
12TH INTERNATIONAL CONFERENCE ON GEOMETRY AND GRAPHICS ©2006 ISGG
6-10 AUGUST, 2006, SALVADOR, BRAZIL

Paper #00

DEVELOPMENT OF A MATHEMATICAL MORPHOLOGY TOOL
FOR EDUCATION PURPOSE

César C. NUÑEZ and Aura CONCI
Federal Fluminense University of Rio de Janeiro, Brazil

ABSTRACT: Morphology (the study of the form of objects) is very important for image analysis
and processing. Mathematical Morphology is a branch of Digital Image Processing indicated to
object and pattern identification. It is based on a new way of consider image representation and
description. It simplifies an image by removing irrelevant details and noises with which the
essential characteristics of the form of objects remain intact. Then it is a very important help on
objects and pattern recognition. For morphological operations on bi level images (i.e. black and
white) we use sets in Z2 (Cartesian product of Integer number set Z). Conventionally, the two
coordinates (x,y) of a image point, in a collection of objects or elements (set), are registered if it
represent one pixel of the object depicted in the image. Pixels of the background are not registered
as an ordered pair. Concepts of set theory as: universal set, intersection, union, complement,
difference, subset, inclusion and reflection are used on the construction of the main operations of
Mathematical Morphology (which are: dilation, erosion, opening and closing). In these operations,
a small set named structuring element is used. The obtained results depend not only of the type of
operation but also of this set. Another characteristic is the construction of new operations using
others previously defined. For example, opening is defined as erosion followed by dilation and
closing is defined as dilation followed by erosion. Mathematical Morphology has been
implemented in this work using a Object Oriented JavaScript environment that can be used for
learning proposes in several different ways. In the simplest way, on the internet, it allows
experiences using the implemented operations (as expansion, contraction, dilation, erosion, opening,
closing, intersection, union, subtraction, complement, reflection, etc). It permits direct experiences
using binary images with any structuring element that can be (both) directly drawn on the screen
using painting tools of various types. For students following a formal course of image analysis it is
possible to try combining operations like top-hat, bottom-hat, hit-miss and any other which have
been previously defined, in a form of script that is composed on the screen of the tool by the user.
New morphological function can be included as a specific function in a new code version in a
manner such as buttons or options from the menu. Combined operations like morphological
watersheds can be added easily. Students of JavaScript language can learn the basic structure of the
program and improve it including new functions since the code is open and well documented.
Students interested on special topics on image analysis, for instance, after trying the functions in a
combined way can use the code in their specific codes. For beginner students taking a course of
mathematical set theory it can be used as a program of self study because its tutorial explains what
is the propose of each stage. In addition, it works as laboratory experiments for use in classrooms.

Keywords: Mathematical Morphology, Image Analysis, Digital Image Processing.

2

1. INTRODUCTION
The Mathematical Morphology is related with
the mathematical sets theory. This way, it
offers a powerful standardized approach to
various image processing. In Mathematical
Morphology the sets represent the object forms
on an image. For example, the set of all black
points on a binary image - considering a
universe of defined points - is a complete
description of this image. On binary images,
the sets in question are members of the
bi-dimensional space of integer numbers (Z2),
in which, each element of the set is a
bi-dimensional vector, are the ordered pair or
the Cartesian coordinate (x,y) of the black
points of the image. Digital images can be
represented by sets whose components are in
larger dimensional spaces, and may contain
other attributes of the image, such as various
levels of gray, color, or components that may
vary with time. In this article, we consider
exclusively binary images that are images
represented only by their black point sets. We
do not present the development of the
mathematical morphology itself; we suppose
that the user is familiarized with this matter.
However, we present some examples that will
make clearer some of the results obtained with
each morphologic transformation, applied
separately, or in group.
The following section 2 lists the tool and its
functions. Then section 3 and 4 treat of the use
of the system showing some examples of
operations. Finally section 5 presets some
conclusion.

2. THE TOOL
The tool introduced in this article is an open
code tool and it has been created to be used on
the main browsers/compatible in the market, as
long as they are supported by CSS (cascade
style sheets) and DOM (Document Object
Model). There is no need for any additional
plug-in or any other components. Its
codification uses object orientation paradigms
and it was developed basically in Javascript. It
makes possible the construction of simple

images in a matrix of 30x30 points, with color
depth of 1 bit (black and white), and it applies
up to 11 transformation operations combined in
any quantity and order.

2.1 Tool’s Objects
The tool has two main classes of objects:
matrixDisplay and imageObject.
The former defines a type of object that is
simulated on the monitor screen. It creates a
square block matrix (each with 9x9 pixels),
which works as the elements of an image in the
user display. This matrix’s dimension can be
dynamically defined, on the creation of the
object’s instance. Each block can assume two
states: black and white, it allows the
representation of images of the bipmap type.
The data about each block’s conditions are kept
in a bi-dimensional array and can be altered
according to the image being viewed. This
image is linked to an object propriety, and at
any moment, the active image can be altered, as
long as a new image is created (also stored as
an array, as commented further) to this
propriety. This class has only one method,
clearDisplay, which is used to clean the display,
changing all blocks into white.
On the demo applicative, two displays have
been created: The main display, with 30x30
blocks, and the Structuring Element display,
with 5x5 blocks.
Main display specifies the proprieties and
methods that will serve to define an image.
Each image has, basically, two proprieties: Its
own identifier, and the bi-dimensional
coordinate array, which represents the active
image’s points. Its five methods are: addPixel;
delPixel; showArray; showImage and
showImage.
The method addPixel adds a new pair of
coordinate to the array, at an specific point in
the display. Method delPixel removes a
determinate pair of coordinates from the array.
Method showArray sets up a string that serves
to represent, textually, the coordinate’s array.
Method showImage shows the linked display’s
image. Method clearAll deletes or annuls the

3

array’s coordinates (destroys the image).
In addition to these two classes, the tool has
various functions which perform tasks related
to interaction with the user and apply on the
image on use the operations, transforming the
original image.

2.2 User interface
The user can interact with the tool through four
distinct areas: The brush area, the main design
area, the structuring element, and operations
definition area. Figure 1 shows the interface of
the tool.

Figure 1: Tool Interface.

Let see the functions of each one. Brush areas,
located on the top-left are used for definition of
the brushes to be used for image construction.
The possible brush type are arranged vertically
on the side, with areas of 1, 2x2, 3x3, 4x4 and
5x5 points. There is also a bucket, that is a tool
for filling quickly an entire area. When clicking
with the brush on a white spot, the
correspondent spots in this area will be painted
black. If the clicked spot has already been
painted, the brush will serve as an eraser,
removing the black points from the area. The

brushes only work on the design area.
Design Area is the area where the original
image and its operations are shoed. It is
presented as a matrix with 30x30 points, where
the on work image is created. This image will
suffer the selected transformations, and the
resultant image will be viewed on the same
position. The work image is linked to the letter
“A” for identification on the transformation
operations. The heading will indicate at the
current time what image is being viewed.
Under the matrix there is a box where image’s

4

coordinate points are showed.
The Structuring Elements area, similar to the
main design area, is a 5x5 point matrix for the
construction of structuring elements. This
element is necessary to compute many
operations like dilation, erosion, opening and
closing operations. Here the brush size is
always 1 point, independently from whatever is
selected.
On the right hand side there is a box showing
the coordinate of the structuring elements
points. Under the matrix there’re also buttons
for cleaning the design and for hiding/showing
the coordinate box.
The operations definition area is the location
where the used defied the transformations to be
applied to the image. It permits to specify
cascade of operational transformation which
will be sequentially used. The controls in this
box are concentrated in five operations: Add;
delete; make; quick access; done and open help
file. They promote the addition of a new
operation to the stack; remove the non-selected
operations from the stack; make the work
image the active image in the design matrix;
allow a quick access to the work image without
making it the active image; perform the
operations stored in the stack; and open the
help file.

2.3 Shortcut keys
The interface has the following shortcut keys,
correspondent to the interface visual controls:
TAB changes the brush size, sequentially;
1,2,3,4,5,6 turns possible to select directly the
brush size; “1” being the smallest, and “6” the
bucket;
DELETE cleans the main matrix active image.
If the active image is the resultant image, the
work image becomes the active image;
F2 key hides or exhibits the box with the active
image coordinate on the main matrix;
DEL (in numeric keyboard part) clears the
structuring element’s image;
F4 key hides or exhibits the box with the
structuring element’s coordinate;
+ (plus key in the numeric keyboard) adds an

operation to the operation stack;
- (minus key also in the numeric keyboard)
removes the non-selected operations from the
operation stack;
F1 key opens a pop-up window with the help
file;
ESCAPE key makes the work image the active
image of the main matrix;
SPACE BAR key exhibits the work image on
the main matrix, without making it the active
image. When releasing the space bar, the active
image returns as the resultant image;
ENTER key performs the operations selected
from the stack;

3. CONFIGURING A SEQUENCE OF
TRANSFORMATIONS
This section will show how to make successive
operations. To configure a sequence of
transformations, the user must perform the
following operations:
Click the add operation button.
The first box has letter “A”, already, that
represents the work image. The first selected
operation must always have letter “A” in this
box.
The user then selects the operation from the
list-box. The dilation, erosion, opening, and
closing operations will exhibit the structuring
element (SE), which will appear in the next
box.
In case oft the selected operation not be one of
the above, the next field can be used with the
application of the operation on another image
that has already been calculated (each image
may be represented by one letter only).
In the last field to the right of each operation
one letter has to be chosen for the resultant
image. This letter can be used in other
operations, if one wants to apply
transformations on cascade.
In case of many cascade operations, the
resultant image will be the answer to the last
operation, or their sequence, if they have been
configured on cascade form. To cascade the
operations, the letter of the last field has to be

5

the same as the letter of the first field of the
next operation. Figure 2 illustrates an example
of two cascade operations:

Figure 2: Cascade operations.

The first operation is dilation, applied to image
“A” (work image) through the structuring
element (SE), which resultant image is
associated to letter “B”.
The second operation is a reflection, applied to
image “B” (calculated on the previous
operation), which resultant image is associated
to letter “C”.
Since there is not any more selected operation,
image “C” will be exhibited in the main matrix
as the final image, and it is the result of the
transformations of dilation and reflection,
applied in this order to image “A”.

4. EXAMPLES OF TRANSFORMATION
This section will show some figure examples of
image transformation by applying some of the
operations implemented in the demo
applicative.

Figure 3: Work image and expansion applied

with “four” neighborhood.

Figure 4: Work image and expansion applied

with “eight” neighborhood.

Figure 5: Work image and contraction applied

with “four” neighborhood.

Figure 6: Work image and erosion applied with

a 3 point-side square Structuring Element.

Figure 7: Work image and expansion with

“eight” neighborhood followed by subtraction
of the work image itself.

6

Figure 8: Work image subtracted by a
contraction with “four” neighborhood.

Figure 9: Work image and its complement.

Figure 10: Work image and its reflection on the

vertical and horizontal axes.

5. CONCLUSIONS
The tool presented in this article may be of
great help to the study of Mathematical
Morphology applied to image’s analysis. Its
capacity to perform morphologic
transformation operations in real time
aggregates value to class explanations. It can be
used as an experimental lab in the classroom or
at the student’s home. Due to its simplicity and
portability (can be stored on a floppy disk), it
can be used on PCs, through private networks,
or even through internet, since it only requires
a browser to be executed. In addition, it has an
open code, and it may receive new

implementations which will add a greater
number of morphologic operations to it, as to a
gain in performance. On this way it can be used
also in Javascript classes. This tool can be
accessed or downloaded directly in
http://www.ic.uff.br/~aconci/morphologytool.zi
p or by the site www.ic.uff.br/MM.html, where
users can also make the download of the
source-code.

REFERENCES
[1] Gonzales, R. C. and Woods, R. E.
Processamento de Imagens Digitais. Editora
Edgar Blücher (2003), 369-402.
[2] Facon, J. Morfologia Matemática:
teoria e exemplos. Curitiba, 1996
Website: http://www.ppgia.pucpr.br/~facon/
MorfologiaMatematica/ApostilaMorfoBinaria.z
ip
[3] Serra, J. Image Analysis and
MAtematical Morfology, Academic Press,
Londos, 1982
Website: http://cmm.ensmp.fr/^serra/cours/

ABOUT THE AUTHORS

1. César de C. Nuñez received his BSc in
Industrial Design and Graphic Design from the
University of Rio de Janeiro (Brazil) in 1980.
At present, he is a MSc student at Computer
Institute in the Federal Fluminense University,
in the field of Visual Computation and
Interface research, and he is also a teacher of
the graduate course (lato sensu) on Internet,
Interface and Multimedia at the same university.
His areas of interests are: Interface studies,
Graphic Computation, and Image Processing.
He can be reached by e-mail: cnunez@ic.uff.br.

2. Aura Conci, Dr.Sc. (since 1988) is
currently titular professor in the Department of
Computer Science in Federal Fluminense
University at Niteroi (Brazil). Her research
interests include Biomechanics, Applications of
Computer Vision and Image Processing. She
can be reached by e-mail: aconci@ic.uff.br
Website: http://www.ic.uff.br/~aconci.

