
Disciplina 
Sistemas de Computação

A
ul

a
04

Aviso

2

Slides e Arquivos já estão no site
http://www.ic.uff.br/~arocha/SC 

Hoje: Prova Supresa 1

What is Computer Architecture?

n The science and art of designing, selecting, and
interconnecting hardware components and
designing the hardware/software interface to
create a computing system that meets functional,
performance, energy consumption, cost, and
other specific goals.

14

An Enabler: Moore’s Law

4

Computer Architecture Today (I)

n Today is a very exciting time to study computer architecture 

n Industry is in a large paradigm shift (to multi-core and
beyond) – many different potential system designs
possible

n Many difficult problems motivating and caused by the shift
n Power/energy constraints
n Complexity of design -> multi-core?
n Difficulties in technology scaling -> new technologies?
n Memory wall/gap
n Reliability wall/issues
n Programmability wall/problem 

n No clear, definitive answers to these problems 5

Computer Architecture Today (II)

6

n These problems affect all parts of the computing stack – if we
do not change the way we design systems 

 
 
 
 
 
 
 
 
 
 
 
 
 

n No clear, definitive answers to these problems

Computer Architecture Today (III)

7

n You can revolutionize the way computers are built, if
you understand both the hardware and the
software (and change each accordingly)

n You can invent new paradigms for computation,
communication, and storage

… but, first …

8

n Let’s understand the fundamentals…

n Because, you can change the world only if you
understand it well enough…
n Especially the past and present dominant paradigms
n And, their advantages and shortcomings -- tradeoffs

What is a computer?

n Three key components
n Computation
n Communication
n Storage (memory)

The Von Neumann Model/Architecture

n Also called stored program computer (instructions in
memory). Two key properties:

n Stored program
q Instructions stored in a linear memory array
q Memory is unified between instructions and data

n The interpretation of a stored value depends 
on the control signals

n When is a value interpreted as an instruction?
n Sequential instruction processing

q One instruction processed (fetched, executed, and completed) 
at a time

q Program counter (instruction pointer) identifies the current instr.
q Program counter is advanced sequentially except for control

transfer instructions

The Von-Neumann Model
(of a Computer)

CONTROL UNIT

IP Inst Register

PROCESSING UNIT

ALU TEMP

MEMORY

Mem Addr Reg

Mem Data Reg

INPUT OUTPUT

Aside: Dataflow Model
(of a Computer)

n Von Neumann model: An instruction is fetched and executed
in control flow order
q As specified by the instruction pointer
q Sequential unless explicit control flow instruction

n Dataflow model: An instruction is fetched and executed in
data flow order
q i.e., when its operands are ready
q i.e., there is no instruction pointer
q Instruction ordering specified by data flow dependence

n Each instruction specifies “who” should receive the result
n An instruction can “fire” whenever all operands are received

q Potentially many instructions can execute at the same time
n Inherently more parallel

Aside: von Neumann vs Dataflow

n Consider a von Neumann program
q What is the significance of the program order?
q What is the significance of the storage locations?

v	<=	a	+	b;				
w	<=	b	*	2;	
x	<=	v	-	w	
y	<=	v	+	w	
z	<=	x	*	y

Sequential

Aside: von Neumann vs Dataflow

n Consider a von Neumann program
q What is the significance of the program order?
q What is the significance of the storage locations?

n Which model is more natural to you as a programmer?

v	<=	a	+	b;				
w	<=	b	*	2;	
x	<=	v	-	w	
y	<=	v	+	w	
z	<=	x	*	y

+ *2

- +

*

a b

z

Sequential

Dataflow

ISA-level Tradeoff:
Instruction Pointer

n Do we need an instruction pointer in the ISA?
q Yes: Control-driven, sequential execution

n An instruction is executed when the IP points to it
n IP automatically changes sequentially
n (except for control flow instructions)

q No: Data-driven, parallel execution
n An instruction is executed when all its operand values are

available (data flow)
n Tradeoffs: MANY high-level ones

q Ease of programming (for average programmers)?
q Ease of compilation?
q Performance: Extraction of parallelism?
q Hardware complexity?

ISA vs. Microarchitecture
Level Tradeoff

n A similar tradeoff (control vs. data-driven execution)
can be made at the microarchitecture level

n ISA: Specifies how the programmer sees instructions
to be executed
q Programmer sees a sequential, control-flow execution order vs.
q Programmer sees a data-flow execution order

n Microarchitecture: How the underlying implementation
actually executes instructions
q Microarchitecture can execute instructions in any order as long as it

obeys the semantics specified by the ISA when making the
instruction results visible to software

n Programmer should see the order specified by the ISA

The Von-Neumann Model

n All major instruction set architectures today use this model
q x86, ARM, MIPS, SPARC, Alpha, POWER

n Underneath (at the microarchitecture level), the execution
model of almost all implementations (or, microarchitectures)
is very different
q Pipelined instruction execution: Intel 80486 uarch
q Multiple instructions at a time: Intel Pentium uarch
q Out-of-order execution: Intel Pentium Pro uarch
q Separate instruction and data caches

n But, what happens underneath that is not consistent with the
von Neumann model is not exposed to software
q Difference between ISA and microarchitecture

What is Computer Architecture?

n ISA+implementation definition: The science and art of
designing, selecting, and interconnecting hardware
components and designing the hardware/software interface
to create a computing system that meets functional,
performance, energy consumption, cost, and other specific
goals.

n Traditional (only ISA) definition: “The term architecture is
used here to describe the attributes of a system as seen by
the programmer, i.e., the conceptual structure and functional
behavior as distinct from the organization of the dataflow and
controls, the logic design, and the physical implementation.”
Gene Amdahl, IBM Journal of R&D, April 1964

ISA vs. Microarchitecture

n ISA
q Agreed upon interface between software

and hardware
n SW/compiler assumes, HW promises

q What the software writer needs to know to
write and debug system/user programs

n Microarchitecture
q Specific implementation of an ISA
q Not visible to the software

n Microprocessor
q ISA, uarch, circuits
q “Architecture” = ISA + microarchitecture

Microarchitecture

ISA

Program

Algorithm

Problem

Circuits

Electrons

ISA vs. Microarchitecture

n What is part of ISA vs. uarch?
q Gas pedal: interface for “acceleration”
q Internals of the engine: implement “acceleration”

n Implementation (uarch) can be various as long as it
satisfies the specification (ISA)
q Add instruction vs. Adder implementation

n Bit serial, ripple carry, carry lookahead adders are all part of
microarchitecture

q x86 ISA has many implementations: 286, 386, 486, Pentium,
Pentium Pro, Pentium 4, Core, …

n Microarchitecture usually changes faster than ISA
q Few ISAs (x86, ARM, SPARC, MIPS, Alpha) but many uarchs
q Why?

ISA

n Instructions
q Opcodes, Addressing Modes, Data Types
q Instruction Types and Formats
q Registers, Condition Codes

n Memory
q Address space, Addressability, Alignment
q Virtual memory management

n Call, Interrupt/Exception Handling
n Access Control, Priority/Privilege
n I/O: memory-mapped vs. instr.
n Task/thread Management
n Power and Thermal Management
n Multi-threading support, Multiprocessor support

Microarchitecture

n Implementation of the ISA under specific design constraints
and goals

n Anything done in hardware without exposure to software
q Pipelining
q In-order versus out-of-order instruction execution
q Memory access scheduling policy
q Speculative execution
q Superscalar processing (multiple instruction issue?)
q Clock gating
q Caching? Levels, size, associativity, replacement policy
q Prefetching?
q Voltage/frequency scaling?
q Error correction?

Property of ISA vs. uarch?

n ADD instruction’s opcode
n Number of general purpose registers
n Number of ports to the register file
n Number of cycles to execute the MUL instruction
n Whether or not the machine employs pipelined

instruction execution

n Remember
q Microarchitecture: Implementation of the ISA under

specific design constraints and goals

Design Point

n A set of design considerations and their importance
q leads to tradeoffs in both ISA and uarch

n Considerations
q Cost
q Performance
q Maximum power consumption
q Energy consumption (battery life)
q Availability
q Reliability and Correctness
q Time to Market

n Design point determined by the “Problem” space
(application space), or the intended users/market

Microarchitecture

ISA

Program

Algorithm

Problem

Circuits

Electrons

