Programação de Computadores II

Cap. 2 – Expressões na linguagem C

Livro: Waldemar Celes, Renato Cerqueira, José Lucas Rangel. Introdução a Estruturas de Dados, Editora Campus (2004) Slides adaptados dos originais dos profs.: Marco Antonio Casanova e Marcelo Gattass (PUC-Rio)

Tópicos de hoje:

- Bits, Bytes e Palavras
- Variáveis e constantes
- Operadores e expressões

Bits, Bytes e Palavras

- Organização da memória
 - Bit:
 - menor unidade
 - armazena 0 ou 1
 - Byte:
 - seqüência de 8 bits
 - Palavra:
 - sequência de bytes
 - número de bytes da palavra varia conforme a arquitetura do computador

		0	1	2	3	4	5	6	7
1	0	0	1	1	1	0	0	1	0
	1	1	1	0	0	1	1	1	0
	2	0	1	1	1	0	0	1	0
	3	0	0	0	0	0	0	0	0
2	0	1	1	1	0	1	0	1	0
	1	0	0	0	0	0	0	0	0
	2	1	1	1	1	1	1	1	1
	3	0	0	0	0	0	0	0	0

Questão 1:

Suponha que:

$$a = 3$$

$$b = a/2$$

$$c = b + 3.1$$

Qual é o valor de c?

- $\Box c = 4.6$
- $\Box c = 4.1$
- $\Box c = 4$
- Nenhuma das opções acima
- ☐ Não é possível determinar o valor de c

Representando números inteiros com bits

Números inteiros: 27, por exemplo,

$$27 = 2 \times 10^{1} + 7 \times 10^{0}$$
 Base decimal (10)

$$27 = 16 + 8 + 2 + 1$$

$$27 = 1 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0$$

Base binária (2)

0001 1011

Números inteiros num Byte

Bits	Valor
000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

Byte	Valor
00000000	0
0000001	1
00000010	2
00000011	3
11111101	253
11111110	254
11111111	255

(Base hexadecimal)

Byte	Valor	Byte	Valor
0000	0	1000	8
0001	1	1001	9
0010	2	1010	10
0011	3	1011	11
0100	4	1100	12
0101	5	1101	13
0110	6	1110	14
0111	7	1111	15

Byte	Valor	Byte	Valor
0000	0	1000	8
0001	1	1001	9
0010	2	1010	Α
0011	3	1011	В
0100	4	1100	С
0101	5	1101	D
0110	6	1110	E
0111	7	1111	F

^{&#}x27;\x61'= '0110 0001'

Little vs Big Endian

Byte3 Byte2 Byte1 Byte0

Processadores ("Little Endia		Processadores Mo ("Big Endian"	
Base address+0 Base address+1 Base address+2 Base address+3	Byte1 Byte2	Base address+0 Base address+1 Base address+2 Base address+3	Byte2 Byte1

Maior inteiro representável em 32 bits $=2^{32}-1=+4.294.967.295$

Como representar um número real?

$$123.456 = .123456 \times 10^{3}$$
 expoente mantissa

IEEE standart 754 Floating Point

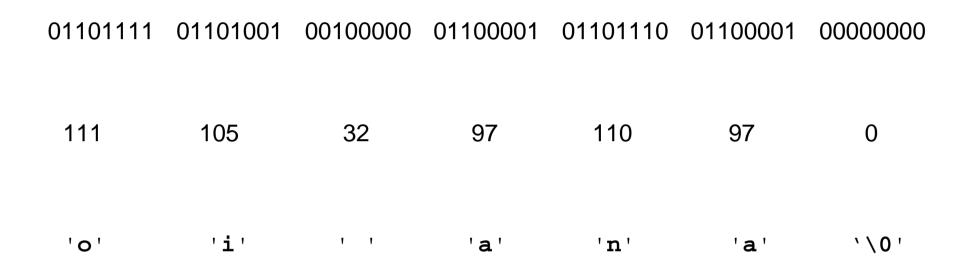
31 30 23 22 0

Precisão simples (float)

63 62 52 51 0

Precisão dupla (double)

Notação de constantes numéricas


tipo inteiro (depende do *default* da máquina)

3.1416 ← tipo precisão dupla

10.14e-3 ← tipo precisão dupla

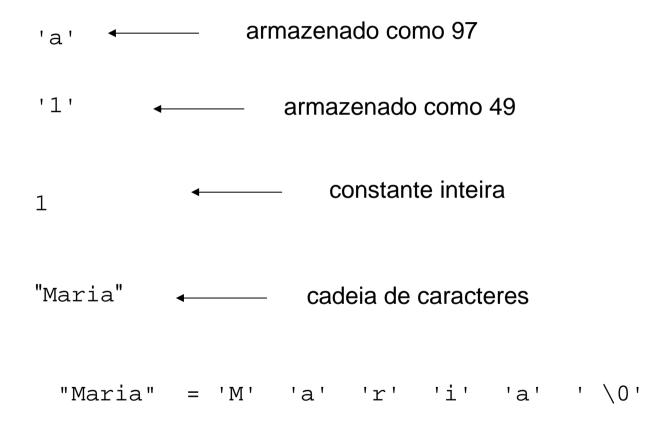
3.01F ← tipo precisão simples

Armazenando texto

"oi ana"

Como representar caracteres?

ASCII value	Character	Control character	ASCII value	Character	ASCII value	Character	ASCII value	Character
								Character
000	(null)	NUL	032	(space)	064	(e)	096	
001	9	SOH	033		065	A	097	CT
002		STX	034	ai	066	B	098	b
003	*	ETX	035	#	067	C	099	C
004	•	EOT	036	S	068	D	100	d
005	*	ENQ	037	%	069	E	101	e
006	•	ACK	038	&x	070	F	102	f
007	(beep)	BEL	039	*	071	G	103	g
008		BS	040	(072	H	104	h
009	{tab}	HT	041)	073	[105	i
010	(line feed)	LF	042	•	074	1	106	ì
011	(home)	VT	043	+	075	K	107	k
012	(form feed)	FF	044	*	076	L	108	1
013	(carriage return)	CR	045	-	077	M	109	m
014	J	SO	046	1.	078	N	110	n
015	£);	SI	047	1	079	0	111	0
016	-	DLE	048	0	080	Þ	112	P
017		DC1	049	1	081	Q	113	q
018	î	DC2	050	2	082	R	114	r
019	Į <u>.</u>	DC3	051	3	083	S	115	S
020	77	DC4	052	4	084	Т	116	t
021	§	NAK	053	5	085	U	117	u
022		SYN	054	6	086	V	118	v
023	<u>‡</u>	ETB	055	7	087	W	119	w
024	-	CAN	056	8	088	X	120	x
025	İ	EM	057	9	089	Y	121	ÿ
026	* →	SUB	058	:	090	Z	122	Z I
027	←	ESC	059	:	091	r	123	Ĭ
028	(cursor right)	FS	060	<	092		124	1
029	(cursor left)	GS	061		093	1	125	j
030	(cursor up)	RS	062	>	0.94	^ I	126	P ete _{mat}
031	(cursor down)	US	063	?	095	_	127	\cap


Copyright 1969. Joshina Com. Copyright 1989. Leading Edge Computer Products Inc.

Como representar caracteres?

Ctrl	Dec	Hex	Char	Code		Dec	Hex	Char	Dec	Hex	Char	Dec	Hex	Char
^@	0	00		NUL		32	20		64	40	0	96	60	*
^A	1 1	01		SOH	l	33	21	•	65	41	A	97	61	а
^в	2	02		STX		34	22		66	42	В	98	62	b
^C	3	03		ETX	l	35	23	#	67	43	С	99	63	С
^D	4	04		EOT		36	24	\$	68	44	D	100	64	d
^E	5	05		ENQ	l	37	25	%	69	45	E	101	65	e
^F	6	06		ACK		38	26	&	70	46	F	102	66	f
^G	7	07		BEL	l	39	27	,	71	47	G	103	67	g
^H	8	08		BS		40	28	(72	48	Н	104	68	h
^ I	9	09		HT		41	29)	73	49	I I	105	69	i
^)	10	0A		LF		42	2A	*	74	4A	J	106	6A	j
^K	11	OB		VT	l	43	2B	+	75	4B	K	107	6B	k
^L	12	0C		FF		44	2C	,	76	4C	L	108	6C	1
^M	13	0D		CR		45	2D	-	77	4D	М	109	6D	m
^ N	14	0E		so	l	46	2E	-	78	4E	N	110	6E	n
^0	15	OF		SI		47	2F	/	79	4F	0	111	6F	О
^ P	16	10		DLE		48	30	0	80	50	P	112	70	р
^Q	17	11		DC1		49	31	1	81	51	Q	113	71	q
^R	18	12		DC2	l	50	32	2	82	52	R	114	72	r
^s	19	13		DC3	l	51	33	3	83	53	S	115	73	S
^T	20	14		DC4	l	52	34	4	84	54	T	116	74	t
^ U	21	15		NAK	l	53	35	5	85	55	U	117	75	u
^v	22	16		SYN		54	36	6	86	56	V	118	76	v
^w	23	17		ETB		55	37		87	57	W	119	77	w
^x	24	18		CAN		56	38	8	88	58	X	120	78	×
^Y	25	19		EM		57	39	9	89	59	Y	121	79	ע
^z	26	1A		SUB		58	3A	:	90	5A	Z	122	7A	z
1^	27	1B		ESC		59	3B	;	91	5B	[123	7B	{
^\	28	1C		FS		60	3C	<	92	5C	\	124	7C	
^]	29	1D		GS		61	3D	=	93	5D]	125	7D	}
^^	30	1E	•	RS		62	3E	>	94	5E	_	126	7E	
^-	31	1 F	- ▼	US		63	3F	?	95	5F	_	127	7F	Δ*

^{*} ASCII code 127 has the code DEL. Under MS-DOS, this code has the same effect as ASCII 8 (BS). The DEL code can be generated by the CTRL + BKSP key.

Constante de caracteres e strings

Tipos básicos na linguagem C:

Tipo	Tamanho	Menor valor	Maior valor
char	1 byte	-128	+127
unsigned char	1 byte	0	+255
short int (short)	2 bytes	-32.768	+32.767
unsigned short int	2 bytes	0	+65.535
int (*)	4 bytes	-2.147.483.648	+2.147.483.647
long int (long)	4 bytes	-2.147.483.648	+2.147.483.647
unsigned long int	4 bytes	0	+4.294.967.295
float	4 bytes	-10 ³⁸	+10 ³⁸
double	8 bytes	-10 ³⁰⁸	+10 ³⁰⁸

^(*) depende da máquina, sendo 4 bytes para arquiteturas de 32 bits

Valor Constante:

- armazenado na memória
- possui um tipo, indicado pela sintaxe da constante

```
/* constante inteira do tipo "int" */
12.45    /* constante real do tipo "double" */
1245e-2    /* constante real do tipo "double" */
12.45F    /* constante real do tipo "float" */
```

Variável:

- espaço de memória para armazenar um dado
- não é uma variável no sentido matemático
- possui um tipo e um nome
 - nome: identifica o espaço de memória
 - tipo: determina a natureza do dado

- Declaração de variável:
 - variáveis devem ser explicitamente declaradas
 - variáveis podem ser declaradas em conjunto

- Declaração de variável:
 - variáveis só armazenam valores do mesmo tipo com que foram declaradas

```
int a;  /* declara uma variável do tipo int */
a = 4.3;  /* a armazenará o valor 4 */
```

- Variável com valor indefinido:
 - uma variável pode receber um valor quando é definida (inicializada), ou através de um operador de atribuição

```
int a = 5, b = 10;  /* declara e inicializa duas variáveis do tipo int */
float c = 5.3; /* declara e inicializa uma variável do tipo float */
```

- Variável com valor indefinido:
 - uma variável deve ter um valor definido quando é utilizada

```
int a, b, c; /* declara e inicializa duas variáveis do tipo int */
a = 2;
c = a + b; /* ERRO: b contém "lixo" */
```

Operadores:

```
- aritméticos: + , - , * , / , %
```

- atribuição: = , += , -= , *= , /= , %=
- incremento e decremento: ++ , --
- relacionais e lógicos: < , <= , == , >= , > , !=
- outros

- Operadores aritméticos (+ , , * , / , %):
 - operações são feitas na precisão dos operandos
 - o operando com tipo de menor expressividade é convertido para o tipo do operando com tipo de maior expressividade
 - divisão entre inteiros trunca a parte fracionária

- Operadores aritméticos (cont.):
 - o operador módulo, "%", aplica-se a inteiros
 - precedência dos operadores: * , / , , +

• Operadores de atribuição:

```
( = , += , -= , *= , /= , %= )
```

- C trata uma atribuição como uma expressão
 - a ordem é da direita para a esquerda
- C oferece uma notação compacta para atribuições em que a mesma variável aparece dos dois lados

var op= expr é equivalente a var = var op (expr)

```
i += 2; é equivalente a i = i + 2; x *= y + 1; é equivalente a x = x * (y +1);
```

- Operadores de incremento e decremento (++ , --):
 - incrementa ou decrementa de uma unidade o valor de uma variável.
 - os operadores não se aplicam a expressões
 - o incremento pode ser antes ou depois da variável ser utilizada
 - n++ incrementa n de uma unidade, depois de ser usado
 - ++n incrementa n de uma unidade, antes de ser usado

Operadores relacionais

o resultado será 0 ou 1 (não há valores booleanos em C)

```
int a, b;
int c = 23;
int d = c + 4;

c < 20          retorna 0
d > c          retorna 1
```

- Operadores lógicos (&& , | | , !)
 - a avaliação é da esquerda para a direita
 - a avaliação pára quando o resultado pode ser conhecido

- sizeof:
 - retorna o número de bytes ocupados por um tipo

- conversão de tipo:
 - conversão de tipo é automática na avaliação de uma expressão
 - conversão de tipo pode ser requisita explicitamente

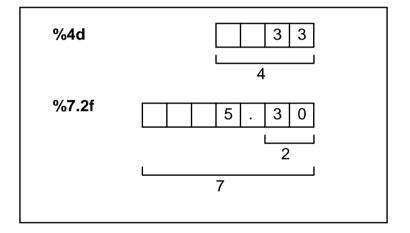
```
/* valor 3 é convertido automaticamente para "float" */
float f = 3; /* ou seja, passa a valer 3.0F, antes de ser atribuído a f */

int g, h; /* 3.5 é convertido (e arredondado) para "int" */
g = (int) 3.5; /* antes de ser atribuído à variável g */
h = (int) 3.5 % 2 /* e antes de aplicar o operador módulo "%" */
```

- Função "printf":
 - possibilita a saída de valores segundo um determinado formato

```
printf (formato, lista de constantes/variáveis/expressões...);

printf ("%d %g", 33, 5.3);


tem como resultado a impressão da linha:
    33 5.3

printf ("Inteiro = %d Real = %g", 33, 5.3);

com saída:
Inteiro = 33 Real = 5.3
```

• Especificação de formato:

• Especificação de tamanho de campo:

• Impressão de texto:

```
printf("Curso de Estruturas de Dados\n");
exibe na tela a mensagem:
Curso de Estruturas de Dados
```

- Função "scanf":
 - captura valores fornecidos via teclado

```
scanf (formato, lista de endereços das variáveis...);
```

```
int n;
scanf ("%d", &n);

valor inteiro digitado pelo usuário é armazenado na variável n
```

• Especificação de formato:

```
%c especifica um char
```

%d especifica um int

%u especifica um unsigned int

%f,%e,%g especificam um float

%lf, %le, %lg especificam um double

%s especifica uma cadeia de caracteres

- Função "scanf" (cont.):
 - caracteres diferentes dos especificadores no formato servem para cercar a entrada
 - espaço em branco dentro do formato faz com que sejam "pulados" eventuais brancos da entrada
 - %d, %f, %e e %g automaticamente pulam os brancos que precederem os valores numéricos a serem capturados

```
scanf ("%d:%d", &h, &m);

valores (inteiros) fornecidos devem ser separados pelo
caractere dois pontos (:)
```

Para casa:

Ler: Waldemar Celes, Renato Cerqueira, José Lucas Rangel, *Introdução a Estruturas de Dados*, Editora Campus (2004) Capítulo 2 – Expressões

Ler: Felipe Bergo. Representação de Números. (disponível no site)

Programar:

Escrever alguns programas que fixem as ideias apresentadas

Fazer a lista de exercícios 1