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= Podemos ter aula na proxima 3a-feira,
segundo o calendario académico nao e feriado!

s O que acham?
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Memory Size = 0!

How is it possible?



Memory Size = 0!

How is it possible? Virtual Memory!



s Why “virtual®™?

If you think it's there, and it’s there... it's real

If you think it's not there, and it's not there... it's non-existent

If you think it's not there, and it's there... it's transparent

If you think it's there, and it's not there... it's imaginary

= Virtual Memory is imaginary memory

s |t gives you the illusion of memory that’s not physically there



s Using physical memory efficiently
= Using physical memory simply

» Using physical memory safely



= Virtual memory uses gets the most out of
physical memory

» Demand paging

s Main memory is a cache for portions of virtual address
space

s The rest of the virtual address space is stored on disk

s Keep only active areas of virtual address space
In fast memory

= Transfer data back and forth as needed



= Virtual memory simplifies memory management

s Programmer can think in terms of a large, linear
address space

s Processes access same large, linear address space



= Virtual memory simplifies memory management

s Programmer can think in terms of a large, linear
address space

s Processes access same large, linear address space



s Virtual memory protests process’ address spaces
s Processes cannot interfere with each other

s Because they operate in different address space
= User processes cannot access priviledged information

s Different sections of address space have different
permissions

s Think: read-only, read/write, execute, ...



s Demand paging: Using physical memory efficiently

s Memory management: Using physical memory
simply

s Protection: Using physical memory safely



lllusion of « Memory

« Address space is large:
s 32-bits: ~4,000,000,000 (four billion) bytes
s 64-bits: ~16,000,000,000,000,000,000 (sixteen quintillion) bytes

« Memory (DRAM) is expensive
(1 TB of DRAM ~$10,000)

« But disk storage is relatively cheap
(1 TB of disk < $100)

» Store most data on disk to maintain the
illusion of «° memory in a cost-effective way



lllusion of « Memory

SRAM | €<=—>»| DRAM |[€&—> Disk

4MB~$%$100 8 GB~$100 TB~ $100



lllusion of «° Memory

» S0, DRAM caches disk data and SRAM caches
DRAM data

« Should these caches be built in the same way?



lllusion of «° Memory

» S0, DRAM caches disk data and SRAM caches
DRAM data

« Should these caches be built in the same way?

» Big difference: DRAM ~10X slower than SRAM but
disk ~100,000X slower than DRAM
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s Example:
s Most cray machines

s Early Pcs
s Most embedded systems

Memory

s Loads and stores uses directly
to access memory

Physical
Addresses

4aCCEeSS memory



irtual Memory

s Example:
s Most laptops, servers and modern PCs
s Page (i.e., a block)

s Address translation: Hardware converts virtual addresses
into physical addresses using an OS-managed lookup table
(the page table) Memory

Page Table

Virtual
Addresses

Physical
| # Addresses

M I




» Problem: A page is on disk and not in memory

s Page table entry indicates virtual address is not in memory

s Solution: An OS routine is called to load data from disk
to memory

s Current process suspends execution, others may resume
s OS has full control over placement
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(1) Initiate Block Read

® Processor communicates with controller

® Read block of length P starting at disk

address X and store starting at memory
address Y

® Read occurs
® Direct Memory Access (DMA)
® Done by I/O controller

Processor

® Controller signals completion
® |Interrupt processor invokes OS
® OS resumes suspended process



s |Locality
s Temporal and Spatial

» Working set: The set of active virtual pages

= Programs with higher temporal locality have smaller
working sets

s |f working set < memory size: good performance after
initial misses

s |f working set > memory size: thrashing, pages are
copied in and out



s Memory management: Using physical memory
simply

s Protection: Using physical memory safely



® Virtual / physical address spaces divided into equal-sized blocks
® “Virtual pages” in virtual memory
® “Physical pages” or “frames” in physical memory
® Key idea: Each process has its own virtual address space
e Simplifies memory allocation
® A virtual page can be mapped to any physical page
e Simplifies sharing code and data among processes

® The OS can map virtual pages to same shared physical page

linking and loading
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® Linking

® Fach program has similar
virtual address space

® Code, stack, and shared
libraries always start at the

same address

® | oading

® Virtual pages can be loaded on
demand (on first access)

kernel virtual memory

memory
invisible to
T user code

Oxc0000000

0x40000000

0x08048000

User stack

(created at runtime)

‘ %esp
(stack ptr)
t —
Memory mapped region

forshared libraries

1 1 the “brk” ptr

runtime heap (via malloc)

Read/write segment
(.data, .bss)

Loaded from

Read-only segment
(.init, .text, .rodata)

[ executable file

0

Unused




s Memory management: Using physical memory
simply

s Protection: Using physical memory safely



® A normal user process should not be able to:
® Read/write another process’ memory
® Write into shared library data
® How does virtual memory help?
® Address space isolation
® Protection information in page table

® Efficient clearing of data on newly allocated pages



® Processes only access virtual addresses
® Cannot access physical addresses directly
® Go through per-process page table to perform translation
® [f physical page is not in page table, it is not accessible
® A normal user process should not be able to:
O Rezdbwrite-srotherprocessmernory

® Write into shared library data



® Page table entry contains permission information

® Hardware enforces this protection

® OS is summoned if a violation occurs (send process SIGSEGY,
segmentation fault)

® The page table itself is in protected memory (only OS can update)



® Programmer shouldn’t have to worry about their data being leaked
® OS can ensure that pages are initialized to all zeros when allocated
® |et's use what we've learned to do this quickly in virtual memory
® Remember shared pages! New pages can share an all-zero page
® Saves a lot of initial stores of the value zero to memory
® The OS can copy-on-write when the all-zero page is stored to

® Allocates a new virtual page on demand (what is this also
useful for? => forking / threading)
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