
Disciplina 
Sistemas de Computação

A
ul

a
03

Hardware & Software:
What is in-between?

nHow does an assembly program
end up executing as digital logic?

nWhat happens in-between?
nHow is a computer designed using

logic gates and wires to satisfy
specific goals?

2

App

HW

Programmer’s view of a
computer system works

HW designer’s view of a
computer system works

Architect/microarchitect’s view:
How to design a computer that

meets system design goals.
Choices critically affect both

the SW programmer and
the HW designer

Levels of Transformations

3

Microarchitecture
ISA (Architecture)

Program/Language

Algorithm

Problem

Logic

Circuits

Runtime System
(VM, OS, MM)

Electrons

The Power of Abstraction

n Levels of transformation create abstractions
q Abstraction: A higher level only needs to know about the

interface to the lower level, not how the lower level is
implemented

q E.g., high-level language programmer does not really need to
know what the ISA is and how a computer executes
instructions

n Abstraction improves productivity
q No need to worry about decisions made in underlying levels
q E.g., programming in Java vs. C vs. assembly vs. binary vs. by

specifying control signals of each transistor every cycle

n Then, why would you want to know what goes on
underneath or above? 4

Crossing the Abstraction Layers

n As long as everything goes well, not knowing what happens
in the underlying level (or above) is not a problem.

n What if
q The program you wrote is running slow?
q The program you wrote does not run correctly?
q The program you wrote consumes too much energy?

n What if
q The hardware you designed is too hard to program?
q The hardware you designed is too slow because it does not provide

the right primitives to the software?

n To all understand all of those What if’s, it is important to
understand how a processor works underneath the
software layer and how decisions made in hardware affect
the software/programmer 5

An Example: Multi-Core Systems

6

CORE 1

L2 C
A

C
H

E 0

SH
A

R
ED

 L3 C
A

C
H

E

D
R

A
M

 IN
TER

FA
C

E
CORE 0

CORE 2 CORE 3
L2 C

A
C

H
E 1

L2 C
A

C
H

E 2

L2 C
A

C
H

E 3

D
R

A
M

 B
A

N
K

S
Multi-Core
Chip

DRAM MEMORY
CONTROLLER

Unexpected Slowdowns in Multi-Core
Sl
ow

do
w
n

0.00

1.00

2.00

3.00

4.00

matlab gcc

3.04

1.07

7

Low priority

High priority

(Core 0) (Core 1)

Moscibroda and Mutlu, “Memory performance attacks: Denial of memory service
in multi-core systems,” USENIX Security 2007.

A Question or Two

n Can you figure out why there is a disparity in
slowdowns if you do not know how the processor
executes the programs?

n Can you fix the problem without knowing what is
happening “underneath”?

8

9

Why the Disparity in Slowdowns?

CORE 1 CORE 2

 L2
CACHE

 L2
CACHE

DRAM MEMORY CONTROLLER

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

Shared DRAM
Memory System

Multi-Core
Chip

unfairness
INTERCONNECT

matlab gcc

DRAM
Bank 3

DRAM Bank Operation

10

Row Buffer

(Row 0, Column 0)

R
ow

 d
ec

od
er

Column mux

Row address 0

Column address 0

Data

Row 0Empty

 (Row 0, Column 1)

Column address 1

(Row 0, Column 85)

Column address 85

(Row 1, Column 0)

HITHIT

Row address 1

Row 1

Column address 0

CONFLICT !

Columns

R
ow

s

 Access Address:

11

DRAM Controllers

n A row-conflict memory access takes significantly
longer than a row-hit access

n Current controllers take advantage of the row buffer

n Commonly used scheduling policy (FR-FCFS)

(1) Row-hit first: Service row-hit memory accesses first
(2) Oldest-first: Then service older accesses first

n This scheduling policy aims to maximize DRAM
throughput

12

The Problem

n Multiple threads share the DRAM controller
n DRAM controllers designed to maximize DRAM

throughput

n DRAM scheduling policies are thread-unfair
q Row-hit first: unfairly prioritizes threads with high row buffer

locality
n Threads that keep on accessing the same row

q Oldest-first: unfairly prioritizes memory-intensive threads

n DRAM controller vulnerable to denial of service
attacks

Now That We Know What Happens
Underneath

n How would you solve the problem?

n What is the right place to solve the problem?
q Programmer?
q Compiler?
q Hardware (Memory controller)?
q Hardware (DRAM)?
q Circuits?

13

Microarchitecture

ISA (Architecture)

Program/Language

Algorithm

Problem

Logic

Circuits

Runtime System
(VM, OS, MM)

Electrons

What is Computer Architecture?

n The science and art of designing, selecting, and
interconnecting hardware components and
designing the hardware/software interface to
create a computing system that meets functional,
performance, energy consumption, cost, and
other specific goals.

14

Why Study Computer Architecture?

n Enable better systems: make computers 
faster, cheaper, smaller, more reliable, …
q By exploiting advances and changes in underlying 

technology/circuits

n Enable new applications
q Life-like 3D visualization 20 years ago?
q Virtual reality?
q Personal genomics?

n Enable better solutions to problems
q Software innovation is built into trends and changes in computer

architecture 15

Computer Architecture Today

n Industry is in a large paradigm shift (to multi-core)
n Many problems motivating and caused by the shift

q Power/energy constraints
q Complexity of design à multi-core
q Technology scaling à new technologies
q Memory wall/gap
q Reliability wall/issues
q Programmability wall/problem

n You can revolutionize the way computers are built, if
you understand both the hardware and the
software (and change each accordingly)

16

Aviso

17

Leiam:
Moscibroda and Mutlu, “Memory performance attacks: Denial of memory
service in multi-core systems,” USENIX Security 2007.

Nosso priemiro PrS será baseado nele

