Sistemas de Computacao

Ne
O

1950 : Mainframe 1980: Micro computer 1990: Internet 2007 Diffuse IT

= Podemos ter aula na proxima 3a-feira,
segundo o calendario académico nao e feriado!

s O que acham?

Store =————p

Size =?
Load Faemory e

Memory Size = 0!

Memory
Chip
Store = .
&|[L_Shi Size = 16GB
Lload €&=—— |
2>
Chip

Memory Size = 0!

How is it possible?

Memory Size = 0!

How is it possible? Virtual Memory!

s Why “virtual®™?

If you think it's there, and it’s there... it's real

If you think it's not there, and it's not there... it's non-existent

If you think it's not there, and it's there... it's transparent

If you think it's there, and it's not there... it's imaginary

= Virtual Memory is imaginary memory

s |t gives you the illusion of memory that’s not physically there

s Using physical memory efficiently
= Using physical memory simply

» Using physical memory safely

= Virtual memory uses gets the most out of
physical memory

» Demand paging

s Main memory is a cache for portions of virtual address
space

s The rest of the virtual address space is stored on disk

s Keep only active areas of virtual address space
In fast memory

= Transfer data back and forth as needed

= Virtual memory simplifies memory management

s Programmer can think in terms of a large, linear
address space

s Processes access same large, linear address space

= Virtual memory simplifies memory management

s Programmer can think in terms of a large, linear
address space

s Processes access same large, linear address space

s Virtual memory protests process’ address spaces
s Processes cannot interfere with each other

s Because they operate in different address space
= User processes cannot access priviledged information

s Different sections of address space have different
permissions

s Think: read-only, read/write, execute, ...

s Demand paging: Using physical memory efficiently

s Memory management: Using physical memory
simply

s Protection: Using physical memory safely

lllusion of « Memory

« Address space is large:
s 32-bits: ~4,000,000,000 (four billion) bytes
s 64-bits: ~16,000,000,000,000,000,000 (sixteen quintillion) bytes

« Memory (DRAM) is expensive
(1 TB of DRAM ~$10,000)

« But disk storage is relatively cheap
(1 TB of disk < $100)

» Store most data on disk to maintain the
illusion of «° memory in a cost-effective way

lllusion of « Memory

SRAM | €<=—>»| DRAM |[€&—> Disk

4MB~$%$100 8 GB~$100 TB~ $100

lllusion of «° Memory

» S0, DRAM caches disk data and SRAM caches
DRAM data

« Should these caches be built in the same way?

lllusion of «° Memory

» S0, DRAM caches disk data and SRAM caches
DRAM data

« Should these caches be built in the same way?

» Big difference: DRAM ~10X slower than SRAM but
disk ~100,000X slower than DRAM

!n|y !!y3|ca| IHemory

s Example:
s Most cray machines

s Early Pcs
s Most embedded systems

Memory

s Loads and stores uses directly
to access memory

Physical
Addresses

4aCCEeSS memory

irtual Memory

s Example:
s Most laptops, servers and modern PCs
s Page (i.e., a block)

s Address translation: Hardware converts virtual addresses
into physical addresses using an OS-managed lookup table
(the page table) Memory

Page Table

Virtual
Addresses

Physical
| # Addresses

M I

» Problem: A page is on disk and not in memory

s Page table entry indicates virtual address is not in memory

s Solution: An OS routine is called to load data from disk
to memory

s Current process suspends execution, others may resume
s OS has full control over placement

Before fault

Memory

Page Table
Physical

Virtual
Addresses

(Al

DED

o’
.'
L]
.....
l'. ..

After fault
Memory
Page Table
Virtual Physical

L
.........
-..

(1) Initiate Block Read

® Processor communicates with controller

® Read block of length P starting at disk

address X and store starting at memory
address Y

® Read occurs
® Direct Memory Access (DMA)
® Done by I/O controller

Processor

® Controller signals completion
® |Interrupt processor invokes OS
® OS resumes suspended process

s |Locality
s Temporal and Spatial

» Working set: The set of active virtual pages

= Programs with higher temporal locality have smaller
working sets

s |f working set < memory size: good performance after
initial misses

s |f working set > memory size: thrashing, pages are
copied in and out

s Memory management: Using physical memory
simply

s Protection: Using physical memory safely

® Virtual / physical address spaces divided into equal-sized blocks
® “Virtual pages” in virtual memory
® “Physical pages” or “frames” in physical memory
® Key idea: Each process has its own virtual address space
e Simplifies memory allocation
® A virtual page can be mapped to any physical page
e Simplifies sharing code and data among processes

® The OS can map virtual pages to same shared physical page

linking and loading

Virtual
Address
Space for

Process 1:

Virtual
Address
Space for

Process 2:

N-1

N-1

Physical Address

Space (DRAM)

(e.g., read/only

—library code)

0
VP 1 Address. . PP 2
VP 2 Translation
/ PP 7
VP 1
VP 2 * PP 10

M-1

® Linking

® Fach program has similar
virtual address space

® Code, stack, and shared
libraries always start at the

same address

® | oading

® Virtual pages can be loaded on
demand (on first access)

kernel virtual memory

memory
invisible to
T user code

Oxc0000000

0x40000000

0x08048000

User stack

(created at runtime)

‘ %esp
(stack ptr)
t —
Memory mapped region

forshared libraries

1 1 the “brk” ptr

runtime heap (via malloc)

Read/write segment
(.data, .bss)

Loaded from

Read-only segment
(.init, .text, .rodata)

[executable file

0

Unused

s Memory management: Using physical memory
simply

s Protection: Using physical memory safely

® A normal user process should not be able to:
® Read/write another process’ memory
® Write into shared library data
® How does virtual memory help?
® Address space isolation
® Protection information in page table

® Efficient clearing of data on newly allocated pages

® Processes only access virtual addresses
® Cannot access physical addresses directly
® Go through per-process page table to perform translation
® [f physical page is not in page table, it is not accessible
® A normal user process should not be able to:
O Rezdbwrite-srotherprocessmernory

® Write into shared library data

® Page table entry contains permission information

® Hardware enforces this protection

® OS is summoned if a violation occurs (send process SIGSEGY,
segmentation fault)

® The page table itself is in protected memory (only OS can update)

® Programmer shouldn’t have to worry about their data being leaked
® OS can ensure that pages are initialized to all zeros when allocated
® |et's use what we've learned to do this quickly in virtual memory
® Remember shared pages! New pages can share an all-zero page
® Saves a lot of initial stores of the value zero to memory
® The OS can copy-on-write when the all-zero page is stored to

® Allocates a new virtual page on demand (what is this also
useful for? => forking / threading)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

