The GPU Used as a Math Co-Processor in Real Time Applications

Marcelo P. M. Zamith Paulo A

Esteban W. G. Clua
Aura Conci
Anselmo Montenegro
Instituto de Computacao
Universidade Federal Fluminense

Abstract

This paper presents the use of GPU as a math co-processai-in re
time applications, in special games and physics simulat@ame
loop architecture is used to validate the use of GPU such #is ma
and physics co-processor, thus it is shown by this paper ayaeve
loop architecture that employs graphics processors (GRUggn-
eral-purpose computation (GPGPU). A critical issue in fietd

is the process distribution between CPU and GPU. The predent
architecture consists in a model for distribution and oyslemen-
tation showed many advantages in comparison to other agipesa
without a GPGPU stage.

The architecture presented here was mainly designed toogupp
mathematics and physics on the GPU, therefore the GPU gstage i
the model proposed works to help the CPU such as a math co
processor. Nevertheless, any kind of generic computatonbe
adapted. The model is implemented in an open source gameeengi
and results obtained using this platform are presented.

Keywords:: game loop, GPGPU, co-processor.

Author’s Contact:

{mzamith,esteban,aconci,anselr@ic.uff.br
*pagliosa@dct.ufms.br
*lvalente@inf.puc-rio.br

1 Introduction

New graphics hardware architectures are being developéd wi
technologies that allow more generic computation. GPGPU
(general-purpose computation on GPUs) became very impgorta
and started a new area related to computer graphics resédrish
leads to a new paradigm, where the CPU — central processihg un
— does not need to compute every non-graphics applicattueis
However, not every kind of algorithm can be allocated for@rU

— graphics processing unit — but only those that can be retluce
to a stream based process. Besides, even if a problem isadequ

Departamento de Computacao e Estatistica
Universidade Federal de Mato Grosso do Sul Departamento de Informatica

Luis Valente
VisionLab/IGames

. Pagliosa

PUC-Rio

For instance, many real time graphics applications rerfigestene
more than 60 frames per second, but execute physics or iattific
intelligence simulations less frequently. Almost evergeo display
has arefresh rate of 60 Hz, when rendering more than 60 frpares
second, many of the calculated frames are discarded. |Taisis,

it would be convenient to reduce graphics calculations aoctase
the other ones.

As itis not always possible to tell which processing rout®(or
CPU) a problem should go through, it is important that thenia
work or engine being used for the application developmeriieto
responsible for dynamically allocating jobs.

This paper proposes a new architecture for a correct andeeffic

. semi-automatic process load distribution, considerirad tisne ap-

plications like games or virtual reality environments. Tise of
"GPU in this model has focus to help the CPU at processing of
mathematics and physics such as mathematic co-procesbar. T
presented idea is implemented in an academic open source gam
engine [Valente 2005].

The paper is organized as follows. Section 2 summarizes #ie m
functionalities of a physics engine currently being depelb and
that is integrated into the academic framework, as a comyone
The purpose of that section is to identify which math opersti
are more suitable for implementation on GPU. Section 3 pitsse
related works. Section 4 describes the architecture of dveork
adopted and its GPGPU shader support, as well as a first mardel f
distributing tasks between CPU and GPU. Section 5 presesits-a
ple example and results. Finally, Section 6 points out agichs
and future works.

2 Math and Physics on GPU

The ODE (Open Dynamics Engine) was integrated to the frame-
work by the authors. This open source component is respid@sab
for real time dynamic simulation of rigid and elastic bodasd
corresponds to one of the state-of-the-art tools availalolghysics
simulation. A rigid body is a (possibly continuum) particgs-
tem in which the relative distance between any two particlger
changes, despite the external forces acting on the systeestdte

for GPU processing, there can be cases where using the GPU toX (¢) of a body at time is defined as [Feijo et al. 2006]:

solve such problems is not worthy, because the latency gester
by memory manipulation on the GPU can be too high, severely de
grading application performance.

Many mathematics and physics simulation problems can Ineifor
lated as stream based processes, making it possible tddiistr

1)

them naturally between the CPU and the GPU. This may be ex- whereX is the world position of the center of mass of the baglis

tremely useful when real time processing is required or wiem
formance is critical. However, this approach is not alwdyesrmost
appropriate for a process that can be potentially solvetjugriaph-
ics hardware. There are many factors that must be considered

a quaternion that represents the rotation of the localeafa frame
of the body in relation to the world fram& is the world linear
momentum and. is the world angular momentum of the body. The
main functionality of a physics engine is, known the stXi¢),

fore deciding if the process must allocate the CPU or the GPU. to determine the next stad&(t + At) of each rigid body into the
Some of these factors may be fixed and some may depend on thescene, wheré\t is the time step. This task involves the integration

process status.

A correct process distribution management is importartvforrea-
sons:

e [tis desired that both the GPU and the CPU have similar pro-

cess load, avoiding the cases where one is overloaded and the

other is fully idle;

e [t is convenient to distribute processes considering whieh
chitecture will be more efficient for that kind of problem.

of theequation of motiomf a rigid body [Feij6 et al. 2006]:
v(t)

d _ |zw®a(®)
Ex(t) - F(t():l) (2)
(1)

wherev = m~'P is the world linear velocity of the center of mass
of the body,w is the quaterniof0, w], w = I"'L is the angular
velocity of the body,F is the external force and is the external

torque applied to the body, and andI are the mass anidertia
tensorof the body at time, respectively.

Equation (2) is a first order ordinary differential equati{@DE);

the component of a physics engine responsible by its intiegra
(usually by applying a numerical method such as Runge-Kutta
fourth-order) is calledDE solver

Generally, the motion of a rigid body is not free, but subjeaton-
straintsthat restraint one or momegrees of freedofDOFs) of the
body. Each constraint applied to a body introduces an unknow
constraint forcethat should be determined by the physics engine
in order to assure the restriction of the corresponding DQi-
straints can be due foints between (usually) two bodies and/or
(collision or resting contactbetween two or more bodies [Feijo
et al. 2006].

In order to compute the contact forces that will prevent rinte
penetration of bodies, a physics engine needs to know at time
the set ofcontact pointdbetween each pair of bodies into the scene.
The contact information includes the position and surfamenal at
the contact point, among others. This task is performed lyna c
ponent integrated to the engine responsiblecfalision detection
which can be divided in Broadand anarrow phase [Ericson 2005].

In the broad phase only a sort of (hierarchies of) boundidgnaes
containing the more complex geometric shapes of the bodes a
checked for intersecting; if they do not intersect, theilibs do not
collide. Otherwise, in the narrow phase the shapes thessele
checked for intersecting and the contact information is mated.

Once found the contact points, the physics engine must tame+
ously compute both the contact and joint forces and appies to
the respective bodies. Mathematically, this can be fortedlas a
mixed linear complementary probleftCP), which can be solved,
for example, by using the Lenke’s algorithm [Eberly 2004heT
task is performed by a component of the engine cdlléé solver

In short, the main tasks performed at each time step durmgith-
ulation of a scene made of rigid bodies are: collision déiact
collision handling, and resolution of differential equets.

For collision detection, GPUs can be used as a co-proceesor f
accelerating mathematics or for fast image-space-bagsetsét-
tion techniques [Ericson 2005]. These ones rely on ragterithe
objects of a collision query into color, depth, or stenciffers
and from that performing either 2D or 2.5D overlap tests to de
termine whether the objects are in intersection [Baciu armhyV
2003; Govindaraju et al. 2003; Heidelberger et al. 2004¢tiSa 5
presents an illustrative implementation.

The ODE solver is a component that can be also efficiently im-
plemented on GPU, since the integration of Equation (2) fagid
body is performed independently of the other ones (theeefopar-
allel). Besides, data in Equations (1) and (2), which arateel to
the state of a rigid body and its derivative, can be easilyeno
and read from streams; the implementation of a method sueh as
Runge-Kutta solver on GPU (the arithmetic kernel) is alsaight-
forward.

In the literature there are many works on solving ODEs on GRgY,
pecially those related to (discrete) particle system satioh. For
example, Kipfer et al. presented a method for this includirigr-
particle collisions by using the GPU to quickly sort the et to
determine potential colliding pairs [Kipfer et al. 2004h & simul-
taneous work, Kolb et al. produced a GPU particle systemlaimu
tor that supported accurate collisions of particles wittngcgeom-
etry by using GPU depth comparisons to detect penetratioth[K
et al. 2004]. Related to particle systems is cloth simuhgt®reen
demonstrated a very simple cloth simulation using Verletgra-
tion with basic orthogonal grid constraints [Green 2003kller
extended this work with shear constraints that can be ictigedy
broken by the user to simulate cutting of the cloth into npuleti
pieces [Zeller 2005].

Realistic physical simulation of deformable solid bodissrore
complicated than rigid ones and involves the employmentiofer-
ical methods for solving the partial differential equasofiPDES)

on a subdivision of the volume or surface of a solid in a mesh of
discrete elements (e.g. tetrahedrons or triangles); mettieally,

the PDEs are transformed in systems of equations that, ohads
give the solution of the problem at vertices of the mesh.

Two domain techniques are the finite differences and fingmeht
methods (FEM). The former has been much more common in GPU
applications due to the natural mapping of regular gridhéotéx-

ture sampling hardware of GPUs. Most of this work has focused
on solving the pressure-Poisson equation that arises idisicecte
form of the Navier-Stokes equations for incompressiblelfflow.

The earliest work on using GPUs to solve PDEs was done by Rumpf
and Strzodka [Rumpf and Strzodka 2005], where they distess t
use of finite element schemes for PDE solvers on GPUs in detail

The current research of some of the authors on deformable bod
ies initially considers perfect linear solids only, whiaie governed

by Navier equation. The solving technique is based on thadbou
ary element method (BEM) with use of the Sherman-Morrison-
Woodbury formula to achieve real time responses, as sug)@st

the work of James and Pai [James and Pai 1999]. One of the possi
bilities of GPGPU is to use the GPU as a math co-processonfor i
plementation of a number of techniques for numerical compgut
mainly those ones for matrix operations and solving lingatesms

of equations.

The design of an architecture for process distribution isitical
issue for an efficient collaboration between CPU and GPU. The
present work implements some of the mentioned calculatioos

der to validate and test this distribution strategy. Vergdjoesults

are achieved as discussed in Section 5.

3 Related Works

GPGPU is a research area in expansion and much promising earl
work has appeared in the literature. Owens et al. presemveyson
GPGPU applications, which range from numeric computing-ope
ations, to non-traditional computer graphics processeghysical
simulations and game physics, and to data mining, amongsthe
[Owens et al. 2007]. This section cites works related to naaith
physics of solids on GPU.

Bolz et al. [Bolz et al. 2003] presented a representatiomfatri-
ces and vectors on GPU. They implemented a sparse matris-conj
gate gradient solver and a regular grid multigrid solver@Us,
and demonstrated the effectiveness of their approach by tisése
solvers for mesh smoothing and solving the incompressiblaey-
Stokes equations.

Kriiger and Westermann took a broader approach and presente
a general linear algebra framework supporting basic ojpaist

on GPU-optimized representations of vectors, dense reatrand
multiple types of sparse matrices [Kriiger and Westerm&@3R
Using this set of operations, encapsulated into C++ clagséger

and Westermann enabled more complex algorithms to be hitfiit w
out knowledge of the underlying GPU implementation.

Galoppo et al. [Galoppo et al. 2005] presented an approaefiito
ciently solve dense linear systems. In contrast to the spaggrix

approaches, they stored the entire matrix as a single 2Dreexl-

lowing them to efficiently modify matrix entries. The resuthow

that even for dense matrices the GPU can to outperform higtdy
timized ATLAS implementations.

Fatahalian et al. did a general evaluation of the suitgtlitGPUs
for linear algebra operations [Fatahalian et al. 2004].yTibeused
on matrix-matrix multiplication and discovered that thegeera-
tions are strongly limited by memory bandwidth when impleieel
on the GPU. They explained the reasons for this behavior emd p
posed architectural changes to improve GPU linear algetnfap
mance.

Full floating point support in GPUs has enabled the next step i
physically based simulation: finite difference and finitereént
techniques for the solution of systems of partial diffei@nequa-
tions. Spring-mass dynamics on a mesh were used to implement

that govern the behavior of the bodies. Such methods aralbase basic cloth simulation on a GPU [Green 2003; Zeller 2005].

Recently, NVIDIA and Havok have been shown that rigid bodhy-si
ulations for computer games perform very well on GPUs [Bond
2006]. They demonstrated an API, called Havok FX, for rigid
and particle simulation on GPUs, featuring full collisidmestween
rigid bodies and particles, as well as support for simugatmd
rendering on separate GPUs in a multi-GPU system. Runniray on
PC with dual NVIDIA GeForce 7900 GTX GPUs and a dual-core
AMD Athlon 64 X2 CPU, Havok FX achieves more than a 10 times
speedup running on GPUs compared to an equivalent, highiy op
mized multithreaded CPU implementation running on the-doaé
CPU alone.

Havok FX supports a new type of rigid body object called dgbri
primitive. This one is a compact representation of a 3D dbjec
on possible collision that can be processed via shader n&@el
(SM3.0) in a very efficient manner. Debris primitives can be-p
modeled as part of a game’s static art content or generatéldeon
fly during game play by the CPU, based on the direction and in-
tensity of a force (e.g. brick and stone structure blown apara
cannon blast). Once generated by the CPU, debris primiteve e
dispatched fully to the GPU for physical simulation and firei-
dering. Debris primitives can also interact with game-piaical
objects, through an approach that provides the GPU with a one
way transfer of critical information that allows debrisrpitives to
respond to game-play objects and large-scale world defirsiti

Itis important to mention that, despite the number of workgaded
to GPGPU available in literature, no work deals with the éssti
distribution of tasks between CPU and GPU, as proposed here.

4 GPU-CPU Process Distribution Model

For games and other real-time visualization and simuladiopli-
cations, there are many different known loop models, sudhas
simple coupled, synchronized coupled and the multithresaur
pled [Valente et al. 2005].

| read player input |<_

A 4

| update(t) |

I render I

t=calulate
elapsed time

Figure 1: Simple coupled model.

Basically, these architectures arrange typical proceasseb/ed in
a game in different manners, but always inside a main looge Th
processes consist of the following ones: data input (fropb&ard,

joystick, mouse, etc.), update — especially physics, eidifintel-
ligence (Al), and application logic — and rendering.

In the simple coupled model, the stages are arranged séajlyent
as shown in Figure 1.

| read player input |<_

| update(t) |

t=calulate
elapsed time

render

N -

Figure 2: Multithread uncoupled model.

The multithread uncoupled model, depicted in Figure 2, isgpa
the update and rendering stages in two loops, so they camfun i
dependently from each other. In this model, the input anchtepd
stages can run in a thread, and the rendering stage can nuothrea
thread.

As presented before, the described models comprise thaigesst
input, update, and rendering. With the possibility of using GPU
for generic computation, this paper proposes a new modidca
multithread uncoupled with GPGRU his model is based on the
multithread uncoupled model with the inclusion of a new siatg-
fined as GPGPU. This architecture is composed of threadspone
the input and update stages, another for the GPGPU stagéhend
last one for the rendering stage. Figure 3 depicts a sche negtie-
sentation for this approach [Zamith et al. 2007].

In the parallel programming models, it is necessary to dethich

are shared and non-shared parts, which will be treatedreliftly.

The independent sections compose tasks that are processad i
allel, like the rendering task. The shared sections, likeGPGPU
and the update stages, need to be synchronized in order to gua
antee mutual-exclusive access to shared data and to peetssk/
execution ordering.

Although the threads run independently from each othes rieces-
sary to ensure the execution order of some tasks that hagegso
ing dependence. The first stage that should be run is the ejpdat
followed by GPGPU stage, while the render stage runs in legaral
to the previous ones. The update and GPGPU stages are riggpons
for defining the new game state. For example, the former lzks
the collision response for some objects, whereas the ld¢tiémes
new positions for the objects. The render stage presentesiidts

of current game state.

The processing dependence of shared objects needs to use a sy
chronization object, as applications that use many thrdad#ul-
tithread programming is a complex subject, because the tagke
application run alternately or simultaneously, but nogdirly.

| read player input |<_

y

| update(t) |

t=calulate
elapsed time

render

N -
N -

Figure 3: Multithread uncoupled with GPGPU model

GPGPU

Hence, synchronization objects are tools for handling tegten-
dence and execution ordering. This measure should alsorbe ca
fully applied in order to avoid thread starvation and deekio The
current implementation of the presented model uses semephe
synchronization object.

The framework architecture provides the abstract classratis\p-
pRunner to run a generic application. The methods in thaselzp-
resent game loop stage and other system events, that aatotlisg
during the application life cycle. The approach presentethis
work implements the concrete class GPGPUAppRunner, dkrive
from AbstractAppRunner, which is a composed by a main loap an
two thread objects.

AbstractAppRunner

GPGPUAppRunner

|GameLoopThread F GPGPUL oopThread

AbstractTask

CollisionTask

Figure 4: Main classes of the proposed model

5 Example and Results

The case study implements collision detection among moving
solids. In a previous version, the collision detection paswas im-
plemented entirely on CPU, in the updated stage. The subsequ
version shows how this process can be performed in the GPGPU
stage.

The use of GPU for general-purpose computation requires an
OpenGL extension called FBO (frame buffer object). A FBO is
configured from parameters related to the storage formaitiites

in the GPU, the floating point precision (the floating poirggsion

is 32bit IEEE standard), and the texel components (RGBArcolo
channels). The concrete class GPGPU encapsulates detmlsl¥

ing the FBO setup and the fragment shader program. This class
defines and implements methods that help complex manipualati
of resources, like automatic configuration, texture trarisg (up-
loading to GPU memory and downloading from frame bufferlj an
shader running.

As the GPGPU stage run tasks, it is necessary an intermdalyate
where the tasks will be implemented. Therefore, an intefated
layer is built between the application (the game) and the BPG
class. The objective of the class GPGPU is to create a conzauni
tion interface between the application and the GPU, allgviasks
to be scheduled either for the CPU or for the GPU, with no feter
ence from the developer. To represent the layer, the clastad-
Task was defined. This one holds a GPGPU object which in turn
extends from the GPGPU class. The collision task, whichnelge
AbstrackTask, was defined for implementing collision amsalid
objects.

Two methods of the class AbstractTask deserve specialtiatien
execCPU and execGPU. The former is where the CPU algorithm

The thread objects are instances of two concrete classes:will be implemented, and in the latter is where the GPU atani

GameLoopThread and GPGPULoopThread.
LoopThread, which extends the abstract class Abstractitihee-

The GPGPU-

will be implemented. Therefore, for each task that will be-pr
cessed on GPU is necessary to write a new class that extemds th

fines virtual methods to run the thread loop and to change the class AbstractTask. AbstractThread is an abstract classrtiple-
semaphores. The GPGPURunner loop runs the data input and renments APIs for thread creation and manipulation. The class d

der stages, the GameLoopThread loop runs the update stagje, a

clares a pointer to an object of a class derived from AbsTesit

the GPGPULoopThread loop runs the GPGPU stage. Figure 7 GameLoopThread and GPGPULoopThread are extensions of Ab-

shows the UML class diagram of this architecture.

Even if the tasks should obey a predefined execution ordettieg
multithread approach makes it possible to run the stagadtsine-
ously.

The distribution model presented in this work is fixed, beihg
distribution of the tasks between the CPU and GPU defined-prev
ously. The implementation of a desirable automatic modgrof
cess distribution is a very intricate issue and even motdsfgon-
sidered distribution between two different hardware dedftires:
the conventional CPU and the GPU. Besides, as it was medtione
previously, not all kinds of tasks can be processed by the. GPU

stractThread; thus, GameLoopThread runs tasks on CPU bi-inv
ing execCPU task method, and GPGPULoopThread runs tasks on
GPU by invoking execGPU task method (see UML class diagram
in Figure 7).

The class AbstrackTask holds a vector of pointers to soljdaté.

The method execGPU is responsible for mapping some objept pr
erties to floating point RGBA textures. The properties argtpm,
velocity, and acceleration. As these properties have tHien-
sions, the execGPU method uses three textures, one for egech p
erty. Each value in the property is mapped to a texel in theatex

so the RGB values store those values. Then, the class GPGPU up
loads these textures to the GPU memory. As soon as the texture

are uploaded, the GPU will run the shader progfam- 1) times,
wheren is the number of solid objects in scene. The number of
collision tests generated is

After the shader program runs, the GPGPU class assembles-the
sults in a output texture. A texel in this texture correspotalan
object that was tested. For each texel, the RGB values dtere t
corrected object position and the alpha value indicatesdflésion
was found (one) or not (zero).

n

2
On 2

®)

For example, consider a scene with sixteen objects wheireib-
tions are mapped in a texture. Figure 5 illustrates a singgeasen-
tation of how shader variables (handles) are used to acerskst
where each object position is mapped to a color. The firstleand
points to the first texel of the texture. The second handleemitk
possible to access neighbouring texels by offsetting teeHandle.
Therefore, it is possible to access different solid objeaigl then
to perform collision detection among them.

_EE: |1st shader call
_Eq |2nd shader call

m'fr |3rd shader call
#r |15th shader call

Figure 5: Representation of objects position in texture.

The parallelism between positioning camera and collisitection
happens at a distinct moment. In this case, there is notleksai
among rendering, object update, and collision detectidm Mov-
ing objects represent the part of application that shasssurees.

In the case study, there is parallelism among player inpdiatgand
object rendering, and camera positioning. Figure 6 showishwh
tasks are executed simultaneously and which are executlli}.

So, the render stage and camera update have even happerad, bu
the other hand, collision and update task have never haggene
gether. The alternation is guaranteed by semaphor sigadiebn
the threads, that is, the signals are realized between teadh
(GameLoopThread and GPGPULoopThread) that execute the up-
dated and GPGPU stages (collision task). The synchrooizédi
guaranteed by two variables: RedSync and GreenSync, wlabse v
ues are shared, i.e., the RedSync variable of one threaddstia
same value that the GreenSync variable of the other threlads, T
the tasks are exclusively executed. After time t5 a new titama

e

&-9¢ @4 e
time = t0 time = ti time = 2

Figure 7: Collision between two spheres.

2005]. The hardware used was a Pentium D 3.4Ghz, 1GB of mem-
ory, and a GPU NVIDIA GeForce 6200 AGP.

Two classes of tests were constructed using the framewohie T
first one uses the single coupled synchronized model anditiee o
the multithread uncoupled with GPGPU, as proposed in thikwo
For each class, 10 tests were executed to measure the pngcess
time in the GPU and the CPU. Each class consists in 500 apibsi
between 16 moving solids positioned in the scene in an arlgitr
way, without any user interaction.

Tables 1 and 2 show the results corresponding to the meéthr
with GPGPU and simple coupled synchronized models, respec-
tively. Column labeledotal col. t. represents the time for com-
puting the 500 collisiongotal app. t. is the total running time of

the applicationwork is the effective time in the GPU and CPU (all

of them in seconds), arféPS the number of frames per second.

Table 1: Results: multithread uncoupled w. GPGPU model

total col. t. || total app. t. works FPS
1,578 0,015 0,030000014]| 77,3131
1,938 0,016 0,047000030]| 79,9794
1,703 0,016 0,062999996|| 76,9231
2,219 0,016 0,032000001|| 84,2722
1,719 0,016 0,032000004|| 77,9523
2,093 0,016 0,032000085|| 84,5676
2,234 0,016 0,016000003|| 83,2587
1,968 0,016 0,045999954|| 82,8252
1,312 0,016 0,030999969|| 70,8841
2,203 0,016 0,015999996|| 83,9764

Table 2: Results: simple synchronized coupled model

total col. t. || total app. t. works FPS
22,625 0,016 0,063000096|| 240,442
83,594 0,016 0,330000447|| 242,290
44,234 0,016 0,232999674|| 242,302
27,140 0,016 0,329000170|| 244,068
42,828 0,016 0,266999744|| 240,870
50,063 0,016 0,234000313|| 242,714
14,328 0,016 0,063999999|| 238,554
15,328 0,016 0,126000026/|| 238,192
30,188 0,016 0,109999970]|| 241,420
22,110 0,016 0,172999781|| 240,299

Table 3 represents the comparison of the mean processigg tim

is executed. The figure also shows how tasks are distribited b corresponding to 10 test instances. Lines lab&lB& represents
tween CPU and GPU: main thread runs on CPU and is responsiblethe number of frames per second amark the effective process-
for camera and object update; render and GPGPU threads nuns o ing time, respectively. Linetime, minimal, andmaximum cor-

GPU and are responsible for scene rendering and GPGPUaollis respond respectively to the mean, the minimum, and the marim
detection. processing times of the 10 instances (in seconds).

The results in Tables I, Il and 11l show an increase in perfamnoe
obtained by using the multithread uncoupled model with GBGP
This increase in performance is due to the concurrent exercaf
the tasks.

Figure 7 illustrates two colliding objects. At time tO, bdibdies
are about to collide, and at time t1 they enter a collisiotestat
this moment the shader program is invoked by GPGPU threagl. Th
shader program running on the GPU detects this collisioncand
rects the object positions. At time t2, their positions apelated

because they are read from the FBO. Using the GPGPU component of the architecture considerably

duced the processing time of the collision detection pathefys-
tem. This caused an overall decrease in the processing fithe o
application. Besides, the tests have shown that the frateede

In order to evaluate the proposed model, its performancecams
pared with the original loop model of the framework [Valeatel.

time main thread

]

Render thread
]

GPGPU thread
I

Start application
GameThreadLoop.RedSync = GPGPUThreadLoop.GreenSync
GameThreadLoop.GreenSync = GPGPUThreadLoop.RedSync

min

| update.camera() |

1l
If (GameThreadLoop.Red)
update.objects()
signal(GameThreadLoop.GreenSync)
end If

H -

| update.camera() |

| update.camera() |
II

If (GameThreadLoop.Red)

update.objects()

signal(GameThreadLoop.GreenSync)
end If

@

R

H

| update.camera()

=3

render

render

If (GPGPUThreadLoop.Red)
testCollision()
signal(GPGPUThreadLoop.GreenSync)

end If

If (GPGPUThreadLoop.Red)
testCollision()
signal(GPGPUThreadLoop.GreenSync)

end If

Figure 6: Task parallelism representation

Table 3: GPU and CPU comparatives

GPU CPU
FPS 80,1952100(| 241,1151000
works 0,0345000 0,1929000
time 1,8967000 || 35,2438000
minimal 0,0160000 0,0630001
maximum 0,0630000 0,3300004

crease, to enable GPGPU processing, did not affect thetyjodli
the animation, which was preserved.

6 Conclusions and Future Work

Balancing the load between CPU and GPU is an interesting ap-
proach for achieving a better use of the computational ressun

a game or virtual and augmented reality applications. Bpglthis

it is possible to dedicate the additional free computatipoaver to
other tasks as Al and complex physics, which could not be done
more rigid or sequential architectures.

This work has demonstrated this possibility by introducangew
stage in a multithread uncoupled game engine architectinieh is
responsible for general-purpose processing on the GPW. Was
exemplified by a solution for the collision detection prahldt is
possible to use this same approach for other problems aksl aas
Al and those listed in Section 2, which can be also processed i
this component of the architecture by the GPU. In order tohiio t
it suffices to do the correct mapping of the objects to the @ppr
priate textures and design the corresponding shader reigpofor
implementing the algorithm associated to the solution.

The results tabled in Section 5 demonstrate that the use of GP
for general-purpose computation is a promising way to iaseghe
performance in game engines, virtual and augmented realgy
tems, and other similar simulation applications.

In the most recent graphics processors, as the GeForcee8,seis
possible to use one of its GPUs for running a thread resplenfsib

managing the load balancing between CPU and GPU. The authorsGREEN, S., 2003.

intend to pursue this direction in a future work. Anotherntdd

be investigated is how to detect in a more automatic way which
processes are appropriate for CPU or GPU allocation.

References

BAclu, G.,AND WONG, W. S. K. 2003. Image-based techniques
in a hybrid collision detectorlEEE Transactions on Visualiza-
tion and Computer Graphics, @, 254-271.

BoLz, J., RRMER, I., GRISPUN, E., AND SCHRODER, P. 2003.
Sparse matrix solvers on the GPU: conjugate gradients and
multigrid. ACM Transactions on Graphics 23, 917-924.

BoND, A. 2006. Havok FX: GPU-accelerated physics for PC
games. InProceedings of Game Developers Conference 2006
Available abwww. havok. coni cont ent/ vi ew/ 187/ 77/ .

EBERLY, D. H. 2004.Game PhysicsMorgan Kaufmann.

ERICSON, C. 2005.Real-Time Collision DetectiorMorgan Kauf-
mann.

FATAHALIAN , K., SUGERMAN, J., AND HANRAHAN, P. 2004.
Understanding the efficiency of GPU algorithms for matrix-
matrix multiplication. InGraphics Hardware 2004133-138.

FEIJO, B., PAGLIOSA, P. A., AND CLUA, E. W. G. 2006.
Visualizacao, simulacdo e games. Aiualizacdes em In-
formatica K. Breitman and R. Anido, Eds. Editora PUC-Rio,
127-185. (In Portuguese).

GALOPPO, N., GOVINDARAJU, N. K., HENSON, M., AND
MANOCHA, D. 2005. LU-GPU: efficient algorithms for solving
dense linear systems on graphics hardwarePrbteedings of
the ACM/IEEE Conference on Supercomputidgl4.

GOVINDARAJU, N. K., RepoN, S., LN, M. C., AND
MANOCHA, D. 2003. CULLIDE: interactive collision detection
between complex models in large environments using graphic
hardware. InGraphics Hardware 200325-32.

NVIDIA cloth sample. Available at
downl oad. devel oper. nvi di a. coni devel oper/

SDK/ I ndi vi dual _Sanpl es/ sanpl es. ht ml #
gl sl physi cs.

HEIDELBERGER B., TESCHNER M., AND GROSS M. 2004. De-
tection of collisions and self-collisions using image-ap&ech-
nigues.Journal of WSCG 1,23, 145-152.

JAMES, D. L., AND Pal, D. K. 1999. Accurate real time de-
formable objects. IProceedings of ACM SIGGRAPH ,9685—
72.

KIPFER, P., SEGAL, M., AND WESTERMANN, R. 2004. Uber-
Flow: a GPU-based particle engine. @raphics Hardware
2004 115-122.

KoLB, A., LATTA, L., AND RESK-SALAMA , C. 2004. Hardware-
based simulation and collision detection for large pagtisys-
tems. InGraphics Hardware 2004123-132.

KRUGER, J.,AND WESTERMANN, R. 2003. Linear algebra op-
erators for GPU implementation of numerical algorithrACM
Transactions on Graphics 23, 908-916.

OWENS, J. D., LEUBKE, D., GOVINDARAJU, N., HARRIS, M.,
KRUGER, J., LEFOHN, A. E., AND PURCELL, T. J. 2007. A
survey of general-purpose computation on graphics haelwar
Computer Graphics Forum 26lo appear.

RUMPF, M., AND STRZODKA, R. 2005. Graphics processor units:
New prospects for parallel computing. Numerical Solution
of Partial Differential Equations on Parallel Computensol. 51
of Lecture Notes in Computational Science and Engineering
Springer-Verlag, 89-134.

VALENTE, L., CoNcl, A., AND FEIJO, B. 2005. Real time game
loop models for single-player computer games Phoceedings
of the IV Brazilian Symposium on Computer Games and Digital
Entertainment89-99.

VALENTE, L. 2005. Guff: um framework para desenvolvimento
de jogos Master's thesis, Universidade Federal Fluminense. (In
Portuguese).

ZAMITH, M. P. M., CLuAa, E. W. G., @®NCI, A., MOTENEGRQ
A., PAGLIOSA, P. A.,AND VALENTE, L. 2007. Parallel pro-
cessing between gpu and cpu: Concepts in a game architecture
IEEE Computer Sociefyl15-120. ISBN: 0-7695-2928-3.

ZELLER, C. 2005. Cloth simulation on the GPU. ACM SIG-
GRAPH 05: ACM SIGGRAPH 2005 Sketches

