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A contribution to the automatic 3-D reconstruction of complex
urban scenes from aerial stereo pairs is proposed. It consists of
segmenting the scene into two different kinds of components: the
ground and the above-ground objects. The above-ground objects are
classified either as buildings or as vegetation. The idea is to define
appropriate regions of interest in order to achieve a relevant 3-D re-
construction. For that purpose, a digital elevation model of the scene
is first computed and segmented into above-ground regions using a
Markov random field model. Then a radiometric analysis is used to
classify above-ground regions as building or vegetation, leading to
the determination of the final above-ground objects. The originality
of the method is its ability to cope with extended above-ground ar-
eas, even in case of a sloping ground surface. This characteristic is
necessary in a urban environment. Results are very robust to image
and scene variability, and they enable the utilization of appropriate
local 3-D reconstruction algorithms.  © 1999 Academic Press
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1. INTRODUCTION

o diversity the geometric and thematic diversity of the ob-
jects composing the scene requires the use of various 3-D mc
els, with appropriate detail levels.

e density the high density of above-ground objects (build-
ings and vegetation), often adjacent to each other, leads to me
hidden parts, many shadows, and complex aggregates.

Occluded areas, periodic structures (parallel borders of buil
ings or roads), homogeneous areas (shadows, roofs), and mov
objects (cars, trucks) make the stereoscopic matching process
ten ambiguous. In addition, since large depth discontinuities a
frequent, geometric constraints about the surface must be us
very carefully. The complexity and the diversity of the object:
composing the scene prevent us from using simple 3-D mode
for the reconstruction. The requirements for the reconstructic
itself, i.e., geometric accuracy and detail level, differs signifi
cantly according to the objects and to their context.

Due to these difficulties, the automatic 3-D reconstruction c
urban scenes has rarely been approached in a global way. M
studies have focused on the local reconstruction of a certain ki
of buildings.

The first approaches consisted of detecting buildings from
single image [1-4]. Roof elevations can then be retrieved frol

Overthe pastfewyears, the 3-D reconstruction of urban scegggdows [5, 6] or from the lengths of vertical borders [7]. Thi

from images has become a key issue in many applications: gggight of buildings can also be computed by matching structur
tography, urbanism, simulation, monitoring, etc. Much work hagetected in differents images [8—10] or by using independent
been done on the automatic extraction of 3-D information frofyoduced 3-D points [11, 12]. These methods require the buil
urban stereo pairs, including stereo matching, building extragys to be isolated with a rectilinear shape.

tion and reconstruction, or change detection. But urban environ{n, the |ast few years, the analysis of 3-D data such as 3-D line
ments are extremely difficult to handle, for several reasons: 3.p corners, or DEM (digital elevation model) has seen muc

o complexity the 3-D model of the scene is very Comp|exgevelopment. Still these latter approaches have been mos

with many height discontinuities and large differences in heigH:{edicated to the reconstruction of specific buildings: rectilinez
shape [13-16], flat roof [17], or simply parameterizable shay

[14, 18-20]. An attempt to automatically select the approprial
* Currently working at Oxford University, in the Robotics Research Groupl0del has been done in [21]. Some methods based on copla
(Department of Engineering Science). E-mail: caroline@robots.ox.ac.uk. grouping of 3-D lines have been proposed for reconstructir
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generic models of buildings from high-resolution multiple imin images are due to AGO. Hence, they play a decisive role i
agery [22—-24]. However, buildings must still be isolated or Iadhe reconstruction process.
calized in advance. In case of a dense urban environment, wher€his paper is organized as follow: in Section 2 the input
most objects are aggregated to each other, some results tdata are presented and our strategy for segmenting the sce
been provided completely automatically with high resolutiomto above-ground objects is introduced. Section 3 describe
imagery only [25-27]. the main stages of the process: First a graph is produced fro
No satisfying method for an automatic reconstruction fror8-D data; then each node of the graph is classifiegt@sndor
images at a medium resolution (between 50 cm and 1 m @drove-groungfinally the radiometric information is introduced
pixel) has been proposed to date. All methods rely on strotmdefinebuildingandvegetatiorobjects. Results are shown and
assumptions, either about the object geometry or about its claéscussed in Section 4.
neighborhood. The application of local reconstruction methods
appears Fo be esser!tial to successfully reconstruct urban_scenes 2 A FOCUSING STRATEGY FOR THE 3-D
at a medium resolution, becaus_e the number of features is then RECONSTRUCTION OF URBAN SCENES
reduced, and relevant geometric rules about shape can be ap-
plied. 2.1. Input Data and Objectives
Therefore, we believe that a focusing strategy is necessary to o ,
handle complex scenes and overcome the classical limits of 3-D '€ input data are two stereo aerial images, ata medium sce
reconstruction. The approach presented here takes place wiff¥yRically 40 cm per pixel resolution) and panchromatic with 256
a two-stage reconstruction strategy which only needs two stef¥8Y levels. The epipolar geometry is known, which will be usec
images as input. First a global analysis of the scene involviffj Stéréo maiching. The scene can be arbitrarily complex, wit
both radiometry and altimetry produces a coarse but reliable [} restriction on object density or geometry. Figure 1 shows
formation about the whole scene, and regions of interest (RGf) €x@mple of such a stereo pair, on which the method will b
can be defined. Then the local and contextual information fdtistrated. _ . o .
lated to these ROI can be used to drive the local applicationour reconstruction strategy re_Iles ona prellm_lnary detectiol
of relevant reconstruction algorithms. The definition and chafd characterization of AGOs, in order to achieve a relevar

acterization of ROI have many advantages for the reconstrtP reconstruction of the scene. As areas of interest, AGOs d
tion: not have to be accurately delineated, but their detection mu:

be exhaustive. Importantly, the model of above-ground mus
e the selection of relevant features dramatically reduces the generic in order to cope with all typical situations in urbar
number of possible combinations (for grouping methods, fgtenes. Extended above-ground areas of any shape and size,
instance), leading to reduced risk of errors, wooded areas, large buildings, or blocks of houses, must be e
e the characterization of the ROI can be used to select #rely detected. Adjacent buildings and trees, or adjacent builc
appropriate object model or a relevant reconstruction methadgs of different height, must be detected and separated. Tt
in order to get more accurate results, process must also cope with sloping ground or roofs. Figures
¢ the parameterization can be driven by the quantitative iand 3 show typical examples of complex configurations in a
formation provided by the ROI (initialization of active contoursirban environment.
or parametric models, for instance).

If many local reconstruction algorithms have been propo:sé(]2 - Related Work to Above-Ground Detection

already, the issue concerning the detection of ROl from urban im-Little work has been done about automatic above-ground de
agery has rarely been studied. External data can be used, sudbe@ton. It is commonly assumed that the above-ground objec
maps [28] or 2-D GIS [29, 30]. But additional data are not alwayare small or isolated. We have distinguished two classes of met!
available, and their utilization is often difficult. A few methodsds, both based on DEM analysis.
have been proposed for detecting buildings from a DEM, but The first approach consists of subtracting a DTM from the
only in the case of isolated buildings (see Section 2.2 for a qUIBKEEM, where the DTM is usually produced by applying a mor-
review). Given the lack of previous work, our efforts have begshological opening to the DEM (“top hat”filtering). This method
dedicated to the detection of ROI in complex urban enviroiis commonly used for low-resolution imagery (typically satellite
ments. imagery) or for smooth surfaces. But it cannot be applied in al
More precisely, we have been interested in the segmentatigban environment, because the size of the structuring eleme
of the scene into above-ground objects, or AGO, consisting isfa maximal size for what is detected above ground. As a resul
buildings or trees. They are key features of the urban scene, sitieeextended above-ground and urban aggregates (i.e., blocks
they structure it and define relevant areas of interest for a lotalildings and trees), such as those shown in Fig. 2, cannot |
and specific reconstruction. They are also closely related to thetected.
digital terrain model (DTM), which describes the ground surface The other approach to above-ground extraction consists ¢
only. In addition, most surface discontinuities and hidden aressgmenting the DEM into relevant regions. Baltsaweasal.
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FIG. 1. Aerial stereo pair of the suburb of Paris. The images are ¥10824, with one pixel corresponding to a ground length of 40 cm. One pixel differen
in disparity (measured between the two images) corresponds to 96 cm difference in height.

have proposed using a range image edge detector or to gr@up Overview of the Method

heights into consecutive height ranges [31]. This solution is o )
closely related to studying DEM isolines [32]. An alternative |N€ @pproach presented in this paper relies on a global an

solution focused on relative positions between regions has bdfs Of the scene consisting of two modules (see Fig. 4). First
proposed in [17]: the surface is segmented into homogenedtEM IS computed from the images by stereo matching. Then
regions using a classical segmentation algorithm based on Iogafsification stage is performed, which segments the scene i

height discontinuities and then regions are sorted into two group§ © @nd simultaneously produces a DTM of the scene.

according to their relative elevation. However, a very reliable
DEM is required (a multiview matching algorithm is used) and Computation of a DEM. The DEM is computed with the
the classification process is local. It cannot deal with compleutomatic matching algorithm described in [35, 35a]. This algc
situations such as those shown in Fig. 3. rithm has been especially designed for urban environments.
The thematic analysis of above-ground has also often beefies on successive complementary matching steps, all of whi
limited to the selection of isolated buildings according to ceare performed by dynamic programming. It takes advantage
tain shape and size criteria, sometimes involving radiometric looth feature-based and area-based matching strategies.
spectral information [31, 22]. Some attempts have been made td-irst, intensity edges of both images are matched, which pr
distinguish adjacent buildings and vegetation by using textuidlices piecewise continuous 3-D chains. This provides a d
filters and a learning stage on radiometry [33] or by using 3-8cription of the scene structure containing the highest elevati
laser data [34]. of most height discontinuities.

FIG. 2. Two typical examples of above-ground aggregates (details from Fig. 1).
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the areas of the scene which are not visible in both images (o

clusion areas) are not matched to guarantee the reliability of t
| 3-D data. As a result, the DEM is not completely dense, sinc
) x | } these areas have no altimetric information.

| ‘  E— —‘ tinuities preserved, although slightly delocalized. Importantly
b
T

= ez 43 5 Classification. The classification stage is the main issue of
| 5 | this paper. It relies on the following definitions:

e anabove-ground regioiis a part of the scene higher than
the ground, from a critical value, in a given neighborhood;
e e anabove-ground objeis a monothematic (building or veg-

FIG. 3. Examples of ambiguous configurations of DEM (in 2-D), as seen fortatlon) above- ground reglon with Iocally homOgeneous eleve

building silhouettes. A local classification process is not sufficient to separ:; {gns
d . e
the above-ground from the ground, particularly for the regions marked *?’. Note that these definitions are local and only based on raths
low-level information. Itis also assumed that the ground surface

Then the pairs of intervals defined by the matched edgeépresented by the DTM, is continuous with a limited slope.
are matched within a two-step area-based matching process. A block diagram of the classification process is shown ir
strong radiometric similarity constraint is first applied in ordelrig- 6. It uses both radiometry from images and altimetry frorr
to produce only reliable pairs. Then a second area-based matb§-DEM. The first part of the analysis relies on 3-D information.
ing step is performed with a looser radiometric constraint but¥ adjacency graph is derived from the DEM, where a node ref
stronger geometric one (smoothness constraint) to complete figents a region of the scene with homogeneous elevation. Th
3-D information on unmatched areas. This strategy relies on #@ch node of the graph is labeled as ground or above-groun
assumption that local extrema of depth along epipolar lines dfdowing a Markovian labeling scheme. Given these labels, ra
recovered as reliable pairs during the first area-based step. diometric criteria separate building from vegetation nodes. Th

Each matching step is performed by dynamic programmirf\@al above-ground objects (buildings and trees) are produced t
for each pair of epipolar lines. Dynamic programming is a powerging adjacent nodes according to altimetric and topologicz
erful matching strategy, because it provides an optimal soluti§fteria. Each step of the process is detailed in the next sectior
for each epipolar line pair, involving all consistency constraints
along these lines: unicity and order, but also duality between 3. DESCRIPTION OF THE
discontinuity and occlusion. In particular, the hidden parts are CLASSIFICATION PROCESS
not matched. Therefore, local constraints like the disparity rangel Creation of a Graph from the DEM
or thresholds on similarity measure can be released without sig
nificantly increasing errors. This aspect is especially |mp0rtantThe DEM consists of two kinds of points: those 3-D points
in an urban context where differences in height can be very larderived from the matched pixels and those with unknown heigk
around towers and the correlation values very low on homogdef which no correspondence was found.
neous areas. The set of 3-D points is segmented into homogeneous alt

This hierarchical algorithm has proved reliable (producinyde regions by a classical growing and merging algorithm. Thi
few noisy and altimetrically accurate 3-D data), fast, and robugtowing step consists of starting from a point then aggregatin
to image variability. Figure 5 shows the DEM derived from theeighboring points with close elevation (elevation difference
pair of Fig. 1. Itis complete and reliable with all surface discorizelow a thresholdg). Each region is then associated with one

Stereo Aerial Classification
Images Ground / Vegetation / Building

) Segmentation L___T
[ Stereo matching ] [ Clissification ‘l

——
Digital Elevation Digital Terrain
Model (DEM) Model (DTM)

FIG. 4. Global analysis of the scene from a stereo pair: Overview of the method.
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FIG.5. Digital elevation model automatically computed from the pair of Fig. 1 by dense stereo matching. The elevation data are represented in ancorth
system, without perspective distortion. Black pixels have not been unmatched, most often because they are not visible in one of the two images.

representative elevation value. During the merging step, smale extended in the following way: two altimetric regions ar
regions are merged to the neighboring ones with the closestrgighbors in the graph not only when they are adjacent in tt
evation. object space, but also when their projections onto the left or tl

Areas with unknown height elevation points are cakdel right image plane are adjacent (see the example of Fig. 7). Tt
vation gaps The meanu and the standard deviatian of the extension creates neighborhood relations over elevation ge
elevation values along the elevation gap borders are computgdle to occlusions. Through this process, the structure of tl
If o is low, the gap is merged with the adjacent 3-D region witraph is not affected by hidden areas without 3-D information
the closest elevation ta. If o is high, the gap may correspond
to a hidden part related to a discontinuity, and therefore the 92
is kept. This process allows us to locally interpolate undefinéd
points where there is no ambiguity.

An adjacency grapl is then created with the altimetric re- We next label each node of the adjacency gréps ground
gions as nodes, linked by adjacency relations between regions.above-ground. This label is called thature of the node.

As the DEM is not completely dense, adjacency relatiosccording to the definition of an above-ground region given il
are not complete. Some of them are missing because of Bection 2.3, the nature of a node depends on the node itself ¢
remaining elevation gaps due to occlusion areas. In orderdo its neighbors. Thus the decision cannot be taken at a loc
remedy this problem, the graph is completed by involving tHevel only, but requires information taken over extended region
geometry of the views into the neighborhood definition. Mor€his is important in order to detect everything above ground, fc
precisely, the usual neighborhood relations based on adjacemstance low above-ground objects located on a sloping grou

. Binary Classification of Nodes as “Ground”
or “Above-Ground”
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FIG. 6. Block diagram of the classification process for the detection of above-ground objects. The analysis of both the DEM and the radiometry leads
computation of a DTM and an AGO graph.

surface or surrounded by higher regions (like the examples ofThus, the estimation dfl can be formulated as the minimiza-
Fig. 3). Markov random field models represent an adequate wiyn of a potential funtiotdg(N | H) given by

to encode and to manipulate spatial interations between nodes,

and they provide an elegant solution to optimization problems Ug = agUg + acUc. (1)

depending on local interactions [36].
P g [36] e Uy is thedata attachment potentidinking observatiorH

3.2.1. Markovian model. The Markovian hypothesis assu-and descriptoN; it is defined in each siteby a functionVy(s)
mes that a local conditioning is sufficient to determine the distigtescribed in Section 3.2.3;
bution of a random variable on a predefined set, whose elements U is thecontextual potentiadlescribing the consistency of
are callecsites Let us consider that an inputimage is the realizahe descriptoH in view of the considered neighborhood:; it is
tion of a random fielcX, called theobservation fieldOne wants defined for each pair of neighboring sites ) by a function
to extract from the observation a new image as the realizatiys, s') described in Section 3.2.2 (the neighborhood relation:
of a random fieldY called thedescriptor field The descriptor have been limited to the 2-order cliques).
field Y is said to beMarkovianif the value taken in a Siteonly ® oy andac are We|ght|ng parameters an andUc such as
depends on the configuration of its neighboring sites (obserygr+ o, =1

tion and descriptor values). The optimization problem is then be
formulated as a minimization of a potential. Let us note thah(s) andn(s) are the values oH and N,

In our case, sites and neighborhood relations are given rtgé;pectively, taken in a site There are two possible values for
the nodes and arcs of the 3-D gragfirregular meshes). The N(8): N(s) = Gnd (ground site) and(s) = Abv (above-ground
observation field is defined by node elevations and it is denottf)-

by H. The descriptor field is binary (ground, above-ground) and 3 2 2. Contextual potential 6, 5'). It is assumed that

H, meaning that givehi, the value ol in a sitesonly depends peight:

on the neighboring sites af This hypothesis is consistent with
the definition of above-ground given previously. 8(s, s') = h(s) — h(s). (2)
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The functions are made of arcs of a Gaussian to guarantee ¢
tinuity and derivability. Moreover, the derivative is zero arounc
the critical valuesy (or —&g) for the stability of the classification
process.

3.2.3. Data attachment potentialj{¢). There are two ca-
ses to consider according to the naturesoff s is labeled as
ground, thevy(s) is an increasing function of the elevatilo(s).

On the contrary, if is labeled as above-ground, theg(s) is
a decreasing function df(s). The corresponding functions are
shown in Fig. 9.

The functions are parameterized by the elevation vadiyEs,
hi(s), andhy(s). The elevatiorhy(s) is a critical value above
which Vy(s) is favorable to the above-ground nature. Paramete
h1(s) andh2(s) determine the width of both arcs of a Gaussian
Those three parameters are defined according to the local hei
and slope of the ground:

ho(S) = hg,,(S) + do
h1(s) = min(hc,,,(S) + do. hc.4(S)) ®)
hZ(S) = maXCnGmax(S) + 807 hGavg(S) + 280),

wherehg,,(S), he,,,(S), andhg,,.(S) are, respectively, the av-

r minimal, and maximal elevations of the groun rfa
FIG. 7. Neighborhood extension over occlusions. (a) and (b) Left and rigr?t Etlgg,sits al, and ma al elevations of the ground surfa

images of a high building and its close neighbourhood; (c) and (d) corresporq} ) . . .
ing altimetric regions, projected onto each image referential; (e) correspondingAN €stimation of the topographic surfdce is thus necessary
altimetric regions in the object (orthographic) referential. Although the regioiin order to provide the parameter values, ,(s). hg,,,(s), and

RliandRz (resp_ectively& andRy), are not neighbors in the object re_zferential,thax(S) in each sites. Given a set of 3-D points assumed to
nelghborhopd I|nk§ are cre_ated between them, because pf the adjacency O[)tgﬁ)ng to the ground, we suggest performing this estimation |
corresponding regions projected onto the left (resp., the right) referential. . . . .
an appropriate sampling followed by an interpolation step.

More precisely, the elevation image is subdivided into win
dows of similar size. Then one point per window is selected: iti
“aground point located at the most frequent elevation of the wil
dow and as close as possible to the center. The set of the selec
?)%ints over the elevation image is processed by a Delaunay t

be_lfﬁur;d mt'[35]. terizedb iticalvatushichi angulation (in 2-D). Elevations are finally interpolated assumin
efunctions are parameterized by a critical valevhich is that each triangle describes a planar surface [37].

mentionned in the definition of above-ground: it is the maximal An example of a triangulation and the corresponding DT
difference in height between two neighboring ground nodegl,e shown in Fig. 10

Therefore,

Let us noteV(s, ') = V" (8). There are four cases to con
sider according to the value of the pair, (). The appearance
of these functions is shown in Fig. 8 and exact definitions ¢

3.2.4. Optimization process.Above-ground detection and
DTM estimation interact according to the scheme of Fig. 11. O

. one hand, the ground elevations are necessary to paramete
The parametef, characterizes the above-ground: the smallerdte gata attachment potential function. On the other hand, t

is, the more numerous the detected above-ground is. Its minigghye-ground localization is important to filter elevation dat
value is related to the growing threshaig used during the pefore the sampling for DTM computation.

8 < 8o & VOM(E) < VPEM(s), )

segmentation step by the following relati@g=> 25,. Therefore, we suggest the iterative optimization proces
The potential is symmetrical with respectsands’: shown in Fig. 12. The DTM is computed and updated accort
) } ing to the current classification of nodes, and the global enert

Ve (8) = Vg "(=8) V8V(n,n). (4) is minimized over the graph using the DTM ariori infor-

mation. The nodes are initialized as ground, and the process
Moreover, V"8 Abg(«S) = —1V4 because urban scenes can ofteiterated until stability.
be found with two adjacent above-ground objects having veryThe convergence of the process is hot guaranteed, but exf
different heights. iments have shown that a stable state was reached most of
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v Snd,Gnd (3) v é\bgyGnd (8)
0 5 0 3
- 8, 3y - 9 dg
-1 -1
(a) (b)
V((:End,Abv (8) vV /;\bg,Abg (6)
1 R L
0 5 0 5
- 8, 3, - 8y 8o
-1 -1
(c) (d)

FIG.8. Contextual potential functiorMC“/ (8) for each value ofrf, n") versus the difference in height between two sisss’) = h(s) — h(s'). (a) Both sites
ands’ are supposed to be on the ground; (b) Theslhielongs to the above-ground, the sités on the ground; (c) The siteis on the ground, the sit® belongs
to the above-ground; (d) Both sitssinds’ belong to the above-ground.

time. Still an oscillation between two or three different statex3. Characterization of Above-Ground Nodes

can occur. In this case, the nodes whose classification is noas Building or Vegetation

stable (always less than 0.5% of the nodes in our experiments)

are always small in size and they correspond to really ambigu-When each node ofthe 3-D graph has been classified as grou
ous regions. In our experiments they are detected and labeledeabove-ground, the radiometric information is used to separal
“ground.” above-ground nodes into two classes: building and vegetation

vd

ho h2 )/
H T

FIG.9. Data attachment potential fuctid(s) in a sites versus its heighi(s). If h(s) > ho(s) (resp.h(s) < ho(s)), the sitesis more likely to be an above-ground
(resp., ground) node.
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(a) (b}

FIG. 10. DTM estimation: (a) Delaunay triangles produced from the set of selected 3-D ground points; (b) DTM after interpolation of the ground elevat

For that purpose, an analysis of the left radiometric image isFinally, each above-ground node of the graph is associated
first performed, driven by the above-ground location. We uselzge most frequent label of its corresponding pixels (after proje
textural measure described in [38]. Itis a local measure basediom onto the gray-level image).
the entropy of the radiometric gradient directions. For each pixel
of the gray-level image, the histogram of the gradient directios4. Merging into Above-Ground Objects
(modulo %) is computed over a centered neighborhood. The ] ]
entropy of the probability density derived from the histogram is AS @ final step to the segmentation process, AGOs are p
then assigned to the central pixel. A low entropy value denotd4ced by merging together neighboring nodes belonging to t
a main direction of the gradient near the pixel, whereas a higAMme class and separated by a small difference in height. T
entropy value means that the neighborhood is not structuré@flogy between nodes is propagated to the object level.
The threshold on the entropy values is computed automaticallyAGOs are then the nodes of a new graph called@® graph
through an appropriate resampling described in [38]. _(see Flg_. 13), which capture_s not on!y altimetric and themaﬂ

The textural measure is associated to the altimetric classififormation, but also topological relations between the object
cation and to additional radiometric and topological criteria, in
order to segment the gray-level image into three classes: ground, 4. EXPERIMENTATION AND DISCUSSION
building, and above-ground vegetation. The additional radio- o )
metric and topological criteria express general knowledge about! "€ AGOs and the classification obtained from the data
the scene such as the facts that vegetation is dark or that srhit 1 are shown in Figs. 15 and 17a. Figure 14 shows anott
above-ground vegetation areas surrounded by lower buildirfg@mPple of aerial image and corresponding DEM, and Figs. -
are unlikely (see [35] for details). These criteria are importaA'd 17b show the results of the classification process.

to distinguish vegetation from roof superstructures for instance Even with @ ground slope of locally 15%, about 95% of th
above-ground surface have been detected and correctly cla:

fied: extended above-ground, dense urban aggregates, buildi
with large variation in height, as well as small objects. The finz
/’M:SN segmentation, based on altimetric, topological, and radiomet
criteria, has provided relevant areas of interest. The borders :
not very accurate and sometimes locally irregular because of t
DTM initial DEM, but the global shape of objects has been preserve
Besides the classification itself, the process provides a DTM
W the scene and a symbolic 3-D representation of the scene as
AGO graph, which can be used to exploit interactions betwee
FIG. 11. Interaction between above-ground detection and DTM estimatiofleighboring objects.

[ ABOVE-GROUND J
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“ground"/

3-D graph o o Change in no_“"above-ground"
iz DTM Estimation Energy minimization classification ? classification
ground”

[ +DTM

yes

FIG. 12. lterative process for the binary classification ground/above-ground.

These results show the relevancy of a simple and genemsults deteriorate a little when the image resolution gets poor:
model for AGO. The detection requires no geometric knowthan 50 cm per pixel, as the linear characteristics of building:
edge and few parameters. The processing time needed fdyeaome less clear. Confusion between buildings and trees occt
1000x 1000 size image is about 10 min on a station alpha AXRFhen the main direction of a roof does not appear clearly in th
150 MHz. Itis almost equally distributed between the graph crenage (cases of a few small oblic roofs) or, more frequently
ation (extension of neighborhood relations), the binary classifithen an inappropriate neighborhood is taken into account in th
cation of the nodes as ground or above-ground, and the textuoall textural measure computation. This could be avoided b
measure based on entropy values. using both images of the stereo pair, since the spatial context

A guantitative assessment on five different stereo pairs (vanbjects can vary a lot between the two points of view, especiall
ous scenes and various resolution photographs) covering a tatahe neighborhood of AGOs.
area of about 1kfhas been performed with a unique set of
parameter valueg{=1m, =2 m, ac = =0.5). 5. CONCLUSION

It has revealed that between 91.5 and 97% of the above-
ground surface was correctly detected (false detection betweed new approach for the 3-D reconstruction of complex ur-
2 and 11%). Only small objects like isolated trees or very smdian scenes from a pair of mid-resolution aerial images has be
houses are sometimes lost. False detections of the above-grqumaghosed. It consists of detecting and classifying the above
surface often come from matching errors due to homogenearsund objects of the scene, buildings, and vegetation. In ords
radiometry. The quality of the detection is stable over the expéo- cope with the complexity and the diversity of urban envi-
imented range of image resolution (between 20 cchlam per ronments, only low-level 2-D and 3-D properties have beer
pixel). used, through the computation and the segmentation of a DEI

The study has also shown that between 87.6 and 94% of #ied a local analysis of radiometry. The method provides a syn
buildings were correctly detected (false detection 13%). Thelselic representation of the scene combining different kinds o

e (’f ¥ = i \ e Srepetation” node
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FIG. 13. Creation of the AGO graph by merging neighboring “above-ground” nodes.
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FIG. 14. Aerial image (size 86& 700 pixels, same characteristics as the images of Fig. 1) and the corresponding DEM. The DEM has been autome
computed from two images (only one of them is shown here).



FIG. 15. Result of the segmentation computed from the input images of Fig. 1 and the corresponding DEM oB{-ig.15n, 5o =2 m, ac = oc =0.5). Each
above-ground object is represented by a random gray level.

-~ o

FIG. 16. Result of the segmentation computed from the input data of Figigl4 ( m, §o =2 m, ¢ = ac =0.5). Each above-ground object is represented by a
random gray level.
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FIG. 17. Result of the classification: red hatched areas are classified as building and green hatched areas as vegetation (left areas are classified ¢
(a) results for the input data of Fig. 1; (b) results for the input data of Fig. 14.
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information: thematic, geometric, radiometric, and contextuali1. T. Dang, O. Jamet, and H. Mag, Applying perceptual grouping and
It also provides a DTM of the ground surface.

Results show that the method is reliable and robust to scene

and

ability to cope with very different contexts, which is of prime ,,

image variability. The novelty of the approach lies with its

importance when one deals with urban environments. The ro-

bustness has been achieved by involving a generic 3-D model and
complementary low-level information. The use of a Markovians.

model within an iterative optimization process enables us to si-
multaneously take the elevation of the ground surface and local

differences in height into account. Therefore, the method doéé:

not require a fine tuning of parameter values.

The information should enable a fine 3-D reconstruction ofg
the scene to be realized, locally adapted to the objects and to
their context. The selection of spatial features related to areas of
interest will reduce the combinatorial complexity and hence th&s.

risk

lated during the process can be used in many ways: hypothesis
generation, selection of appropriate models, relevant initializat"
, control on parameters, etc. We therefore believe that the

tion

of errors. The local information which has been accumu-

focusing strategy proposed in this paper will prove extremely

useful in processing complex urban scenes.
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