple synchronized coupled model
total col. t. total app. t. works FPS

22,625 0,016 0,063000096 240,442
83,594 0,016 0,330000447 242,290
44,234 0,016 0,232999674 242,302
27,140 0,016 0,329000170 244,068
42,828 0,016 0,266999744 240,870
50,063 0,016 0,234000313 242,714
14,328 0,016 0,063999999 238,554
15,328 0,016 0,126000026 238,192
30,188 0,016 0,109999970 241,420
22,110 0,016 0,172999781 240,299

Table 3 represents the comparison of the mean processing times
corresponding to 10 test instances. Lines labeledFPS represents
the number of frames per second andwork the effective process-
ing time, respectively. Linestime, minimal, andmaximum cor-
respond respectively to the mean, the minimum, and the maximum
processing times of the 10 instances (in seconds).

The results in Tables I, II and III show an increase in performance
obtained by using the multithread uncoupled model with GPGPU.
This increase in performance is due to the concurrent execution of
the tasks.

Using the GPGPU component of the architecture considerablyre-
duced the processing time of the collision detection part ofthe sys-
tem. This caused an overall decrease in the processing time of the
application. Besides, the tests have shown that the frame rate de-

time
 main thread
 Render thread
 GPGPU thread

t0

t1

t2

t3

t4

t5

t6

Start application

GameThreadLoop.RedSync = GPGPUThreadLoop.GreenSync

GameThreadLoop.GreenSync = GPGPUThreadLoop.RedSync

render

render

render

render

render

render

update.camera()

If (GPGPUThreadLoop.Red)

 testCollision()

 signal(GPGPUThreadLoop.GreenSync)

end If

If (GPGPUThreadLoop.Red)

 testCollision()

 signal(GPGPUThreadLoop.GreenSync)

end If

If (GameThreadLoop.Red)

 update.objects()

 signal(GameThreadLoop.GreenSync)

end If

If (GameThreadLoop.Red)

 update.objects()

 signal(GameThreadLoop.GreenSync)

end If

update.camera()

update.camera()

update.camera()

Figure 6: Task parallelism representation

Table 3: GPU and CPU comparatives
GPU CPU

FPS 80,1952100 241,1151000
works 0,0345000 0,1929000
time 1,8967000 35,2438000

minimal 0,0160000 0,0630001
maximum 0,0630000 0,3300004

crease, to enable GPGPU processing, did not affect the quality of
the animation, which was preserved.

6 Conclusions and Future Work

Balancing the load between CPU and GPU is an interesting ap-
proach for achieving a better use of the computational resources in
a game or virtual and augmented reality applications. By doing this
it is possible to dedicate the additional free computational power to
other tasks as AI and complex physics, which could not be donein
more rigid or sequential architectures.

This work has demonstrated this possibility by introducinga new
stage in a multithread uncoupled game engine architecture,which is
responsible for general-purpose processing on the GPU. As it was
exemplified by a solution for the collision detection problem, it is
possible to use this same approach for other problems and tasks as
AI and those listed in Section 2, which can be also processed in
this component of the architecture by the GPU. In order to do this
it suffices to do the correct mapping of the objects to the appro-
priate textures and design the corresponding shader responsible for
implementing the algorithm associated to the solution.

The results tabled in Section 5 demonstrate that the use of GPU
for general-purpose computation is a promising way to increase the
performance in game engines, virtual and augmented realitysys-
tems, and other similar simulation applications.

In the most recent graphics processors, as the GeForce 8 series, it is
possible to use one of its GPUs for running a thread responsible for
managing the load balancing between CPU and GPU. The authors
intend to pursue this direction in a future work. Another point to

be investigated is how to detect in a more automatic way which
processes are appropriate for CPU or GPU allocation.

References

BACIU , G., AND WONG, W. S. K. 2003. Image-based techniques
in a hybrid collision detector.IEEE Transactions on Visualiza-
tion and Computer Graphics 9, 2, 254–271.

BOLZ, J., FARMER, I., GRISPUN, E., AND SCHRÖDER, P. 2003.
Sparse matrix solvers on the GPU: conjugate gradients and
multigrid. ACM Transactions on Graphics 22, 3, 917–924.

BOND, A. 2006. Havok FX: GPU-accelerated physics for PC
games. InProceedings of Game Developers Conference 2006.
Available atwww.havok.com/content/view/187/77/.

EBERLY, D. H. 2004.Game Physics. Morgan Kaufmann.

ERICSON, C. 2005.Real-Time Collision Detection. Morgan Kauf-
mann.

FATAHALIAN , K., SUGERMAN, J., AND HANRAHAN , P. 2004.
Understanding the efficiency of GPU algorithms for matrix-
matrix multiplication. InGraphics Hardware 2004, 133–138.

FEIJÓ, B., PAGLIOSA, P. A., AND CLUA , E. W. G. 2006.
Visualização, simulação e games. InAtualizações em In-
formática, K. Breitman and R. Anido, Eds. Editora PUC-Rio,
127–185. (In Portuguese).

GALOPPO, N., GOVINDARAJU, N. K., HENSON, M., AND
MANOCHA, D. 2005. LU-GPU: efficient algorithms for solving
dense linear systems on graphics hardware. InProceedings of
the ACM/IEEE Conference on Supercomputing, 3–14.

GOVINDARAJU, N. K., REDON, S., LIN , M. C., AND
MANOCHA, D. 2003. CULLIDE: interactive collision detection
between complex models in large environments using graphics
hardware. InGraphics Hardware 2003, 25–32.

GREEN, S., 2003. NVIDIA cloth sample. Available at
download.developer.nvidia.com/developer/

SDK/ Individual Samples/ samples.html#
glsl physics.

HEIDELBERGER, B., TESCHNER, M., AND GROSS, M. 2004. De-
tection of collisions and self-collisions using image-space tech-
niques.Journal of WSCG 12, 3, 145–152.

JAMES, D. L., AND PAI , D. K. 1999. Accurate real time de-
formable objects. InProceedings of ACM SIGGRAPH 99, 65–
72.

K IPFER, P., SEGAL, M., AND WESTERMANN, R. 2004. Uber-
Flow: a GPU-based particle engine. InGraphics Hardware
2004, 115–122.

KOLB, A., LATTA , L., AND RESK-SALAMA , C. 2004. Hardware-
based simulation and collision detection for large particle sys-
tems. InGraphics Hardware 2004, 123–132.

KRÜGER, J., AND WESTERMANN, R. 2003. Linear algebra op-
erators for GPU implementation of numerical algorithms.ACM
Transactions on Graphics 22, 3, 908–916.

OWENS, J. D., LEUBKE, D., GOVINDARAJU, N., HARRIS, M.,
KRÜGER, J., LEFOHN, A. E., AND PURCELL, T. J. 2007. A
survey of general-purpose computation on graphics hardware.
Computer Graphics Forum 26. To appear.

RUMPF, M., AND STRZODKA, R. 2005. Graphics processor units:
New prospects for parallel computing. InNumerical Solution
of Partial Differential Equations on Parallel Computers, vol. 51
of Lecture Notes in Computational Science and Engineering.
Springer-Verlag, 89–134.

VALENTE, L., CONCI, A., AND FEIJÓ, B. 2005. Real time game
loop models for single-player computer games. InProceedings
of the IV Brazilian Symposium on Computer Games and Digital
Entertainment, 89–99.

VALENTE, L. 2005. Guff: um framework para desenvolvimento
de jogos. Master’s thesis, Universidade Federal Fluminense. (In
Portuguese).

ZAMITH , M. P. M., CLUA , E. W. G., CONCI, A., MOTENEGRO,
A., PAGLIOSA, P. A., AND VALENTE, L. 2007. Parallel pro-
cessing between gpu and cpu: Concepts in a game architecture.
IEEE Computer Society, 115–120. ISBN: 0-7695-2928-3.

ZELLER, C. 2005. Cloth simulation on the GPU. InACM SIG-
GRAPH 05: ACM SIGGRAPH 2005 Sketches.

