
Real-Time Collision Detection and Response
FABIO POLICARPO1,2 AURA CONCI2

1Paralelo Computação, http://www.paralelo.com.br, R. Otávio Carneiro, 100/907, Niterói, RJ, Brasil
2Instituto de Computação – UFF, R Passo da Pátria 156, 24210-240 Niterói, RJ, Brasil

fabio@paralelo.com.br , aconci@ic.uff.br
Abstract. A new collision detection and response algorithm for axis aligned bound box (AABB) is here presented. It is
perfect visually also in very complex scenarios and extremely efficient on real-time application. It was tested for interaction
with complex scene geometry made of convex polygons organized in a BSP tree. The algorithm is very useful for real-time
3d simulations and 3d games where the player and most of the dynamic game objects can be represented as AABB for
collision detection. The algorithm presented is for the case of a AABB colliding with a convex polygon of any number of
edges. The algorithm has been implemented in a game (where actors present complex behavior) and tested over a huge
number of level geometry configurations.

1 Introduction
It goes without saying that good collision detection is critically
important in a game. What does 'good' mean? Brute force
polygon object/polygon object is too expensive and we must
make some compromise for the sake of efficiency. Consider now
the nature of the bounding box. There is a well known and well
researched trade-off between the shape of a bounding volume, its
bounding efficiency and its processing cost. It is also the case
that in many demanding applications bounding volumes are
arranged into hierarchies. In our case we have chosen to use
AABBs (axis aligned bounding boxes) to bound dynamic objects
and to embed them in a method that very quickly checks for
collision between such a box and a BSP processed complex
level. The algorithm presented is for the case of a AABB
colliding with a convex polygon of any number of edges but it
can be easily extended to handle other types of geometry like
dynamic LOD Bezier surfaces and triangle soups. The algorithm
has been implemented and tested over a huge number of level
geometry configurations. The implementation extends the
concepts presented here to curved faces and other types of
geometry supported by the engine. The collision detection is
accomplished by using the following basic intersection checks:
ray/polygon intersection check; ray/AABB intersection check;
edge/edge intersection check.

2 Collision detection and collision response
We first separate the collision detection from the collision
response. The main collision detection function will be called
with a local AABB (minimum and maximum points relative to
its origin), the current position (p1) - the position the object
reached in the previous frame - and the desired destination
position (p2) - the position the object wants to move to in the
current frame (Fig 1-left). The function will check if the supplied
AABB can move from p1 to p2 and, if a collision is found, it
will process it applying the collision response code and recourse
to compute the path required by the movement. For a simple
box/face intersection as in Fig 1-center, only two loops will be
required. The first collision moves the box to p1' and computes
the new destination position p2' using the response code. Then it
loops again doing collision detection for moving from p1' to p2'.
As no collision is found between p1' and p2', it will stop the loop
and return the p2' as the current position for the AABB. In some
cases more loops are needed as in the case of another collision
being found between p1' and p2'. The collision detection method
has to find if a box defined by its minimum and maximum
points, moving from point p1 to point p2, will collide anything.
To achieve this we will need to perform several computations,

but fortunately we can cull several of them with simple dot
product tests, and thus facilitating real-time performance. Lets
consider the AABB defined by a set of 8 vertices, 12 edges and 6
faces. We then need to compute the closest collision of the
following set: collision of each of the 8 vertices of the AABB
with the scene geometry (ray/polygon intersection); collision of
each of the scene geometry vertices with the 6 faces of the
AABB (ray/AABB intersection); collision of each of the 12
edges of the AABB with every other scene edge (edge/edge
intersection). It looks like a lot of computation but culling allows
us to reduce the computation to a minimum and only compute
the vertices and edges that could actually generate a collision.
First we start by creating a temporary bound box that will
enclose the two (original and destination) bound boxes (Fig 1-
right). This super AABB must then enclose the AABB of the
moving object when and if it collides with a static object. This
box then facilitates the first culling operation. We use this
bounding box to recourse the BSP tree and find the BSP tree leaf
nodes that intersect the temporary bounding box. For all the
faces in these leaf nodes we cull their bounding boxes with the
temporary bound box using the very simple and fast code that
checks if two AABB intersects.

3 Conclusions
We presented a very efficient and precise way of determining the
collision of an AABB with a complex scene made of convex
polygons organized in a BSP tree. Collision response is also
treated and the algorithm can be extended to other types of
geometry commonly used in games like curved surfaces and
detail geometry made of triangles. The full version of this paper
with detailed implementation and demos can be found at the web
site http://www.fly3d.com.br.
4 References
[1] Fly3D Game Engine, Paralelo Computação Ltda, www.fly3d.com.br.
[2] Alan Watt and Fabio Policarpo, 3D Games Technology, Addison-
Wesley (2000).
[3] Alan Watt and Fabio Policarpo, The Computer Image, Addison-
Wesley, (1997).

min

p1

ma

dir

p p1’

p2’

p2

scene

p2

Fig 1 AABB defined by max and min points moving from p1 to
p2 (left) Collision detection/response recursion. AABB was
moving from p1 to p2. Recursion continues until no collision is
found (center). Results on collision detection (right)

