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tand up and look
around. Walk in a circle. Jump in the air. Wave
your arms. You are a collection of particles mov-
ing about within a small region of a 3-manifold—

a three-dimensional space—that extends in all di-
rections for many billions of light-years.

Manifolds are mathematical constructs. The
triumph of physics since the time of Galileo and
Kepler has been the successful description of real-
ity by mathematics of one flavor or another, such
as the mathematics of manifolds. According to
physics, everything that happens takes place
against the backdrop of three-dimensional space
(leaving aside the speculations of string theorists
that there are tiny dimensions in addition to the
three that are manifest) [see “The Theory Former-
ly Known as Strings,” by Michael J. Duff; Scien-
tific American, February 1998]. Three dimen-
sions means that three numbers are needed to spec-
ify the location of a particle. Near Earth, for
instance, the three numbers could be latitude, lon-
gitude and altitude.

According to Newtonian physics and tradition-
al quantum physics, the three-dimensional space
where everything happens is fixed and immutable.
Einstein’s theory of general relativity, in contrast, 

S

HENRI POINCARÉ conjectured in 1904 that any 
three-dimensional object that shares certain properties of the three-

dimensional sphere can be morphed into a 3-sphere. 
It took 99 years for mathematicians to prove his conjecture.  

(Beware: the three-dimensional sphere is probably not what you think it is!)

By Graham P. Collins
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The Shapes of Space 
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A Russian mathematician has proved the century-old Poincaré
conjecture and completed the catalogue of three-dimensional

spaces. He might earn a $1-million prize 
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makes space an active player: the distance
from one point to another is influenced by
how much matter and energy are nearby
and by any gravitational waves that may
be passing by [see “Ripples in Space-
time,” by W. Wayt Gibbs; Scientific
American, April 2002]. But whether we
are dealing with Newtonian or Einstein-
ian physics and whether space is infinite
or finite, space is represented by a 3-man-
ifold. Understanding the properties of 3-
manifolds is therefore essential for fully
comprehending the foundations on which
almost all of physics—and all other sci-
ences—are built. (The 4-manifolds are
also important: space and time together
form a 4-manifold.)

Mathematicians know a lot about 3-
manifolds, yet some of the most basic
questions have proved to be the hardest.

The branch of mathematics that studies
manifolds is topology. Among the funda-
mental questions topologists can ask
about 3-manifolds are: What is the sim-
plest type of 3-manifold, the one with the
least complicated structure? Does it have
many cousins that are equally simple, or
is it unique? What kinds of 3-manifolds
are there?

The answer to the first of those ques-
tions has long been known: a space called
the 3-sphere is the simplest compact 3-
manifold. (Noncompact manifolds can
be thought of as being infinite or having
an edge. Hereafter I consider only com-
pact manifolds.) The other two questions
have been up for grabs for a century but
may have been answered in 2002 by
Grigori (“Grisha”) Perelman, a Russian
mathematician who has most probably

proved a theorem known as the Poincaré
conjecture. 

First postulated by French mathe-
matician Henri Poincaré exactly 100
years ago, the conjecture holds that the 3-
sphere is unique among 3-manifolds; no
other 3-manifold shares the properties
that make it so simple. The 3-manifolds
that are more complicated than the 3-
sphere have boundaries that you can run
up against like a brick wall, or multiple
connections from one region to another,
like a path through the woods that splits
and later rejoins. The Poincaré conjecture
states that the 3-sphere is the only com-
pact 3-manifold that lacks all those com-
plications. Any three-dimensional object
that shares those properties with the
sphere can therefore be morphed into the
same shape as a 3-sphere; so far as topol-
ogists are concerned, the object is just an-
other copy of the 3-sphere. Perelman’s
proof also answers the third of our ques-
tions: it completes work that classifies all
the types of 3-manifolds that exist.

It takes some mental gymnastics to
imagine what a 3-sphere is like—it is not
simply a sphere in the everyday sense of
the word [see box on pages 98 and 99].
But it has many properties in common
with the 2-sphere, which we are all famil-
iar with: If you take a spherical balloon,
the rubber of the balloon forms a 2-
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■  For 100 years, mathematicians have been trying to prove a conjecture that
was first proposed by Henri Poincaré relating to an object known as the three-
dimensional sphere, or 3-sphere. The conjecture singles out the 3-sphere as
being unique among all three-dimensional objects, or manifolds.

■  A proof of the Poincaré conjecture has finally come, with the work of a young
Russian mathematician, Grigori Perelman. His analysis also completes a major
research program that classifies all possible three-dimensional manifolds.

■  Our universe might have the shape of a 3-sphere. The mathematics has other
intriguing connections to particle physics and Einstein’s theory of gravity.

Overview/Proving Poincaré

GRIGORI PERELMAN discusses his proof of the Poincaré conjecture
and completion of the Thurston geometrization program in a seminar
at Princeton University in April 2003.
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sphere. The 2-sphere is two-dimensional
because only two coordinates—latitude
and longitude—are needed to specify a
point on it. Also, if you take a very small
disk of the balloon and examine it with a
magnifying glass, the disk looks a lot like
one cut from a flat two-dimensional plane
of rubber. It just has a slight curvature. To
a tiny insect crawling on the balloon, it
would seem like a flat plane. Yet if the in-
sect traveled far enough in what would
seem to it to be a straight line, eventually
it would arrive back at its starting point.

Similarly, a gnat in a 3-sphere—or a
person in one as big as our universe!—

perceives itself to be in “ordinary” three-
dimensional space. But if it flies far
enough in a straight line in any direction,
eventually it will circumnavigate the 3-
sphere and find itself back where it start-
ed, just like the insect on the balloon or
someone taking a trip around the world.

Spheres exist for dimensions other
than three as well. The 1-sphere is also fa-
miliar to you: it is just a circle (the rim of
a disk, not the disk itself). The n-dimen-
sional sphere is called an n-sphere. 

Proving Conjectures
AFTER POINCARÉ proposed his con-
jecture about the 3-sphere, half a century
went by before any real progress was
made in proving it. In the 1960s mathe-
maticians proved analogues of the con-
jecture for spheres of five dimensions or
more. In each case, the n-sphere is the
unique, simplest manifold of that dimen-
sionality. Paradoxically, this result was
easier to prove for higher-dimensional
spheres than for those of four or three di-
mensions. The proof for the particularly
difficult case of four dimensions came in
1982. Only the original three-dimension-
al case involving Poincaré’s 3-sphere re-
mained open.

A major step in closing the three-di-
mensional problem came in November

2002, when Perelman, a mathematician
at the Steklov Institute of Mathematics at
St. Petersburg, posted a paper on the
www.arxiv.org Web server that is wide-
ly used by physicists and mathematicians
as a clearinghouse of new research. The
paper did not mention the Poincaré con-
jecture by name, but topology experts
who looked at it immediately realized the
paper’s relevance to that theorem. Perel-
man followed up with a second paper in
March 2003, and from April to May that
year he visited the U.S. to give a series of
seminars on his results at the Massachu-
setts Institute of Technology and Stony
Brook University. Teams of mathemati-
cians at nearly a dozen leading institutes
began poring over his papers, verifying
their every detail and looking for errors.

At Stony Brook, Perelman gave two
weeks of formal and informal lectures,
talking from three to six hours a day. “He

answered every question that arose, and
he was very clear,” says mathematician
Michael Anderson of Stony Brook. “No
one has yet raised any serious doubts.”
One more comparatively minor step has
to be proved to complete the result, An-
derson says, “but there are no real doubts
about the validity of this final piece.” The
first paper contains the fundamental ideas
and is pretty well accepted as being veri-
fied. The second paper contains applica-
tions and more technical arguments; its
verification has not reached the level of
confidence achieved for the first paper.

The Poincaré conjecture has a $1-mil-
lion reward on offer for its proof: it is one
of seven such “Millennium Problems”
singled out in 2000 by the Clay Mathe-
matics Institute in Cambridge, Mass.
Perelman’s proof has to be published and
withstand two years of scrutiny before he
becomes eligible for the prize. (The insti-
tute might well decide that its posting on
the Web server qualifies as “published”
because the result is undergoing as rigor-

ous a peer review as any paper gets.) 
Perelman’s work extends and com-

pletes a program of research that Richard
S. Hamilton of Columbia University ex-
plored in the 1990s. The Clay Institute
recognized Hamilton’s work with a re-
search award in late 2003. Perelman’s cal-
culations and analysis blow away several
roadblocks that Hamilton ran into and
could not overcome.

If, as everyone expects, Perelman’s
proof is correct, it actually completes a
much larger body of work than the Poin-
caré conjecture. Launched by William P.
Thurston—now at Cornell University—

the Thurston geometrization conjecture
provides a full classification of all possible
3-manifolds. The 3-sphere, unique in its
sublime simplicity, anchors the founda-
tion of this magnificent classification. Had
the Poincaré conjecture been false—that is,
if there were many spaces as “simple” as

a sphere—the classification of 3-manifolds
would have exploded into something in-
finitely more complicated than that pro-
posed by Thurston. Instead, with Perel-
man’s and Thurston’s results, we now
have a complete catalogue of all the pos-
sible shapes that a three-dimensional space
can take on—all the shapes allowed by
mathematics that our universe (consider-
ing just space and not time) could have.

Rubber Doughnuts
TO UNDERSTAND the Poincaré conjec-
ture and Perelman’s proof in greater
depth, you have to know something
about topology. In that branch of math-
ematics the exact shape of an object is ir-
relevant, as if it were made of play dough
that you could stretch, compress and
bend to any extent. But why should we
care about objects or spaces made of
imaginary play dough? The reason relates
to the fact that the exact shape of an ob-
ject—the distance from one point on it to
another—is a level of structure, which is
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TEAMS OF MATHEMATICIANS at nearly a dozen
leading institutes began poring over Perelman’s papers, 
verifying every detail and LOOKING FOR ERRORS.
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called the geometry of the object. By con-
sidering a play-dough object, topologists
discover which properties of the object
are so fundamental that they exist in-
dependently of its geometric structure.
Studying topology is like discovering
which properties humans have in general
by considering the properties of a “play-
dough person” who can be morphed into
any particular human being.

If you have read any popular account
of topology, you have probably encoun-
tered the hoary old truism that a cup and

a doughnut are indistinguishable to a
topologist. (The saying refers to a ring-
shaped doughnut, not the solid, jam-filled
kind.) The point is that you can morph
the play-dough cup into a doughnut shape
simply by smushing the clay around,
without having to cut out any holes or
glue any patches together [see illustration
on page 100]. A ball, on the other hand,
can be turned into a doughnut only by ei-
ther boring a hole through its middle or
stretching it into a cylinder and gluing the
ends together. Because such cutting or glu-

ing is needed, a ball is not the same as a
doughnut to a topologist.

What interests topologists most are
the surfaces of the ball and the doughnut,
so instead of imagining a solid we should
imagine a balloon in both cases. The topol-
ogies are still distinct—the spherical bal-
loon cannot be morphed into the ring-
shaped balloon, which is called a torus.
Topologically, then, a sphere and a torus
are distinct entities. Early topologists set
out to discover how many other topolog-
ically distinct entities exist and how they
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The 3-sphere at the heart of Poincaré’s conjecture takes a bit of effort
to visualize. Mathematicians who prove theorems about higher-
dimensional spaces do not have to visualize them. They make do
with abstract properties, guided by intuitive notions based on

analogies to lower dimensions (but being careful not to take the
analogies literally). Others, too, can form an idea of what higher-
dimensional objects are like by working up from familiar lower-
dimensional examples. The 3-sphere is a case in point.

1 Start by considering a disk with a circle forming its boundary. 
To mathematicians, the disk is a “two-dimensional ball” and the circle is

a “one-dimensional sphere.”  Also, a “ball” of whatever dimensionality is the
filled-in object, analogous to a baseball, and a “sphere” is the surface of a
ball, analogous to a balloon. The circle is one-dimensional because it takes
just a single number to specify a location on it. 

2Now we can build the two-dimensional sphere out of two
copies of the disk. Distort one disk into a hemisphere like the

Northern Hemisphere and distort the other to be like the Southern
Hemisphere. Then glue the two hemispheres together at their
boundary, which becomes the equator. Voilà: the 2-sphere.

3 Imagine an ant starting out from the North Pole,
walking along the great circle formed by the

International Date Line and the meridian that passes
through Greenwich, England (left). If we map that path
back onto the two disks (right), we see that the ant
travels in a straight line (1) out to the edge of the
northern disk (a). Then it crosses to the corresponding
point on the southern disk and continues across that
disk in a straight line (2 and 3). When it reaches the edge
again (b), it crosses back to the northern disk and
continues on to its starting point, the North Pole (4). 
We have followed its path as it circumnavigates the 
2-sphere by tracking it on the disks. The only tricky part
is figuring out that the direction of travel appears to
reverse when it crosses from one disk to the other. 

Multidimensional Music of Spheres

Equator

Two-dimensional ball

One-dimensional sphere

South pole

North pole

North pole

South pole
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could be characterized. For two-dimen-
sional objects, which are also called sur-
faces, the answer is neat and tidy: it all
boils down to how many “handles” a sur-
face has.

By the end of the 19th century, math-
ematicians understood how to classify
surfaces. Out of all the surfaces, the
sphere, they knew, had a unique simplic-
ity. Naturally they started wondering
about three-dimensional manifolds. To
start with, was the 3-sphere unique in its
simplicity, analogous to the 2-sphere?

The century-long history that follows
from that elementary question is littered
with false steps and false proofs.

Henri Poincaré tackled this question
head-on. He was one of the two foremost
mathematicians who were active at the
turn of the 20th century (the other being
David Hilbert). Poincaré has been called
the last universalist—he was at ease in all
branches of mathematics, both pure and
applied. In addition to advancing numer-
ous areas of mathematics, he contributed
to the theories of celestial mechanics and

electromagnetism as well as to the phi-
losophy of science (about which he wrote
several widely read popular books).

Poincaré largely created the branch of
mathematics called algebraic topology.
Around 1900, using techniques from that
field, he formulated a measure of an ob-
ject’s topology, called homotopy. To de-
termine a manifold’s homotopy, imagine
that you embed a closed loop in the man-
ifold [see box on next page]. The loop can
be wound around the manifold in any
possible fashion. We then ask, Can the
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4 Then consider our 2-sphere and the three-dimensional
volume it contains (a “three-dimensional ball”) and do

with the ball and sphere what we did with the circle and disk:
take two copies and glue the boundaries together. 
We cannot visualize how to distort the balls in four dimensions
to form some analogue of hemispheres, but we don’t need to. 
It suffices to know that corresponding points on the surfaces—
on the 2-spheres—are joined together, like corresponding
points on the circles were. The result of joining together the
two balls is the 3-sphere, which is the “surface” of a four-
dimensional ball. (In four dimensions—where the 3-sphere and
the 4-ball really live—the “surface” of an object is three-
dimensional.) We can call one ball the northern hemisphere
and the other the southern. The north pole is at the center of
the northern ball (like the north pole was marked at the center
of the northern disk).

5Next imagine these balls are large, empty regions of
space, and someone sets out in a rocket ship from the

north pole. Eventually she reaches the “equator” (1), which
is the entire sphere surrounding the northern ball. At the
equator she crosses over to the southern hemisphere and
travels on a straight line through its center (the south pole)
to the opposite side of the equator (2 and 3). There she
crosses back to the northern hemisphere and travels back
to the north pole, her starting point (4). We have just
imagined someone traveling along the surface of a four-
dimensional ball, circumnavigating it! This 3-sphere,
consisting of two balls joined on their spherical surfaces, is
the space to which the Poincaré conjecture applies. Our
universe might have the shape of a 3-sphere.

The process can be continued to five dimensions—to
make a 4-sphere—but it becomes even harder to visualize
what is going on. Similarly, any given n-sphere can be
constructed from two n-balls: just glue together the
boundaries of the two balls. Each boundary is an 
(n–1)-sphere, just as the boundary of a disk (a 2-ball) 
is a circle (a 1-sphere). The result is an n-sphere, which
encloses an (n + 1)-ball.

Equator (2-sphere, whole surface)

Equator

North pole
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loop always be shrunk down to a point,
just by moving it around, without ever lift-
ing a piece of it out of the manifold? On a
torus the answer is no. If the loop runs
around the circumference of the torus, it
cannot be shrunk to a point—it gets
caught on the inner ring of the doughnut.
Homotopy is a measure of all the differ-
ent ways a loop can get caught.

On an n-sphere, no matter how con-
voluted a path the loop takes, it can al-
ways be untangled and shrunk to a point.
(The loop is allowed to pass through it-
self during these manipulations.) Poin-
caré speculated that the only 3-manifold

on which every possible loop can be
shrunk to a point was the 3-sphere itself,
but he could not prove it. In due course
this proposal became known as the Poin-
caré conjecture. Over the decades, many
people have announced proofs of the
conjecture, only to be proved wrong. (For
clarity, here and throughout I ignore two
complications: so-called nonorientable
manifolds and manifolds with edges. For
example, the Möbius band, a ribbon that
is twisted and joined in a loop, is nonori-
entable. A sphere with a disk cut out from
it has an edge. The Möbius band also has
an edge.) 

Geometrization
PERELMAN’S PROOF is the first to
withstand close scrutiny. His approach to
analyzing three-dimensional manifolds is
related to a procedure called geometriza-
tion. Geometry relates to the actual shape
of an object or manifold: for geometry, an
object is made not of play dough but of
ceramic. A cup, for example, has a dif-
ferent geometry than a doughnut; its sur-
face curves in different ways. It is said that
the cup and the doughnut are two exam-
ples of a topological torus (provided the
cup has one handle) to which different
geometries have been assigned.
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TOPOLOGY OF SURFACES
IN TOPOLOGY the exact shape, or geometry, of an object is not
important. It is as if everything is made of play dough or rubber and can
be morphed by stretching, compressing and twisting. Cutting and

joining,  however, are forbidden. Thus, in topology any object with a
single hole, such as the coffee cup at the far left, is equivalent to the
doughnut at the far right. 

EVERY POSSIBLE two-dimensional manifold, or surface
(restricting to so-called compact, orientable ones), can be constructed
by taking a sphere (akin to a balloon, a) and adding handles. 

The addition of one handle yields the genus-1 surface, or torus, which is
the surface of the doughnut shape (above right). Adding two handles
yields the genus-2 surface (b) and so on.

a

a b

b

2-SPHERE is unique among surfaces, in that any closed loop
embedded on a 2-sphere can be shrunk down to a point (a). In
contrast, a loop on a torus can get “caught” around the hole in the
middle (b). Every surface except for the 2-sphere has handles on

which the loop can get caught. The Poincaré conjecture proposes that
the 3-sphere is similarly unique among all three-dimensional
manifolds: any loop on it can be shrunk to a point, but on every other 
3-manifold, the loop can get caught. 

= =

=

= =
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To gain a sense of how geometriza-
tion served to help Perelman, consider
how geometry can be used to classify 2-
manifolds, or surfaces. Each topological
surface is assigned a special, unique
geometry: the one for which the curvature
of the surface is spread completely even-
ly about the manifold. For the sphere,
that unique geometry is the perfectly
spherical sphere. An eggshell shape is an-
other possible geometry for a topological
sphere, but it does not have curvature
evenly spread throughout: the small end
of the egg is more curved than the big end.

The 2-manifolds form three geomet-
ric types [see box at right]. The sphere has
what is called positive curvature, the
shape of a hilltop. The geometrized torus
is flat; it has zero curvature, like a plain.
All the other manifolds, with two or more
handles, have negative curvature. Nega-
tive curvature is like the shape of a moun-
tain pass or a saddle: going from front to
back, a saddle curves up; from left to right,
it curves down. Poincaré (who else?),
along with Paul Koebe and Felix Klein (af-
ter whom the Klein bottle is named), con-
tributed to this geometric classification, or
geometrization, of 2-manifolds.

It is natural to try to apply similar
methods to 3-manifolds. Is it possible to
find unique geometries for each topolog-
ical 3-manifold, for which curvature is
spread evenly throughout the manifold?

It turns out that 3-manifolds are far
more complicated than 2-manifolds. Most
3-manifolds cannot be assigned a uniform
geometry. Instead they have to be cut up
into pieces, each piece having a different
canonical geometry. Furthermore, instead
of three basic geometries, as with 2-man-
ifolds, the 3-manifold pieces can take any
of eight canonical geometries. The cutting
up of each 3-manifold is somewhat anal-
ogous to the factorization of a number
into a unique product of prime factors. 

This classification scheme was first
conjectured by Thurston in the late 1970s.
He and his colleagues proved large swaths
of the conjecture, but crucial points that
the entire system depended on remained
beyond their grasp, including the part
that embodied the Poincaré conjecture.
Was the 3-sphere unique? An answer to
that question and completion of the
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2-MANIFOLDS can be classified by “uniformizing” or “geometrizing” them, which means
assigning them a specific geometry, or rigid shape. In particular, each can be morphed into a
shape that has its curvature evenly distributed.  The sphere (a) is the unique shape having
constant positive curvature, meaning at every point it is curved like a hilltop. The torus (b) can

be made flat—that is, with zero
curvature throughout. To see this,
imagine cutting the torus and
straightening it out to form a
cylinder. Then cut along the
cylinder and unroll it to form a flat
rectangular plane. The torus has
thus been mapped to a flat plane.
Surfaces of genus-2 and higher
(c) can be given constant
negative curvature, with other
details depending on how many
handles are present. Here the
constant negative curvature
surface is represented by the
saddle shape.

GEOMETRIZATION

CLASSIFICATION OF 3-MANIFOLDS, which is similar to that of 2-manifolds but
far more complicated, is completed by Perelman’s work. In general, a 3-manifold has to
be divided into pieces, each of which can be morphed into one of eight different
canonical three-dimensional geometries. The blue-colored example below (drawn in
cartoon form as a 2-manifold) consists of equivalents to five of them: constant positive
(a), zero (b) and constant negative (c) curvature 3-geometries, as well as the “product”
of the 2-sphere and a circle (d) and of the negative curvature surface and a circle (e).

a

b

=

=

c

=

a b c d e

XX

EXAMPLES OF CANONICAL 3-GEOMETRIES

3-manifold
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Thurston program have come only with
Perelman’s papers.

How might we try to geometrize a
manifold—that is, give it a uniform curva-
ture throughout? One way is to start with
some arbitrary geometry, perhaps like an
eggshell shape with various lumps and in-
dentations, and then smooth out all the ir-
regularities. Hamilton began such a pro-
gram of analysis for 3-manifolds in the
early 1990s, using an equation called the
Ricci flow (named after mathematician
Gregorio Ricci-Curbastro), which has
some similarities to the equation that gov-
erns the flow of heat. In a body with hot
and cold spots, heat naturally flows from
the warmer regions to the cooler ones, un-
til the temperature is uniform everywhere.
The Ricci flow equation has a similar ef-
fect on curvature, morphing a manifold to
even out all the bumps and hollows. If you
began with an egg, it would gradually be-
come perfectly spherical.

Hamilton’s analysis ran into a stum-
bling block: in certain situations the Ric-
ci flow would cause a manifold to pinch
down to a point. (This is one way that the
Ricci flow differs from heat flow. The
places that are pinched are like points that

manage to acquire infinite temperature.)
One example was when the manifold had
a dumbbell shape, like two spheres con-
nected by a thin neck. The spheres would
grow, in effect drawing material from the
neck, which would taper to a point in the
middle [see box above]. Another possible
example arose when a thin rod stuck out
from the manifold; the Ricci flow might
produce a trouble called a cigar singular-
ity. When a manifold is pinched in this
way, it is called singular—it is no longer
a true three-dimensional manifold. In a
true three-dimensional manifold, a small
region around any point looks like a small
region of ordinary three-dimensional
space, but this property fails at pinched
points. A way around this stumbling
block had to wait for Perelman.

Perelman came to the U.S. as a post-
doctoral student in 1992, spending se-
mesters at New York University and
Stony Brook, followed by two years at
the University of California at Berkeley.
He quickly made a name for himself as a
brilliant young star, proving many im-
portant and deep results in a particular
branch of geometry. He was awarded a
prize from the European Mathematical

Society (which he declined) and received
a prestigious invitation to address the In-
ternational Congress of Mathematicians
(which he accepted). In spring 1995 he
was offered positions at a number of out-
standing mathematics departments, but
he turned them all down to return to his
home in St. Petersburg. “Culturally, he is
very Russian,” commented one American
colleague. “He’s very unmaterialistic.”

Back in St. Petersburg, he essentially
disappeared from mathematicians’ radar
screens. The only signs of activity, after
many years, were rare occasions when he
e-mailed former colleagues, for example,
to point out errors in papers they had
posted on the Internet. E-mails inquiring
about his pursuits went unanswered.

Finally, in late 2002 several people re-
ceived an e-mail from him alerting them to
the paper he had posted on the mathe-
matics server—just a characteristically brief
note saying they might find it of interest.
That understatement heralded the first
stage of his attack on the Poincaré conjec-
ture. In the preprint, along with his Steklov
Institute affiliation, Perelman acknowl-
edged support in the form of money he had
saved from his U.S. postdoctoral positions.
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DEALING WITH SINGULARITIES

“SURGERY” CAN HANDLE the singularities that arise in the Ricci
flow, as shown by Perelman’s work. When a region of the manifold
starts to pinch down, a small region on each side of the pinch can be cut
out (c). The cuts are then capped by small spheres, and the Ricci flow 

is continued (d). This process may have to be repeated several times 
if other regions subsequently pinch down, but Perelman showed 
that the process terminates eventually. He also showed that cigar
singularities never arise. 

EFFORTS TO APPLY an equation called the Ricci flow to prove
Poincaré’s conjecture and to geometrize 3-manifolds hit a roadblock
before Perelman came along. The Ricci flow, which gradually changes the
shape of a 3-manifold, occasionally runs into trouble called singularities.

One instance is when part of the manifold has a dumbbell shape—two
spheres joined by a tube (a). The tube can become pinched down to a
point, spoiling the manifold’s properties (b). Another singularity, called
the cigar singularity, was also believed to be possible. 

a b

Singularity

c d
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In his paper, Perelman added a new
term to the Ricci flow equation. The mod-
ified equation did not eliminate the trou-
bles with singularities, but it enabled
Perelman to carry the analysis much fur-
ther. With the dumbbell singularities he
showed that “surgery” could be per-
formed: Snip the thin tube on each side of
the incipient pinch and seal off the open
tube on each dumbbell ball with a spher-
ical cap. Then the Ricci flow could be con-
tinued with the surgically altered mani-
fold until the next pinch, for which the
same procedure could be applied. He also
showed that cigar singularities could not
occur. In this way, any 3-manifold could
be reduced to a collection of pieces, each
having a uniform geometry.

When the Ricci flow and the surgery
are applied to all possible 3-manifolds, any
manifold that is as “simple” as a 3-sphere
(technically, that has the same homotopy
as a 3-sphere) necessarily ends up with the
same uniform geometry as a 3-sphere.
That result means that topologically, the
manifold in question is a 3-sphere. Re-
phrasing that, the 3-sphere is unique. 

Beyond proving Poincaré’s conjecture,
Perelman’s research is important for the
innovative techniques of analysis it has in-
troduced. Already mathematicians are
posting papers that build on his work or
apply his techniques to other problems. In
addition, the mathematics has curious
connections to physics. The Ricci flow
used by Hamilton and Perelman is related
to something called the renormalization
group, which specifies how interactions
change in strength depending on the en-
ergy of a collision. For example, at low en-
ergies the electromagnetic interaction has
a strength characterized by the number
0.0073 (about 1⁄137). If two electrons col-
lide head-on at nearly the speed of light,
however, the strength is closer to 0.0078.

Increasing the collision energy is
equivalent to studying the force at a short-
er distance scale. The renormalization
group is therefore like a microscope with
a magnification that can be turned up or

down to examine a process at finer or
coarser detail. Similarly, the Ricci flow is
like a microscope for looking at a mani-
fold at a chosen magnification. Bumps
and hollows visible at one magnification
disappear at another. Physicists expect
that on a scale of about 10–35 meter, or
the Planck length, the space in which we
live will look very different—like a
“foam” with many loops and handles and
other topological structures [see “Atoms
of Space and Time,” by Lee Smolin; Sci-
entific American, January]. The math-
ematics that describes how the physical
forces change is very similar to that which
describes geometrization of a manifold.

Another connection to physics is that
the equations of general relativity, which
describe the workings of gravity and the

large-scale structure of the universe, are
closely related to the Ricci flow equation.
Furthermore, the term that Perelman
added to the basic flow used by Hamilton
arises in string theory, which is a quan-
tum theory of gravity. It remains to be
seen if his techniques will reveal interest-
ing new information about general rela-
tivity or string theory. If that is the case,
Perelman will have taught us not only
about the shapes of abstract 3-spaces but
also about the shape of the particular
space in which we live.

Graham P. Collins, a staff writer and
editor, has degrees in mathematics and
physics. For additional information on
the Poincaré conjecture, visit
www.sciam.com/ontheweb
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M O R E  T O  E X P L O R E

POINCARÉ (seated, talking to Marie Curie) attended the first Solvay
Physics Conference in Brussels, Belgium, in October 1911. Behind
stand Ernest Rutherford, Heike Kamerlingh Onnes (who discovered
superconductivity earlier that year) and Albert Einstein. This
conference may have been the only time that Einstein and
Poincaré met. Poincaré died nine months later.
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